文章编号:1000-0550(2002)01-0085-07

青藏东北缘早第三纪盆地充填的 沉积型式及构造背景^① ────以囊谦和下拉秀盆地为例

周江羽^{1,2} 王江海¹ 尹 安³ Spurlin M S³ Horton B K⁴

1(中国科学院广州地球化学研究所 广州 510640)
 2(中国地质大学资源学院 武汉 430074)

3(美国洛杉矶加州大学地球与空间科学系 洛杉矶 CA 90095 美国)

4(美国路易斯安那州立大学地质与地球物理系 路易斯安那 LA 70803 美国)

摘 要 一系列中小型早第三纪红色盆地出露于青藏高原的东北缘,它们是在印度—欧亚板块碰撞过程中因陆壳变 形和高原隆升产生的。典型早第三纪盆地的地质填图和详细的沉积学研究,及构造、沉积和岩浆热事件的综合分析 表明,这些盆地具有两阶段构造—沉积特征,即早期受控于逆冲挤压背景,盆地接受底部冲积扇体系的粗碎屑岩段沉 积,局部伴有岩浆活动,晚期受控于走滑—拉分背景,盆地充填湖泊—三角洲体系的含膏砂泥岩段夹薄层灰岩,并伴 有广泛的岩浆作用。青藏东北缘早第三纪盆地在盆地构造格架、沉积层序结构、沉积物组成和岩浆活动等方面均存 在明显的阶段性演化。盆地古水流统计和岩浆岩⁴⁰ Ar/³⁹ Ar 定年结果表明,青藏东北缘早第三纪盆地沉积物主要形成 于始新世晚期—渐新世早期(38~29 Ma)。盆地沉积型式和岩浆活动受印度—欧亚板块碰撞早期逆冲挤压和走滑— 拉分构造格局的控制。

关键词 沉积型式 充填序列 逆冲—挤压 走滑—拉分 早第三纪盆地 青藏高原 第一作者简介 周江羽 男 1962年出生 博士后 副教授 沉积学和盆地分析 中图分类号 P512 文献标识码 A

青藏高原以其独特的自然景观、丰富的自然资源 和大陆地球动力学研究的优势而倍受国内外地质学家 的重视,已成为国际地球科学研究的热点[1~3]。由印 度与欧亚板块碰撞所产生的陆壳变形和高原隆升控制 了青藏高原腹地及其周边沉积盆地的形成和演 化^[4~8]。一系列大小不等的早第三纪盆地在青藏东 缘沿 NNW 向断裂呈狭长带状展布。这些盆地的面积 -般为 50~100 km² 盆地长宽比一般为 2.5~4.8 ,平 均为 3.6。囊谦和下拉秀盆地的构造位置独特、露头 出露良好 并保存有完整的沉积层序 因此它们是本文 研究和解剖的重点。盆地沉积型式的确定不仅能为恢 复盆地充填过程的沉积历史提供科学佐证 ,而且还可 揭示盆地演化与区域构造背景的关系^[9~10]。本文基 于对青藏东北缘典型早第三纪盆地的填图和详细的盆 地沉积学研究,建立和恢复了盆地的构造格架、充填序 列、古水流体系和沉积体系,阐明了盆地演化与区域构 造背景的关系 初步建立了挤压背景下的逆冲 – 走滑 盆地模式。

1 盆地地质背景

囊谦和下拉秀两盆地位于青海省西南部的玉树地 区(图1),它们是在印度与欧亚板块碰撞的构造背景 下,在中生代基底经历长期隆升剥蚀的基础上,经后期 的挤压—逆冲和走滑—拉分而形成的早第三纪红色盆 地。囊谦盆地为一走向近北北西的狭长盆地,长约50 km,宽10~20 km。盆内下第三系与其下伏的石炭系 和上三叠统的碳酸盐岩基底呈角度不整合关系。盆缘 的东部边界受逆冲断层控制,西部为侵蚀边界。盆地 经历了强烈的后期改造,褶皱冲断广泛,岩浆活动强 烈。盆地底部粗碎屑岩层的厚度大、分布广、古流方向 多变。由于受后期隆升和剥蚀的影响,盆地边界向北 西方向呈不规则分叉而尖灭,向东南方向则逐渐变窄。 下拉秀盆地位于囊谦盆地的东北部,总体呈北西向狭 长状展布,南北长约30 km,宽3~10 km。盆内第三

① 国家自然科学基金项目(批准号:49972026:49472100)、国家重点基础研究发展规划项目(G1998040800)、中国科学院知识创新项目(KZCX2-SW-117)和美国自然科学基金项目联合资助 收稿日期:2001-01-08 收修改稿日期:2001-06-04

图 1 区域构造和盆地地质略图

Fig.1 Schematic map showing the characteristics of the regional tectonics and basin geology

系与其下伏的上三叠统碳酸盐岩基底也呈角度不整合 接触。因后期构造再造,原始盆地现已肢解成数个受 逆冲断裂或侵蚀边界控制的形状较完整的小型盆地, 但各小盆地的沉积充填结构则明显有别。与囊谦盆地 相比,下拉秀盆地的构造作用和岩浆活动较弱,盆内层 序中部的细碎屑岩段和底部的粗碎屑岩段厚度大,但 古流方向相对稳定。野外观测结果初步表明,囊谦和 下拉秀两盆地在初始接受沉积充填的时间、充填序列 和盆地封闭的时间基本一致,表明它们具有类似的构 造—沉积演化历史。

2 盆地充填的沉积型式

2.1 盆地充填序列

盆地充填序列是沉积作用对区域构造背景的直接 响应^[9,11~12]。囊谦和下拉秀两盆地的充填序列具有 相同的二段式结构(图2),即下部砂砾岩段(伴有火山 碎屑岩),上部砂泥岩段(含膏岩和薄层灰岩并伴有岩 浆侵入),形成了从冲积扇体系到湖泊—三角洲体系的 自下而上逐渐变细的盆地充填序列。下面分述它们的 岩相特征。

下部粗碎屑岩段 厚 1 000~2 300 m,主要由冲积 扇体系的泥石流砾岩相、扇面河道砂砾岩相和席状漫 流砂岩相组成。该岩段在囊谦盆地以出现含砾粉砂岩 透镜体、火山碎屑岩夹层为特征,最大厚度可达 1 000 m,单层厚度为 50~70 m,具有向上变细的粒序。该 岩段在下拉秀盆地厚度较大,约 2 300 m,单层厚度为 40~60 m,以正粒序的砂砾岩为主,未见火山碎屑岩 夹层。

上部砂泥岩段 :厚 200~2500 m,主要由湖泊—三 角洲体系的泥岩、泥灰岩、膏岩、砂岩和薄层灰岩组成。 在泥岩和泥灰岩中发现湖相动物化石^{①[13,16]}。该岩 段在囊谦盆地中包含有高钾火山岩和火山碎屑岩,并 广泛被中酸性岩墙所侵位,但岩墙侵位在下拉秀盆地 则较少出现。

2.2 盆地的古水流特征

选择原生沉积构造(如槽状—板状交错层理、冲刷 —充填构造和槽模构造)发育的砂岩进行盆地的古水 流测定。12个实测层序的古水流数据的统计结果表 明⁽¹³⁾ 囊谦盆地古水流的主要方向有南东、东、南西和 北西,其中下部粗碎屑岩段主要为南东166°和东80° ~100°,上部砂泥岩段为南西180°~220°,北西280°~ 305°;下拉秀盆地的古水流总体方向为西、北西和南 东,其中下部粗碎屑岩段为北西290°~320°、西260°~ 280°,上部砂泥岩段为南东130°~166°。可见,囊谦盆 地的早期物源主要来自西部,晚期物源则主要来自东 部;而下拉秀盆地的早期物源主要来自东部和东南部, 而晚期物源则主要来自北西部(图1)。

① 青海省第二区域地质调查队.1:20万区域地质调查报告(囊谦县幅),青海省地质局,1983.63~72

总之,盆地的古水流方向多变,反映出盆地具有多 阶段、多物源供给的特征,表明在盆地沉积充填过程中 存在复杂的构造演化背景。

2.3 沉积体系和沉积相

囊谦和下拉秀两盆地的详细沉积学研究表明,盆 地的主要沉积体系有:冲积扇体系、三角洲体系(含扇 三角洲和河流三角洲)和湖泊体系(含中深湖泊和滨浅 湖泊) 图版 1 和 Ⅱ)。

2.3.1 冲积扇体系

由近源快速堆积的泥石流沉积、扇面辫状河道沉积、漫流沉积和扇面河道间湾沉积构成。已识别出的 主要岩性相有 块状或叠瓦状砾岩相(Gm、Gms)具平 行层理和粒序层理的含砾砂岩相(SGh)具叠瓦状构 造的细砾岩相(Gh)具大型板状交错层理的含砾砂岩 相(Sp)具大型槽状交错层理的含砾砂岩相(Sh)具平 行层理和粒序层理的含砾中粗砂岩相(Sh)块状砂岩 相(Sm)含砾粉砂岩和泥岩相(Fg、Fm)。

18 个实测层序的统计资料表明,在冲积扇砾岩层 序中常见的岩性相组合有:Gm 或 Gms-Gh-SGh-Sh、 Gms-Sp、St-Sh、Gm-Fm、SGh-Sh-Fg 或 Fm。从组成冲 积扇层序的岩性、结构、沉积物颜色和缺少泥质沉积物 等特征分析,属于陆上近源快速堆积的干旱型冲积扇。 2.3.2 三角洲体系

(1) 扇三角洲沉积

层序中不常见,主要发育于湖泊体系的上部,多表现为陆上近岸扇三角洲的特点,即由颗粒较粗的砾岩、 细砾岩、砂砾岩和含砾中粗砂岩组成。垂向上常由多 个细—粗—细层序叠而成,单个扇三角洲层序厚度为 10~20 m。扇三角洲层序之间被泥岩或粉砂岩薄层 所隔,可能指示曾经常遭受湖泊水体的影响。

(2) 湖泊三角洲沉积

层序中少见,与扇三角洲层序相比,湖泊三角洲沉 积的岩性相对较细,以细砾岩、含砾砂岩和中粗—中细 砂岩为主,具明显的细—粗—细三段式结构;出现于中 深湖泊相的上部。在三角洲前缘的细粒沉积物中常见 生物扰动、不对称波痕、负载构造和变形层理。

(3) 水下扇沉积

呈单独的砂砾岩层夹于滨浅湖相的泥岩和粉砂岩 层序中,由砾岩—细砾岩—含砾砂岩—砂岩组成向上 变细的正粒序,与下伏地层呈冲刷接触,单层厚5~20 m。

2.3.3 湖泊体系

层序中可识别出中深湖泊亚相和滨浅湖泊亚相。

(1) 中深湖泊亚相

由巨厚层状泥岩、泥灰岩、薄层灰岩、膏岩和细砂 岩组成,厚度大于400m,并已发现动物化石。细砂岩

图 2 囊谦和下拉秀盆地的充填序列

Fig. 2 Basin-filling sequences for the Nangqian and Xialaxiu basins

图 3 挤压背景下的逆冲—走滑盆地形成模式 Fig. 3 A model for the formation of thrust and strike-slip basins in the compressional setting

层厚 10~50 cm , 具正粒序和反粒序 ,常见 Buma 层序的 A~E 组合和 C~D 组合 ,发育垂直潜穴、对称波 痕、变形层理、小型波状交错层理和攀升层理 ,表明为 深水浊流沉积。

(2) 滨浅湖泊亚相

由泥岩、粉砂岩、膏岩和细砂岩构成互层岩系,并 夹有含砾砂岩的透镜体。在粉砂岩中常见潜穴、生物 扰动、对称波痕、变形层理和小型波状交错层理,并已 发现植物化石。在细砂岩中见有小型槽状和板状交错 层理。

3 沉积型式与构造背景的关系

囊谦和下拉秀两盆地的底砾岩直接不整合于上三 叠统灰岩或中侏罗统碎屑岩之上。盆内下部粗碎屑岩 段和上部细碎屑岩段呈连续沉积。上部细碎屑岩中已 发现如下介形虫和孢粉化石:*Eucypris*,*Hippeutis* sp.,*Negulus* sp.,*Cininna* sp.,*Pterisporites* sp. 和 *Ephedripites* sp. 表明这套粗碎屑岩形成于始新世晚 期—早渐新世^①。由于岩墙切穿整个盆地的沉积物, 因此岩浆活动晚于盆地的沉积充填期。作者新近在囊 谦盆地获得了三条岩墙的高精度⁴⁰Ar/³⁹Ar 年龄(反等 时线年龄分别为 37.6±0.8 Ma, 37.2±0.7 Ma, 37.1 ±0.4 Ma)(详细数据另文发表)表明,盆内充填沉积物形成的顶界年龄应为中始新世末(~38 Ma)。囊谦和下拉秀两盆地的沉积型式表明,青藏东缘早第三纪盆地在盆地构造格架、沉积层序结构和厚度、沉积物组成和岩浆活动方面均有明显的阶段性演化,反映出在区域挤压背景下的逆冲—走滑盆地的演化特征(图3)。

古新世(E₁)—始新世早—中期(E₂¹⁻²):因构造隆 升,囊谦和下拉秀一带的大部分地区遭受剥蚀,故研究 区缺失该套沉积地层。

始新世晚期—渐新世(E³ – E₃):受印度—欧亚板 块碰撞的影响,青藏东缘在新生代出现首次大规模的 构造运动和岩浆活动^[4,8,14~15]。区内形成一系列在 挤压背景下产生的小型逆冲—走滑—拉分盆地。囊谦 和下拉秀等盆地开始形成,开始接受巨厚层状的冲积 扇砾岩、湖泊—三角洲砂泥岩、中深湖泊泥岩、蒸发湖 泊泥灰岩、膏岩和薄层状灰岩为特征的沉积充填,并伴 有明显的断裂活动和岩浆作用。盆地内的火山碎屑岩 夹层和侵入岩墙(~38 Ma)就是此期岩浆活动的产 物。构造活动、沉积作用和岩浆侵位的综合研究表明, 盆地底部充填的巨厚层状冲积扇体系的粗碎屑岩形成 于早期逆冲挤压背景,而上覆中深湖泊体系的泥岩则 形成于后期的走滑—拉分背景,并伴有岩浆活动。从 盆地的古流特征分析(图1),在沉积早期(下部粗碎屑 岩段),囊谦盆地西部曾发生强烈的隆升,为盆地提供 了丰富的物源;下拉秀盆地东部也曾强烈隆起并为其 提供物源。在沉积晚期(上部砂泥岩段),囊谦盆地西 北部继续隆升,而东部边界断裂则伴有左行走滑—拉 分,导致盆地的东部和东南部强烈沉降,出现湖泊细碎 屑岩沉积。下拉秀盆地的西侧断裂因走滑—拉分导致 西南部地区强烈沉降并形成中深湖泊,并伴有大规模 的岩浆活动(下拉秀次火山岩体①),东部则仍以隆升 为主并为盆地提供丰富的物源,形成以湖泊—三角洲 体系为主的沉积环境。盆地的底砾岩出现沿西北方向 的侧向上叠迁移,表明盆缘断裂也具左行走滑性质。

渐新世末:伴有大规模的逆冲挤压和走滑构造运动的高原隆升是造成研究区北部大多数早第三纪盆地关闭的主要原因^[16~17]。

参考文献

- 1 Searle M. The rise and fall of Tibet J]. Nature , 1995 , 374 : $17\!\sim\!18$
- 2 England P , Molnar P. Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet[J]. Nature , 1990 , 344 : $140\!\sim\!142$
- Tapponnier P , Molnar P. Slip-line field theory and continental tectonics
 [J]. Nature , 1976. 264:319~322
- 4 孙鸿烈,郑度.青藏高原形成演化与发展[M].广州:广东科学技术 出版社,1998.1~230
- 5 潘裕生,孔祥儒. 青藏高原岩石圈结构演化和动力学[M]. 广州:广

东科学技术出版社,1998.37~64,333~428

- 6 施雅凤 李吉均 李柄元. 青藏高原晚新生代隆升与环境变化[M]. 广州:广东科学技术出版社,1998. 1~158
- 7 潘桂棠,王培生,徐耀荣等.青藏高原新生代构造演化[M].北京: 地质出版社,1990.14~70
- 8 Yin A , Nie S. A Phanerozoic palinspastic reconstruction of China and its neighboring regions [A]. In : Yin A , Harrison T M , eds. The Tectonic Evolution of Asia [C]. Cambridge University Press , 1996. 442~ 485
- 9 Allen P A, Allen J R. Basin Analysis : Principles & Applications M J. Blackwell Science Publ., 1990. 43~140
- 10 Cathy J B, Raymond V I. Tectonics of Sedimentary Basins[M]. Blackwell Science Publ., 1995. 1~52, 425~458
- 周江羽,刘常青,李健伏.海拉尔地区沉积盆地的充填序列和聚煤 规律J],煤田地质与探,1996(24)2:1~4
- 12 周江羽 ,李思田 ,杨士恭 ,刘常青. 胶莱盆地东北缘中生界粗碎屑岩 段的沉积层序及含金性 J]. 沉积学报 ,1998 ,16(1):140~145
- 13 Horton B K Zhou J Y, Spurlin M S, et al. Paleogene (?) deposystems and basin evolution in the eastern Tibetan Plateau : Nangqian and Xialaxiu basins J J. Earth Science Frontiers, 2000, 7 (Suppl.), 282 ~283
- 14 李吉均,文世宣,张青松,青藏高原隆起的时代、幅度和形式的探讨
 [J].中国科学,1979,6:608~616
- 15 钟大费,丁林. 青藏高原隆升过程及其机制的探讨[J]. 中国科学 (D),1996,26(4):289~295
- 16 Zhou J Y , Wang J H , Yin A , *et al*. Tectono-sedimentary evolution of the Tertiary basins in eastern Tibet : constraining the raising of Tibetan Plateat J]. Earth Science Frontiers , 2000 , *τ* (Suppl.), 287~288
- 17 Spurlin M S , Yin A , Harrison T M , et al. Two phases of Cenozoic deformation in northeastern Tibet : thrusting followed by strike-slip faulting[J]. Earth Science Frontiers , 2000 , 7 (Suppl.), 294

Depositional Patterns and Tectonic Setting of Early Tertiary Basins in the NE Margin of the Tibetan Plateau :

A Case Study of the Nangqian and Xialaxiu Basins

ZHOU Jiang-yu^{1 2} WANG Jiang-hai¹ YIN An³ Spurlin M S³ Horton B K⁴ (Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640) X Institute of Earth Resources , China University of Geosciences , Wuhan 430074) (Department of Earth & Space Sciences , University of California , Los Angeles , California CA90095 , U.S.A)

X Department of Geology & Geophysics, Louisiana State University, Louisiana, Baton Rouge LA70803, U.S.A)

Abstract Many red Early Tertiary basins are exposed in the northeastern margin of the Tibetan Plateau due to intracontinental deformation and uplift induced by the Indo-Asian collision. Based on detailed mapping and sedimentologic investigations of two Early Tertiary basins, Nangqian and Xialaxiu, and combining with the comprehensive analysis of tectonism, sedimentation and magmatism, two stages for the tectonic and depositional evolution of the basins are revealed, i.e. the early stage is controlled by thrusting and characterized by coarse-grained alluvial-fan clastic sediments at the bottom and local magmatic activities; and the late stage is controlled by strik-slip and pull-apart and characteristic of fine-grained lacustrine-delta gypsum- sandstones and mudstones interbedded

① 青海省第二区域地质调查队.1:20万区域地质调查报告(上拉秀幅),青海省地质局,1983.82~87

with thin-bedded limestones and widespread igneous activities. There is a clear episodic evolution resulting from the basin tectonic framework, the thickness and structure of sedimentary sequences, sediment constituents and magmatism. The data of the basin paleocurrent and 40 Ar/ 39 Ar dating for igneous rocks in the basins suggest that the sediments in the early Tertiary basins were formed in the period of Late Eocene-Early Oligocene ($38 \sim 29$ Ma). Depositional patterns and magmatic activities in the Early Tertiary basins in the NE margin of the Tibetan Plateau were controlled by thrusting and strike-slipping in the early period of the Indo-Asian collision.

Key words depositional patterns , basin-filling sequences , thrust , strike-slip , Early Tertiary basins , Tibetan Plateau

图版 [说明 1. 巨厚层状的扇砾岩 Gm 相 2. 分选中等—差, 呈次圆状、杂基或颗粒支撑的细砾岩 SGm 相 3. 具大型槽状交错层理的含砾粗砾 岩 St 相 4. 具大型状交错层理的含砾中粗砾岩 Sp 相 5. 薄层—中厚层单方面的白云质灰岩紫红色砂岩夹泥岩互层,扇三角洲前缘沉积 6. 厚层 状细砂岩中的软变形层理, 三角洲前缘沉积。

图版 II 说明 1.位于巨厚层状扇砾岩层顶部的灰岩夹层 蒸发浅水湖泊沉积 2.紫红色泥岩夹中厚层单方面白色石膏层 蒸发湖泊沉积 β.灰白 色泥灰岩与深灰色泥岩薄互层 ,见动物化石 ,水平层理发育 ,局部泥灰岩具反粒序 ,中深湖泊沉积 ,4.灰白色泥灰岩与灰色泥岩互层夹薄层砂岩 , 泥岩中有动物化石 ,岩层直立 ,见有小型逆冲断层 ,中深湖泊沉积 5.紫红色细砂岩层面的虫迹 ,湖滨砂体沉积 ,6.粉砂岩中的攀升波纹层理 ,中深 湖泊浊流沉积。