高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南黄海北部晚更新世以来常量元素记录的化学风化作用

梅西 张训华 李日辉 蓝先洪

梅西, 张训华, 李日辉, 蓝先洪. 南黄海北部晚更新世以来常量元素记录的化学风化作用[J]. 沉积学报, 2014, 32(5): 846-854.
引用本文: 梅西, 张训华, 李日辉, 蓝先洪. 南黄海北部晚更新世以来常量元素记录的化学风化作用[J]. 沉积学报, 2014, 32(5): 846-854.
MEI Xi, ZHANG Xun-hua, LI Ri-hui, LAN Xian-hong. Chemical Weathering Recorded by Major Element of Northern South Yellow Sea since Late Pleistocene[J]. Acta Sedimentologica Sinica, 2014, 32(5): 846-854.
Citation: MEI Xi, ZHANG Xun-hua, LI Ri-hui, LAN Xian-hong. Chemical Weathering Recorded by Major Element of Northern South Yellow Sea since Late Pleistocene[J]. Acta Sedimentologica Sinica, 2014, 32(5): 846-854.

南黄海北部晚更新世以来常量元素记录的化学风化作用

基金项目: 国土资源部海洋地质调查专项(编号:GZH200800501,GZH201100202、1212011220113)、自然科学基金(41206051)与国土资源部海洋油气与环境地质重点实验室开放式基金(编号:MRE201227)联合资助
详细信息
    通讯作者:

    张训华 男 研究员 E-mail:xunhuazh@vip.sina.com

  • 中图分类号: P736.2

Chemical Weathering Recorded by Major Element of Northern South Yellow Sea since Late Pleistocene

  • 摘要: 以南黄海北部高沉积速率柱状样DLC70-3孔作为研究对象,对沉积物的黏土矿物和常量元素地球化学组成进行了综合分析。结果显示,DLC70-3孔沉积物中黏土矿物组合以伊利石为主,其次为蒙皂石,绿泥石和高岭石含量较低;绝大部分样品中伊利石与蒙皂石含量的比值<6,表明沉积物主要来源于黄河物质的输送。研究认为DLC70-3孔沉积物的化学风化指标CIA值受到海平面变化和源区气候变化共同控制,其中源区的气候变化为主要控制因素,而海平面变化造成的机械沉积分异作用主要影响27.80~38.00 m(MIS 4)层位沉积物的CIA值。CIA值显示在MIS 5和MIS 3期大陆化学风化作用较强,与内陆黄土高原地区夏季风和化学风化指标的变化趋势一致,尤其是在MIS 3早期(40~60 ka)记录的化学风化作用非常强,反映了黄河流域地区出现强夏季风降雨过程。
  • [1] Liu J, Saito Y, Kong X, et al. Delta development and channel incision during marine isotope stages 3 and 2 in the western South Yellow Sea[J]. Marine Geology, 2010, 278(1): 54-76
    [2] 杨子赓. Olduvai 亚时以来南黄海沉积层序及古地理变迁[J]. 地质学报, 1993, 67(4):357-366[Yang Zigeng. The sedimentary sequence and palaeogeographic changes of the South Yellow Sea since the Olduvai subchron[J]. Acta Geologia Sinica, 1993, 67(4): 357-366]
    [3] Chough S, Lee H, Chun S, et al. Depositional processes of Late Quaternary sediments in the Yellow Sea: a review[J]. Geosciences Journal, 2004, 8(2): 211-264
    [4] Ge S, Shi X, Zhu R, et al. Magnetostratigraphy of borehole EY02-2 in the southern Yellow Sea and its paleoenvironmental significance[J].Chinese Science Bulletin, 2006, 51(7): 855-865
    [5] 李双林, 李绍全. 黄海YA01孔沉积物稀土元素组成与源区示踪[J]. 海洋地质与第四纪地质, 2001, 21(3):51-56[Li Shuanglin, Li Shaoquan. REE composition and source tracing of sediments from core YA01 inYellow Sea[J]. Marine Geology and Quaternary Geology, 2001, 21(3): 51-56]
    [6] 梅西, 张训华, 李日辉. 南黄海中部泥质沉积区 DLCT0-3 孔稀土元素及环境意义[J]. 地质科技情报, 2011, 30(4):21-28[Mei Xi, Zhang Xunhua, Li Rihui. REE of DLC70-3 Core sediments from mud areas in the central South Yellow Sea and its environmental significance[J]. Geological Science and Technology Information, 2011, 30(4): 21-28]
    [7] 陈志华, 石学法, 王湘芹, 等. 南黄海B10岩心的地球化学特征及其对古环境和古气候的反映[J]. 海洋学报, 2003, 25(1):69-77[Chen Zhihua, Shi Xuefa, Wang Xiangqin, et al. Geochemical changes in Core B10 in the southern Yellow Sea and implications for variations in paleoenvironment and paleoclimate[J]. Acta Oceanologica Sinica, 2003, 25(1): 69-77]
    [8] Cheng Z, Shi X, Chen Z, et al. Microfossil assemblage characteristics in Core B10 and implication for paleoenvironmental evolution in the southern Yellow Sea[J]. Chinese Science Bulletin, 2003, 48(Suppl.1): 49-55
    [9] Fu M, Li Z, Xu X, et al. Sporopollen analysis of Core B10 in the southern Yellow Sea and the reflected characteristics of climate changes[J]. Chinese Science Bulletin, 2003, 48(Suppl.1): 42-48
    [10] Yang S, Yim W, Huang G. Geochemical composition of inner shelf Quaternary sediments in the northern South China Sea with implications for provenance discrimination and paleoenvironmental reconstruction[J]. Global and Planetary Change, 2008, 60(3): 207-221
    [11] Yang S, Youn J. Geochemical compositions and provenance discrimination of the central southYellow Sea sediments[J]. Marine Geology, 2007, 243(1): 229-241
    [12] Yang S, Jung H, Lim D, et al. A review on the provenance discrimination of sediments in the Yellow Sea[J]. Earth-Science Reviews, 2003, 63(1): 93-120
    [13] Nesbitt H, Young G, McLennan S, et al. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies[J]. The journal of geology, 1996, 104(5): 525-542
    [14] Yang S, Jung H, Li C. Two unique weathering regimes in the Changjiang and Huanghe drainage basins: geochemical evidence from river sediments[J]. Sedimentary Geology, 2004, 164(1): 19-34
    [15] 秦蕴珊, 赵一阳, 陈丽蓉, 等. 黄海地质[M]. 北京:海洋出版社, 1989[Qin Yunshan, Zhao Yiyang, Chen Lirong, et al. Geology of the Yellow Sea[M]. Beijing: Ocean Press, 1989]
    [16] Lee S, Shinn Y, Lee K, et al. Depositional development of an isolated mound and adjacent area in the southern Yellow Sea during the last postglacial sea-level rise[J]. Marine Geology, 2009, 265(1): 19-30
    [17] Milliman J, Beardsley R, Yang Z, et al. Modern Huanghe-derived muds on the outer shelf of the East China Sea: identification and potential transport mechanisms[J]. Continental Shelf Research, 1985, 4(1): 175-188
    [18] Alexander C, DeMaster D, Nittrouer C. Sediment accumulation in a modern epicontinental-shelf setting: the Yellow Sea[J]. Marine Geology, 1991, 98(1): 51-72
    [19] Milliman J, Meade R. World-wide delivery of river sediment to the oceans[J]. The Journal of Geology, 1983, 91(1):1-21
    [20] Schubel J, Shen H, Park M. A comparison of some characteristic sedimentation processes of estuaries entering the Yellow Sea[C]//Park Y A, Pilkey O H., Kim S W. Marine Geology and Physical Processes of the Yellow Sea. Seoul: Proc. Korea-U.S. Seminar and Workshop, 1984: 286-308
    [21] Ren M, Shi Y. Sediment discharge of the Yellow River (China) and its effect on the sedimentation of the Bohai and the Yellow Sea[J]. Continental Shelf Research, 1986, 6(6): 785-810
    [22] Gao S, Park Y, Zhao Y, et al. Transport and resuspension of fine-grained sediments over the southeastern Yellow Sea[C]//Lee C, Zhao Y. Proceedings of the Korea-China International Seminar on Holocene and Late Pleistocene Environments in the Yellow Sea Basin. Seoul: Seoul National University, 1996: 83-98
    [23] Park S, Lee H, Han H, et al. Evolution of late Quaternary mud deposits and recent sediment budget in the southeastern Yellow Sea[J]. Marine Geology, 2000, 170(3): 271-288
    [24] Liu Z, Xia D, Berne S, et al. Tidal deposition systems of China's continental shelf, with special reference to the eastern Bohai Sea[J]. Marine Geology, 1998, 145(3): 225-253
    [25] 范德江, 杨作升, 毛登, 等. 长江与黄河沉积物中粘土矿物及地化成分的组成[J]. 海洋地质与第四纪地质, 2001, 21(4):7-12[Fan Dejiang, Yang Zuosheng, Mao Deng, et al. Clay minerals and geochemistry of the sediments from the Yangtze and Yellow rivers[J]. Marine Geology and Quaternary Geology, 2001, 21(4): 7-12]
    [26] 梅西, 张训华, 李日辉. 南黄海北部晚第四纪底栖有孔虫群落分布特征及对古冷水团的指示[J]. 地质论评, 2013, 59(6):1024-1034[Mei Xi, Zhang Xunhua, Li Rihui. Distribution of Late Quaternary benthic foraminifera in South Yellow Sea and its implication of paleo-water mass[J]. Geological Review, 2013, 59(6): 1024-1034]
    [27] Yang S, Li C, Lee C, et al. REE geochemistry of suspended sediments from the rivers around the Yellow Sea and provenance indicators[J]. Chinese Science Bulletin, 2003, 48(11): 1135-1139
    [28] 何良彪, 刘秦玉. 黄河与长江沉积物中粘土矿物的化学特征[J]. 科学通报, 1997, 42(7):730-734[He Liangbiao, Liu Qinyu. Chemical characteristics of clay minerals of Yangtze and Yellow Rivers[J]. Chinese Science Bulletin, 1997, 42(7): 730-734]
    [29] McLennan S. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2): 295-303
    [30] 杨作升. 黄河、长江、珠江沉积物中粘土的矿物组合、化学特征及其与物源区气候环境的关系[J]. 海洋与湖沼, 1988, 19(4):336-346[Yang Zuosheng. Clay mineral assemblages and chemical characters in Changjiang, Huanghe and Zhujiang sedimeents, and its relation with the climate environment in the source areas[J]. Oceanologia et Limnologia Sinica, 1988, 19(4): 336-346]
    [31] Fralick P, Kronberg B. Geochemical discrimination of clastic sedimentary rock sources[J]. Sedimentary Geology, 1997, 113(1): 111-124
    [32] Shao J, Yang S. Does chemical index of alteration (CIA) reflect silicate weathering and monsoonal climate in the Changjiang River basin?[J] Chinese Science Bulletin, 2012, 57(10): 1178-1187
    [33] Lambeck K, Esat T, Potter E. Links between climate and sea levels for the past three million years[J]. Nature, 2002, 419(6903): 199-206
    [34] 季峻峰, 陈骏, 鹿化煜. 陕西洛川黄土中伊利石成因的透射电镜证据[J]. 科学通报, 1998, 43(19):2095-2098[Ji Junfeng, Chen Jun, Lu Huayu.TEM evidence for illite origin in Luochuan loess, Shanxi Province[J].Chinese Science Bulletin, 1998, 43(19): 2095-2098]
    [35] McLennan S. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes[J]. Rev Mineral, 1989, 21: 169-200
    [36] An Z, Kukla G, Porter S, et al. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130, 000 years[J]. Quaternary Research, 1991, 36(1): 29-36
    [37] Yang J, Chen J, An Z, et al. Variations in 87Sr/86 Sr ratios of calcites in Chinese loess: a proxy for chemical weathering associated with the East Asian summer monsoon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 157(1): 151-159
    [38] 施雅风, 于革. 40~30ka BP 中国暖湿气候和海侵的特征与成因探讨[J]. 第四纪研究, 2003, 23(1):1-11[Shi Yafeng, Yu Ge. Warm humid climate and transgressions during 40-30ka BP. and their potential mechanisms[J]. Quaternary Sciences, 2003, 23(1): 1-11]
    [39] Porter S, An Z.Correlation between climate events in the North Atlantic and China during the last glaciation[J]. Nature, 1995, 375: 305-308
    [40] Wang Y, Cheng H, Edwards R L, et al.Millennial-and orbital-scale changes in the East Asian monsoon over the past 224, 000 years[J]. Nature, 2008, 451(7182): 1090-1093
    [41] 梅西, 张训华, 郑洪波, 等. 南海南部 120ka 以来元素地球化学记录的东亚夏季风变迁[J]. 矿物岩石地球化学通报, 2010, 29(2):134-141[Mei Xi, Zhang Xunhua, Zheng Hongbo, et al. Element geochemistry record of Southern South China Sea sediments during the past 120 ka and its implications for East Asian Summer Monsoon variation[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2010, 29(2): 134-141]
  • [1] 裴宇, 张生银, 房嬛, 陈永欣, 张顺存, 邵明, 雷天柱.  陆架边缘海环境下金属元素与有机质富集关系探讨 . 沉积学报, 2022, 40(1): 136-148. doi: 10.14027/j.issn.1000-0550.2020.082
    [2] 李姝睿, 孙高远, 茅昌平, 饶文波.  江苏沿岸辐射沙脊物源分析——来自碎屑重矿物与锆石年代学的证据 . 沉积学报, 2022, 40(4): 931-943. doi: 10.14027/j.issn.1000-0550.2022.023
    [3] 吴劲宣, 夏国清, 陈云, 徐为鹏, 伊海生.  西藏伦坡拉盆地渐新世——中新世之交黏土矿物特征及其古气候意义 . 沉积学报, 2022, 40(5): 1265-1279. doi: 10.14027/j.issn.1000-0550.2021.032
    [4] 刘庚, 韩喜彬, 陈燕萍, 胡邦琦, 易亮.  南黄海沉积物磁性特征及其对物源变化的指示 . 沉积学报, 2021, 39(2): 383-394. doi: 10.14027/j.issn.1000-0550.2020.017
    [5] 徐承芬, 张勇, 孔祥淮, 胡刚, 毕世普, 牟秀娟, 宁泽, 张晓波.  闽北近岸海域晚更新世以来沉积地层特征及其演化 . 沉积学报, 2020, 38(2): 331-339. doi: 10.14027/j.issn.1000-0550.2019.095
    [6] 秦亚超, 孙荣涛, 王红, 田振兴, 徐扬, 温珍河.  南黄海西部日照海域海侵沉积地层及其古环境意义 . 沉积学报, 2020, 38(4): 790-809. doi: 10.14027/j.issn.1000-0550.2019.063
    [7] 刘俊余, 查小春, 黄春长, 庞奖励, 周亚利, 李洋.  甘肃天水全新世黄土—古土壤序列化学风化特征及其古气候意义 . 沉积学报, 2018, 36(5): 937-945. doi: 10.14027/j.issn.1000-0550.2018.138
    [8] 张文桐, 庞奖励, 黄春长, 周亚利, 查小春, 崔天宇, 王海燕, 杨丹.  汉江上游庹家湾剖面化学风化特征及其意义 . 沉积学报, 2017, 35(3): 508-515. doi: 10.14027/j.cnki.cjxb.2017.03.009
    [9] 杨剑萍, 庞效林, 王海峰, 贾军涛, 刘玲.  山东广饶地区晚更新世以来沉积演化与古气候变迁 . 沉积学报, 2016, 34(1): 79-89. doi: 10.14027/j.cnki.cjxb.2016.01.007
    [10] 蓝先洪, 秦亚超, 王中波, 陈晓辉, 密蓓蓓, 黄龙.  渤海东部晚更新世以来的沉积物地球化学特征 . 沉积学报, 2016, 34(5): 892-901. doi: 10.14027/j.cnki.cjxb.2016.05.008
    [11] 王尹, 李祥辉, 周勇, 刘玲.  南雄盆地晚白垩世—古新世陆源沉积组份变化的古气候指示 . 沉积学报, 2015, 33(1): 116-123. doi: 10.14027/j.cnki.cjxb.2015.01.012
    [12] 王利波, 李军, 陈正新, 赵京涛, 白凤龙, 胡邦琦, 窦衍光, 翟滨.  晚更新世以来台湾浅滩西部地层结构与古环境演化 . 沉积学报, 2014, 32(6): 1089-1099.
    [13] 化学元素淋溶性质的定量表示 . 沉积学报, 2014, 32(4): 663-668.
    [14] 南黄海中部表层沉积物有机质分布与分子组成研究 . 沉积学报, 2013, 31(3): 497-508.
    [15] 汪小妹.  鄂尔多斯盆地东胜—神木地区侏罗系煤中常量元素地球化学特征 . 沉积学报, 2011, 29(3): 520-528.
    [16] 肖景义.  邯郸地区晚更新世以来植被波动特征及其对气候变化的响应 . 沉积学报, 2010, 28(6): 1206-1212.
    [17] 杜远生, 彭冰霞, 韩欣.  广西北海涠洲岛晚更新世火山活动引起的地震同沉积变形构造 . 沉积学报, 2005, 23(2): 203-209.
    [18] 章伟艳, 张富元, 陈荣华, 张霄宇.  南海深水区晚更新世以来沉积速率、沉积通量与物质组成 . 沉积学报, 2002, 20(4): 668-674.
    [19] 李玉成, 黄宝玉, 徐永昌.  利用贝类(Lamprotula)化石碳氧同位素再建山西丁村地区晚更新世气候环境 . 沉积学报, 2001, 19(4): 648-651.
    [20] 沈浩杰, 王先兰.  东海大陆架南部边缘晚更新世淹没海滩岩的发现及其地质意义 . 沉积学报, 1999, 17(S1): 782-788.
  • 加载中
计量
  • 文章访问数:  1039
  • HTML全文浏览量:  6
  • PDF下载量:  1389
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-05
  • 修回日期:  2014-06-04
  • 刊出日期:  2014-10-10

目录

    南黄海北部晚更新世以来常量元素记录的化学风化作用

      基金项目:  国土资源部海洋地质调查专项(编号:GZH200800501,GZH201100202、1212011220113)、自然科学基金(41206051)与国土资源部海洋油气与环境地质重点实验室开放式基金(编号:MRE201227)联合资助
      通讯作者: 张训华 男 研究员 E-mail:xunhuazh@vip.sina.com
    • 中图分类号: P736.2

    摘要: 以南黄海北部高沉积速率柱状样DLC70-3孔作为研究对象,对沉积物的黏土矿物和常量元素地球化学组成进行了综合分析。结果显示,DLC70-3孔沉积物中黏土矿物组合以伊利石为主,其次为蒙皂石,绿泥石和高岭石含量较低;绝大部分样品中伊利石与蒙皂石含量的比值<6,表明沉积物主要来源于黄河物质的输送。研究认为DLC70-3孔沉积物的化学风化指标CIA值受到海平面变化和源区气候变化共同控制,其中源区的气候变化为主要控制因素,而海平面变化造成的机械沉积分异作用主要影响27.80~38.00 m(MIS 4)层位沉积物的CIA值。CIA值显示在MIS 5和MIS 3期大陆化学风化作用较强,与内陆黄土高原地区夏季风和化学风化指标的变化趋势一致,尤其是在MIS 3早期(40~60 ka)记录的化学风化作用非常强,反映了黄河流域地区出现强夏季风降雨过程。

    English Abstract

    梅西, 张训华, 李日辉, 蓝先洪. 南黄海北部晚更新世以来常量元素记录的化学风化作用[J]. 沉积学报, 2014, 32(5): 846-854.
    引用本文: 梅西, 张训华, 李日辉, 蓝先洪. 南黄海北部晚更新世以来常量元素记录的化学风化作用[J]. 沉积学报, 2014, 32(5): 846-854.
    MEI Xi, ZHANG Xun-hua, LI Ri-hui, LAN Xian-hong. Chemical Weathering Recorded by Major Element of Northern South Yellow Sea since Late Pleistocene[J]. Acta Sedimentologica Sinica, 2014, 32(5): 846-854.
    Citation: MEI Xi, ZHANG Xun-hua, LI Ri-hui, LAN Xian-hong. Chemical Weathering Recorded by Major Element of Northern South Yellow Sea since Late Pleistocene[J]. Acta Sedimentologica Sinica, 2014, 32(5): 846-854.
    参考文献 (41)

    目录

      /

      返回文章
      返回