文章编号:1000-0550(2011)02-0207-10

次生孔隙带预测新技术及其在大庆长垣以西地区的应用

刘绍军¹ 卢双舫² 张亚金¹ 黄文彪²

(1. 大庆油田有限责任公司勘探开发研究院 黑龙江大庆 163712; 2. 东北石油大学 黑龙江大庆 163318)

摘 要 次生孔隙成因机制复杂 控制次生孔隙发育的因素众多 *k*家观各种理论 *k*从机理上看 *i*砂岩的溶蚀及次生孔隙的形成都可归结到与有机酸及无机酸有关。目前 国内外对次生孔隙带的定量研究还只处于起步阶段。碎屑岩层的埋藏作用 *i*对储层物性有双向的作用:一类是负向作用 *i*使储层物性变差;另一类是正向作用 *i*即使储层物性变好。本研究结合大庆长垣以西地区的石油地质特征 *i*分析了次生孔隙的主控因素 *i*认为研究区次生孔隙主要受机械压实作用、成岩胶结作用、大气水淋滤作用以及有机酸、碳酸等酸性流体的溶蚀作用控制。针对机械压实作用、有机酸和碳酸三种主控因素 确定了他们控制次生孔隙发育的门槛值 *i*并建立了相应的定量评价模型。研究表明 *i*压实作用和胶结作用使储层物性变差 *i*而大气水淋滤作用和碳酸(HCO₃⁻ + CO₃²⁻)、有机酸等酸性流体的溶蚀作用都可以形成次生 孔隙 *j*使储层物性变好。当有机酸值高于 1 000 mg/1 时或者当 HCO₃⁻ + CO₃²⁻ 值高于 3 000 mg/1 时或者某深度现今孔隙度大于其正常压实曲线公式计算的孔隙度时 *i*次生孔隙度发育 根据这些门槛值 *i*可以定量研究有机酸、碳酸和异常高孔的纵向和平面展布特征; 沉积相对储层的原始物性具有控制作用 *i*而成岩作用对储层物性的后期改造作用也很明显。因此 *i*研究次生孔隙发育不能忽视对沉积相和成岩相的研究。以异常高孔、有机酸值、碳酸根 + 重碳酸根离 子浓度平面等值线预测图叠合为主 *i*并结合沉积相和成岩相 *对*次生孔隙带近测。利用该方法 *i*对大庆长垣以西地区萨尔图油层、葡萄花油层、高台子油层以及扶杨油层的次生孔隙进行预测 *i*预测区域和区内含油面积吻合的较 *f*; 薄片资料也佐证了本方法对次生孔隙带预测的可靠性。

关键词 次生孔隙 有机酸 碳酸 压实作用 储层预测 第一作者简介 刘绍军 男 1982 年出生 硕士 石油地质学 E-mail: liushaojun@petrochina.com.cn 中图分类号 TE122.2⁺3 文献标识码 A

0 引言

20 世纪 70 年代以前,多数学者都认为次生孔隙 是深度的函数,因此埋深增加,砂岩的孔隙度会由于 压实作用大大减少。70 年代以后,由于对原油的大 量需求,刺激了对砂岩储层的研究^[1]。大量的研究 表明,次生孔隙是大量普遍存在的,砂岩孔隙中至少 三分之一的孔隙是次生孔隙。这一发现丰富了油气 藏理论,开拓了油气勘探新领域,世界上许多大油田 如普拉德霍湾和北海的一些大油田,主要储层都是次 生孔隙发育的砂岩储层。沉积盆地中埋藏深度在 2 500~2 700 m以下的地层,通常将该深度称为"孔 隙死亡线"。但实际上在一定条件下仍能形成良好 的次生储层和油气藏^[2]。王鹏、赵澄林等^[3]对中国 东部油气勘探层位最深的地区之一东濮凹陷深部储 集层研究表明在 5 000 m以下深度仍有较好的油气 显示。

目前 碎屑岩次生孔隙度形成机制的研究仅就一

个盆地体系中孔隙率的变化开展的,而盆地热流、构 造演化、沉积作用、成岩作用、流体性质及运移等诸多 方面均与次生孔隙度的形成和保存相关。因此,多学 科、定量化研究次生孔隙,对于进一步分析储层演化 和油气勘探都具有十分重要意义。随着油气勘探的 深入和科学技术的发展,把地质学、地球化学、流体地 质学和化学热动力学等学科结合起来,对次生孔隙的 形成演化、发育规模和预测做定量化研究是碎屑岩次 生孔隙研究的发展方向。次生孔隙成因机制复杂,控 制次生孔隙发育的因素众多,因此次生孔隙的平面预 测仍是困扰油气勘探的突出难题。本文针对这一研 究现状,从影响次生孔隙发育的主控因素着手,研究 了主控因数的门槛值,建立了一套预测次生孔隙带平 面分布特征的方法。

1 次生孔隙带预测新技术

碎屑岩层在埋藏过程中,对储层物性有双向的作用:一类是负向作用,即使储层物性变差,主要表现为

收稿日期:2010-01-18;收修改稿日期:2010-04-27

机械压实作用和成岩胶结作用;另一类是正向作用, 即使储层物性变好,主要表现为大气水淋滤、碳酸根 + 重碳酸根和有机酸等酸性流体的溶蚀作用。这两 种作用最直接的结果就是影响储层岩石孔隙度的大 小。负向作用使储层的孔隙减小 ,渗透率变差 ,甚至 损失殆尽;正向作用使储层的物性变好,孔隙度和渗 透率增大。次生孔隙的成因研究一直是砂岩储层研 究中的关键 其对预测有利储集区、段 指导勘探开发 具有重要意义。因而也成为石油地质工作者备受关 注的问题。对次生孔隙成因机制的观点颇多、纷繁复 杂。典型的如地层水说、地热场说、大气降水说等。 70 年代末,以 Schmidt 和 Mc-Donald 为代表的学者提 出了埋藏砂岩的次生孔隙与生油岩有机质演化有关, 并深入研究了砂岩的溶蚀及次生孔隙的形成机制。 近年来,又有学者重新提出 CO₂无机成因说,使次生 孔隙的形成机制进一步完善。综观各种理论,无论地 层水说、地热场说、大气降水说,还是有机质演化说。 从机理上看 砂岩的溶蚀及次生孔隙的形成都可归结 到与有机酸及无机酸有关^[4]。那么,次生孔隙纵向 上、平面上怎么分布的?不同层位次生孔隙分布特 征? 怎么定量评价次生孔隙度? 这将是本文要解决 的问题。

1.1 压实作用对孔隙度的影响

一般地,碎屑岩层在深度 Z 的现今孔隙度值 ф (z)可能是由三部分构成,主要部分是原始孔隙度经 压实后保留下来的,第二部分是在成岩过程中产生的 新孔隙或构造作用形成的裂缝等(有些岩层这一部 分可能是主要的),第三部分是原始孔隙度在压实成 岩过程中被胶结物充填部分。大量研究表明,在砂岩 储集层中,压实作用是导致砂体内原生孔隙大幅度减 少的主要原因之一,压实作用的存在使得砂体内的原 生粒间孔隙大幅度减少,有的地方压实减孔率可达到 50 % 以上,从而极大地影响了砂体的储集物性^[5~8]。 因此,用实测的孔隙度资料去评价一个目的层位物性 条件的好坏,应当考虑压实作用对孔隙度的影响。

孔隙度受埋深的影响较大,Athy(1930)和 Hedberg(1936)认为孔隙度与埋深呈指数关系,基于正常 压力提出的孔隙度-深度关系方程 即:

 $\phi(z) = \phi_0 \exp(-C \cdot z)$

式中 $\phi(z)$ 为埋深 z 时的孔隙度 ,小数; ϕ_0 为地 表孔隙度 小数; C 为压实因子 ,m⁻¹ ,岩性不同其取 值不同; z 为地层埋深 ,m。

砂体类型不同,孔隙度随深度的关系曲线亦不 同,主要体现在地表孔隙度和压缩系数的不同。参考 杨桥和漆家福^[9]对粗砂、中砂、细砂和粉砂进行实验 测试所得出的地表孔隙度和压缩系数(表1),本文对 研究区9344 个样品岩芯实测孔隙度数据分中粗砂 岩、细砂岩和粉砂岩三种岩性做出孔隙度与深度的关 系图,其中,黑帝庙、萨尔图、葡萄花、高台子和扶杨油 层样品点个数分别为1421、1600、2638、2112和 1573。其中,萨尔图、葡萄花、高台子以及扶杨油层原 生孔隙样品的个数与异常高孔带数据个数比值分别 为51%:49%、56%:44%、49%:51%、84%:16%。

参考表1中给出的初始孔隙度 结合本区的地质 特征,确定出了大庆长垣以西地区细砂岩、粉砂岩和 中粗砂岩的正常压实曲线。图1为大庆长垣以西地 区砂岩实测孔隙度纵向的演化图,研究区内细砂岩、 粉砂岩和中粗砂岩的正常压实曲线中地表孔隙度依 次取47.8、48.0和44.0 压实因子分别取0.00068、 0.0007和0.00065。图中偏离正常压实曲线右边的 现今孔隙度数据主要为第二部分孔隙度 偏离正常压 实曲线越远,说明成岩过程中产生新孔隙度越大,说 明次生孔隙越发育;同理,图中偏离正常压实曲线左 边的数据主要为第三部分孔隙度。

1.2 次生孔隙成因机理及主控因素

对储层物性有重大影响的次生孔隙主要是溶蚀 成因的,但其形成机理并没有完全解决,从目前的研 究来看次生孔隙的形成机理处在不断的丰富中。刘 宝珺^[10]指出,间隙水离子的变化,碳酸和羧酸的生 成,黏土矿物转化生成的氢离子,温度压力的变化引 起矿物溶解度变化,硫酸盐在脱硫细菌的作用下与有 机质发生还原反应产生 H₂S 溶于水等都可以产生次 生孔隙。最主要的是碳酸和有机酸对矿物的溶解。 有机酸中双羧基的乙酸对矿物的溶解作用最大^[11]。

表1 部分	松散砂样品的实测初始孔隙度值 ^[9]
-------	-------------------------------

Table 1Observed original porosity in a part of loose sand samples					
粒级(粒径)/mm	粗砂 0.9~1.1	中砂0.4~0.6	细砂 0.1~0.3	粉砂0.05~0.07	粘土 < 0.01
初始孔隙度/%	$40 \sim 44$	38 ~44	42 ~48	48 ~ 52	52 ~ 68
样品数量	6	6	10	10	5

图 1 大庆长垣以西地区砂岩实测孔隙度纵向演化图 Fig. 1 Evolution of porosity with burial depth in Daging Peripheral Oilfield

Surdam 等人^[12]认为,某些酚类与双羧基酸一样能够 有效络合铝,有利于矿物的溶解,酚的生成一般与 III 型干酪根有关。碳酸和有机酸主要溶解碳酸盐矿物 和硅酸盐矿物。前者包括方解石、白云石和菱铁矿的 溶解 后者包括长石、浊沸石、蒙皂石的溶蚀及火山岩 岩屑中硅酸盐矿物的选择性溶解等 上述矿物溶解形 成的次生孔隙已被广泛证实。刘锐娥等^[13]对鄂尔多 斯盆地苏里格庙地区的砂岩进行乙酸溶蚀试验表明, 凝灰岩岩屑的溶蚀是形成次生孔隙改善砂岩物性的 重要原因之一。矿物的溶解能产生次生孔隙除了上 述矿物以外 还包括硫酸盐矿物(硬石膏、石膏、重晶 石及天青石)的溶解,以及非硫酸盐蒸发盐类矿物 (如石盐)的溶解^[14],但这类矿物溶蚀产生的次生孔 隙不普遍。碳酸的来源分为有机成因的和无机成因 的^[15]。无机成因的 CO,主要由大气水淋滤带来的, 深部来源的两大类; Hutcheon(1980) 等提出粘土矿物 和碳酸盐矿物反应可产生 CO₂。有机成因的 CO₂主 要来自有机质的热成熟作用和生物化学作用^[10],及 有机酸在高于120℃的条件下的脱羧作用^[16]。有机 酸主要来源于源岩中干酪根热催化或热降解反 应^[17],高含氧的Ⅲ型干酪根是产生有机酸的最好原 料^[18]。有机酸的另一来源由液态石油热催化或热降 解反应生成的^[19]。陈传平和梅博文^[20]通过实验证 实在有水的条件下原油可以热解生成有机酸。陈传 平等^[21]通过实验证实原油在生物降解作用及游离氧 气氧化作用下也可以产生有机酸。

有机质在热演化、降解生烃的同时,生成有机酸 和 CO, 溶于水 形成有机酸性热流体 溶蚀储层中的 硅铝酸盐矿物和碳酸盐胶结物,形成次生孔隙^[12]。 图 2、图 3 分别是大庆长垣以西地区实测孔隙度与有 机酸随深度变化对比图和孔隙度与 $HCO_3^- + CO_3^{2-}$ 随 深度变化的对比图,对比图中孔隙度和有机酸数据、 孔隙度与 $HCO_3^- + CO_3^{2-}$ 的数据均为相同样品的化验 数据。由图 2、图 3 可见,有机酸值高于 1 000 mg/l 的区主要分布在1150~2350 m的深度范围内, $HCO_3^- + CO_3^{2-}$ 值高于 3 000 mg/l 的深度段主要分布 在1050~2250 m; 这个深度区间正好位于生油窗, 大致相当于 R₀ = 0.5% ~ 1.3%。在这一深度范围 内 烃源岩的产酸潜量较高 产酸能力强 有利于储层 中不稳定矿物铝硅酸盐和碳酸盐胶结物的溶蚀和次 生孔隙的发育。图2、图3中都可以看出研究区在 纵向发育四个异常高孔带 旅次为 500~850 m、1 050

图 2 大庆长垣以西地区砂岩异常高孔与有机酸随深度变化的对比图

Fig. 2 The relationship between anomalously high porosity and organic acid among sandstone in Daqing Peripheral Oilfield

Fig. 3 The relationship between anomalously high porosity and carbonate among sandstones in Daqing Peripheral Oilfield © 1994-2013 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

表 2 有机酸溶蚀作用与大气水风化淋滤作用识别标志

Table 2	The identifications	markers of	leaching :	and organic	acid dissolutio
Table 2	The fuentifications	markers of	i icacining a	and organic	acia anssolutio

类型	有机酸溶蚀作用	大气水淋滤溶蚀作用	
位置		不整合面附近及其之下一定范围、盆地边缘地区、深	
	<u> </u>	大断裂附近	
环境	相对封闭环境	开放环境	
溶蚀介质	经源岩排出的有机酸性流体	酸性大气降水 地表水	
溶蚀范围	烃源灶(层) 内或附近空间	地表风化层之下的淋滤带(地表之下数十到数百米)	
溶蚀产状	与烃源灶和储层分布及空间关系有关,或者说与沉积相带配置有	层状结构 分布在淋滤带或半风化层	
	关。		
地层水特征	有机酸、碳酸根和重碳酸根离子、矿化度离子浓度高 ,水性主要为	有机酸、碳酸根和重碳酸根离子、矿化度离子浓度低,	
	NaHCO3和 CaCl2型两种	水性主要为 Na ₂ SO ₄ 型	
微观特征	①可见粒内溶孔 粒间溶孔也发育; ②可见长石 石英次生加大边的		
	溶蚀现象:③溶蚀面干净,杂质少:④无粘化现象,长石蚀变不明显,	①粒內溶孔不友育,王要粒间溶孔;②不友育次生加 大边;③溶蚀面杂质多,溶蚀孔及周边"脏";④分布范	
		围和发育程度与烃源灶无关,长石粘土化现象明显。	
	相大。		

~1 350 m、1 500 ~2 050 m、2 125 ~2 350 m; 孔隙度 与有机酸随深度变化的对比图的 I 区深度范围为 500 ~850 m, II 区为 1 150 ~1 350 m, III 区为 1 500 ~ 2 050 m, IV 区为 2 150 ~2 350 m; 孔隙度与 HCO_3^- + CO_3^{2-} 关随深度变化的对比图的 I 区深度范围为 600 ~850 m, II 区为 1 050 ~1 350 m, III 区为 1 500 ~2 000 m, IV 区为 2 125 ~2 250 m。其中 II、III、IV 区的 异常高孔带与有机酸、 HCO_3^- + CO_3^{2-} 异常高值区间 有很好的对应关系,但 I 区对应的有机酸、 HCO_3^- + CO_3^{2-} 值却较低。从油层上来看,孔隙度、有机酸和 HCO_3^- + CO_3^{2-} 的异常高值主要在葡萄花油层和扶余 油层。

经过对正常压实曲线右边的孔隙度的数据点和 对应样品有机酸的数据进行了交汇分析 发现 砂岩 异常高孔与有机酸的交汇关系明显出现两个区(图 4) 图 4 中, 当有机酸含量大于 250 mg/l 时, 有机酸 含量的与异常高孔成正比 图中为 I 区; 当有机酸含 量小于于 250 mg/l 时,异常高孔与有机酸值没有关 系,或者说关系不明显,图中为Ⅱ区。研究发现,Ⅱ区 数据大多为深度小于 800 m 位于泰康隆起带的浅部 地区 泰康隆起带位于盆地西部边缘 大气水淋滤作 用较强 对碎屑矿物和成岩矿物的溶解改造作用较 强,从而使储层变好。因此,有机酸、 $HCO_3^- + CO_3^{2-}$ 并非是大庆长垣以西地区次生孔隙形成的唯一主控 因素,大气水淋滤作用也可产生次生孔隙^[22]。Ⅱ、 Ⅲ、Ⅳ区主要受有机酸的影响, I 区埋深比较浅 样品 点大部分分布在盆地边缘 ,主要受大气水淋滤作用的 影响。

通过本区铸体薄片图像、扫描电镜、地层水等资料的综合研究从所处的位置、环境、溶蚀介质、溶蚀范围、溶蚀产状、地层水特征以及微观特征七个方面总结了有机酸溶蚀作用与大气水风化淋滤作用识别标志,详细见表2。

图4 大庆长垣以西地区砂岩异常高孔与有机酸交汇图

1.3 次生孔隙带预测新技术的提出

常规的次生孔隙带预测,一般能在纵向预测几个 次生孔隙发育带,在平面上的预测通常是通过铸体薄 片图像和扫描电镜图像资料的认识大致定性的圈定 一定的溶蚀相,鉴于样品数量有限,从而很难在平面 上达到预测的目的。

储层评价时,次生孔隙度一直备受石油地质家的 关注,特别是当埋深达到了一定深度时,压实作用使 初始孔隙度保留下来的很少,此时,次生孔隙就成了 油气的"第二次生命"。因此,次生孔隙度的预测就 显得尤为重要。

大庆长垣以西地区次生孔隙的主控因素为有机 酸、HCO₃⁻ + CO₃²⁻ 溶解地层中碳酸盐矿物和硅酸盐 矿物以及大气水淋滤作用;本文次生孔隙带预测方法 主要是在孔隙度与有机酸随深度变化对比图和孔隙 度与 HCO₃⁻ + CO₃²⁻ 随深度变化的对比图上提出来 的,次生孔隙在纵向上分4个带。图2、图3中正常压 实曲线右边的点是由有机酸、HCO₃⁻ + CO₃²⁻ 的溶蚀作 用和大气水淋滤作用产生的次生孔隙,也就是本文所 说的异常高孔。本文将异常孔隙定义为现今实测孔隙 度的数据减去正常压实曲线公式计算的孔隙度的差 值,当差值大于0时为异常高孔,但差值小于0时为异 常低孔,差值等于0为正常压实残留孔隙度。

那么,如何对次生孔隙的平面带进行定量预测 呢? 经过前文的论述表明 本区次生孔隙度影响最大 的有三个指标,分别为地层水中有机酸含量、碳酸 $(HCO_3^{-} + CO_3^{2-})$ 含量以及机械压实程度,经过前面 得论证 表 3 给出了大庆长垣以西地区次生孔隙度主 控因素定量研究的门槛值参数表; 当有机酸值高于 1 000 mg/l时或者当 HCO₃⁻ + CO₃²⁻ 值高于 3 000 mg/ 1时,次生孔隙度异常发育,那么,孔隙度的门槛值又 是多少呢? 这个门槛值就是正常压实曲线公式 定是 一个变化的值,随深度变化而变化。利用这些门槛 值 我们可以对大于这些值的数据在平面上勾绘次生 孔隙度的发育区,最后进行叠加。差值越大,说明次 生孔隙度越发育。为了更好的预测次生孔隙带的平 面分布特征,也可以分油层组来预测。当差值为0值 以上的数据为次生孔隙带相对发育区 0 值以下为成 岩胶结作用的相对发育区 0 值为正常压实或者两者 作用的抵消区。

沉积相对储层的原始物性具有控制作用,是先天 因素;成岩相是后期改造作用的结果,是后天因素。 因此,研究次生孔隙发育不能忽视对沉积相和成岩相 的研究。以异常高孔、有机酸值、碳酸根 + 重碳酸根 离子浓度平面等值线预测图叠合为主,结合沉积相和 成岩相,进行次生孔隙带的预测。

2 次生孔隙带预测新技术在大庆西部 外围的应用

大庆长垣以西地区萨尔图油层(S)、葡萄花油层 (P)、高台子油层(G)以及扶杨油层(FY)岩芯实测孔 隙度平均值分别为20%、18.3%、19.2%和10%。由 此看来,大庆长垣以西地区S、P、G油层主要为中孔 储层为主,深部FY油层则以低孔储层为特征;通过 储量研究,平面上龙虎泡及其以北等地区油藏类型主 要为构造油藏,齐家古龙地区主要为岩性油藏或者构 造一岩性油藏。此种背景下,凹陷区储层物性研究, 特别是次生孔隙的发育控制着油藏的分布。

本次研究从成岩作用出发 根据同一地层不同深 度下的成岩作用不同,划分出早期机械压实相、溶蚀 相、溶蚀及部分再胶结相和胶结相,其分别对应着早 成岩阶段、中成岩阶段 A₁亚期、中成岩阶段 A₂亚期和 中成岩阶段 B 期。其中溶蚀相和溶蚀及部分再胶结 相为优质储层相,孔隙类型以原生孔隙和次生孔隙为 主,为油气提供足够的储集空间。

在以上分析的基础上 利用本文提出的次生孔隙 带预测新方法 结合本区的实际情况 根据有机酸的 分布、碳酸根 + 重碳酸根的分布以及异常高孔区的分 布预测 在溶蚀相和溶蚀及部分再胶结相中叠合砂体 分布图 ,对大庆长垣以西地区萨尔图油层(S)、葡萄 花油层(P)、高台子油层(G)以及扶杨油层(FY)的次 生孔隙带进行预测(图 5-a、b、c、d)。

		8	
主控因素	类别	门槛值	备注
溶蚀作用	有机酸 /(mg/l)	1000	当地层水中有机酸含量高于1000 mg/1时,次生孔隙度发育;
	遊校(HCO-+CO²⁻)/(mg/l)	2000	当地层水中 HCO ₃ ⁻ + CO ₃ ²⁻ 含量高于 3000 mg/l 时,次生孔隙
	$W(H_{2}(1100_{3} + 00_{3})) / (110/1)$	5000	度发育;
	中粗砂岩	$\phi(z) = 44 \exp(-0.00065 \cdot z)$	当某一深度岩芯实测孔隙度大于对应深度段正常压实曲线(公
机械压实作用	细砂岩	$\phi(z) = 47.8 \exp(-0.00068 \cdot z)$	式计算孔隙度)时,异常高孔发育;相反,则以成岩胶结作用为
	粉砂岩	$\phi(z) = 48 \exp(-0.0007 \cdot z)$	圭。

表 3 大庆长垣以西地区次生孔隙主控因数及其门槛值 Table 3 The threshold values and main factors controlling secondary porosity in Daoing Peripheral Oilfield

图 5-a、b、c、d 分别为 S、P、G 和 FY 次生孔隙带 预测图和含油面积叠合图 ,图中预测区带分为三类: 一类主要受深度影响的的溶蚀相; 二类是主要受有机 酸和碳酸根 + 重碳酸根影响较大的次生孔隙发育区; 三类是次生孔隙较发育区 ,主要受大气水淋滤作用 , 一般只发育在盆地边部和具有深大断裂的部位。

研究表明,次生孔隙在葡萄花油层和扶杨油层比 较发育,而在萨尔图和高台子油层相对较不发育。 萨、葡、高油层的次生孔隙主要发育在齐家古龙凹陷 及龙虎泡地区,高台子油层在西超地区异常高孔很发 育,但有机酸和碳酸浓度较低,其上覆的葡萄花油层 在西超地区基本被剥蚀,因此该地区的次生孔隙的形 成主要是由大气水淋滤所致。扶杨油层成岩作用较 强,凹陷中心及胶结为主,次生孔隙主要分布在齐家 古龙凹陷周边,以齐家地区、龙虎泡地区以及敖古 拉一他拉哈地区为主,在古龙凹陷靠近长垣的部分地 区也有发育,而在西部斜坡区发现零星的异常高孔发 育区,但该地区有机酸值和碳酸值(HCO₃⁻ + CO₃²⁻) 都较低,为大气水淋滤所形成。

图 6 金 55 井扶余油层铸体薄片 长石被溶蚀,1 943.7 m 单×200 含钙细粒长石岩屑砂岩 Fig. 6 The cast thin section of Fuyu oil layer in Well Jin 55

为了验证该方法的适用性,本文将预测结果和本 区的储量区的面积进行了叠合,惊奇的发现,各层位 提交储量区和本文预测的结果吻合较好。大庆西部 外围的提交油的探明和控制储量主要为葡萄花油层, 其次为高台子油层,预测储量主要为扶杨油层。图 5-a~d中可以看出,含油面积区基本上都落在本次 预测的次生孔隙带的发育区。薄片资料表明,本地区 存在大量次生孔隙,溶蚀矿物主要为长石、火山岩岩 屑及碳酸盐胶结物,浊沸石极少见(图6)。薄片资料 作为佐证 进一步证明了本方法对次生孔隙预测的可 靠性。由此可见 本方法对次生孔隙带的预测比较可 信 因此也为勘探部署以及提交储量提供了一种很直 观的指示方法。

3 结论

建立了大庆长垣以西地区细砂岩、粉砂岩和粗中 砂岩的正常压实曲线公式,通用公式为 φ(*z*) = φ₀ exp (-*C*•*z*),其中,细砂岩、粉砂岩和中粗砂岩地表孔 隙度(φ₀)依次取 47.8、48、和 44,压实因子(*C*)分别 取 0.000 68、0.000 7 和 0.000 65。

对大庆长垣以西地区孔隙度纵向分布图研究表 明 纵向发育四个异常高孔带,I区深度范围为 500 ~850 m,II区为1 050 ~1 350 m,Ⅲ区为1 500 ~ 2 050 m,Ⅳ为2 120 ~2 350 m。主要异常高孔带主 要分布在葡萄花油层和扶杨油层,萨尔图和高台子油 层发育相对较不发育。

分析了有机酸和碳酸(HCO₃⁻ + CO₃²⁻) 与异常高 孔带的纵向对应关系,研究发现,当有机酸值高于 1000 mg/l 时 或 者 当 HCO₃⁻ + CO₃²⁻ 值 高 于 3000 mg/l时,次生孔隙比较发育;当低于这个门槛 值时次生孔隙相对较不发育,主要以成岩胶结作用和 机械压实作用为主。

分析了次生孔隙带主控因数,认为有机酸并非是 大庆长垣以西地区次生孔隙形成的唯一因素,大气水 淋滤也可产生次生孔隙;并总结了有机酸溶蚀作用与 大气水风化淋滤作用识别标志。

以有机酸、碳酸(HCO₃⁻ + CO₃⁻)以及孔隙度的门 槛值的对次生孔隙度的平面分布特征进行了研究,运 用平面等值线图叠加法对研究区的次生孔隙带进行了 预测,预测结果与已知含油区域具有良好的相关性,这 为有利目标预测提供了有效的指标,也为勘探部署以 及提交储量提供了一种很直观的指示方法。

参考文献(References)

- 邢顺全.国外砂岩次生孔隙研究及其现状[J].大庆石油地质与开发,1989 &(1):9-43 [Xing Shunquan. Study on secondary porosity of sandstones abroad china and its status [J]. Petroleum Geology & Oil-field Development in Daqing, 1989 &(1):9-43]
- 2 罗平, 裘怿楠, 贾爱林,等. 中国油气储层地质研究面临的挑战和 发展方向[J]. 沉积学报, 2003, 21(1): 142-147 [Luo Ping, Qiu Yinan, Jia Ailin, *et al.* The present challenges of Chinese petroleum reservoir geology and research direction [J]. Acta Sedimentologica Sinica, 2003, 21(1): 142-147]

- 3 王鹏,赵澄林.东淮凹陷杜桥白地区深部储集层次生孔隙成因探讨[J].石油勘探与开发,2001 28 (4): 44-46 [Wang Peng, Zhao Chenglin. An approach to generating mechanism of secondary pores in Dudiaobai area of Dongpu depression [J]. Petroleum Exploration and Development, 2001, 28 (4): 44-46]
- 4 谢继容.砂岩次生孔隙形成机制[J].天然气勘探与开发,2000, 23(1):51-55[Xie Jirong. Mechanism of secondary pore of sand[J]. Natural Gas Exploration & Development, 2000,23(1):51-55]
- 5 Quentin J Fisher , Martin Casey M , Ben Clennell , et al. Mechanical compaction of deeply buried sandstones of the North Sea [J]. Marine and Petroleum Geology , 1999 , 16: 60-618
- 6 孙凤华,陈祥,王振平. 泌阳凹陷安棚深层系成岩作用与成岩阶段划分[J]. 西安石油大学学报:自然科学版,2004,19(1):24-27 [Sun Fenghua, Chen Xiang, Wang Zhenping. Diageneses and division of diagenetic stage of deep strata series in Anpeng area, Biyang Sag [J]. Journal of Xi'an Shiyou University: Natural Science Edition, 2004,19(1):24-27]
- 7 刘伟,窦齐丰.成岩作用与成岩储集相研究:科尔沁油田交2断 块区九佛堂组(J₃j/)下段[J].西安石油学院学报:自然科学版, 2003,18(3):4-9[Liu Wei, Dou Qifeng. Study on diagenesis and diagenetic reservoir facies of the lower member of J₃jf of Jiao 2 block in Keerqin Oilfield [J]. Journal of Xi'an Shiyou University: Natural Science Edition, 2003,18(3):4-9]
- 8 王鹏,赵澄林. 柴达木盆地北缘地区第三系成岩作用研究[J]. 西安石油学院学报:自然科学版,2002,17(4):1-5 [Wang Peng, Zhao Chenglin. Study on diagenesis of Tertiary reservoirs in the north border of Qaidam Basin[J]. Journal of Xi'an Shiyou University: Natural Science Edition,2002,17(4):1-5]
- 9 杨桥,漆家福.碎屑岩层的分层去压实校正方法[J].石油实验地 质,2003 25 (2):206-210 [Yang Qiao, Qi Jiafu. Method of delaminated decompaction correction [J]. Experimental Petroleum Geology, 2003,25(2):206-210]
- 10 刘宝珺,张锦泉. 沉积成岩作用[M]. 北京:科学出版社,1992 [Liu Baojun. Deposition and Diagenesis [M]. Beijing: Science Press,1992]
- 11 黄福堂,邹信方,张作祥.松辽盆地北部不同类型干酪根氧化产物中有机酸成分分析及对储层结构影响研究[J].石油实验地质,1995,179(2):156-166[Huang Futang, Zou Xinfang, Zhang Zuoxiang. Effect of major acids in formation water on physical properties of reservoir [J]. Petroleum Geology & Experiment, 1995, 179 (2),156-166]
- 12 Surdam R C , Crossey L J. Organic-inorganic interactions and sandstone diagenesis [J]. AAPG Bulletin , 1989 , 73(1): 1-23

- 13 刘锐娥,孙粉锦,拜文华,等.苏里格庙盒8 气层次生孔隙成因及孔隙演化模式探讨[J].石油勘探与开发,2002,29(4):47-49 [Liu Rui'e, Sun Fenjin, Bai Wenhua, et al. An approach to the generating mechanism of secondary pores and pore evolution model of He 8 gas layer in Sulige gas field [J]. Petroleum Exploration and Development,2002,29(4):47-49]
- 14 沃马克・施密特,戴维A麦克唐纳.砂岩成岩过程中的次生储集 孔隙[M].北京:石油工业出版社,1982[Work Smith. David A M Cdonal. Secondary Reservoir Poprosity during Sandtone Diagenetic Process[M]. Beijing: Petroleum Industry Press,1982]
- 15 郑浚茂,庞明. 碎屑储集岩的成岩作用研究[M]. 武汉:中国地 质大学出版社,1989 [Zheng Junmao, Pang Ming. The Diagenesis Researches of the Clastic Reservoir Rocks[M]. Wuhan: China Geological University Press,1989]
- 16 穆曙光,张以明. 成岩作用及阶段对碎屑岩储层孔隙演化的控制 [J]. 西南石油学院学报,1994,16(3),22-27 [Mu Shuguang, Zhang Yiming. Reservoir pore evolution under the control of diagenesis and stage [J]. Journal of Southwestern Petroleum Institute, 1994, 16(3):22-27]
- 17 Carothers W W, Kharaka Y K. Aliphatic acid anions in oil-field water-implication for origin of natural gas [J]. AAPG Bulletin , 1978 , 62(2): 2441-2453
- Surdam R C , Crossey L J. Predictive models for sandstone diagenesis
 [J]. Organic Geochemistry , 1991 , 17: 243-253
- 19 Kharaka Y K, Carothers W W. Generation of aliphatic acid anions and carbon dioxide by hydrous pyrolysis of crude oils [J]. Applied Geochemistry ,1993 ,8:317-324
- 20 陈传平,梅博文,贾发敬,等. 生油岩产生低分子量有机酸的模 拟实验研究[J]. 地球化学,1994,23(2):155-160 [Chen Chuanping, Mei Bowen, Jia Fajing, et al. Experimental study on simulation of the generation of flow-molecular weight orangic acids from source rocks[J]. Geochimica,1994,23(2):155-160]
- 21 陈传平,梅博文,易绍金,等.地层水中低分子量有机酸成因分析[J].石油学报,1995,16(4):48-54 [Chen Chuanping, Mei Bowen,Yi Shaojin *et al*. An analysis for origings of low molecular weight orangic acids in formation waters [J]. Acta Petrolei Sinica, 1995,16(4):48-54]
- 22 黄文彪, 卢双舫, 孟元林,等. 大庆长垣以西地区扶余油层次生 孔隙预测[J]. 沉积学报, 2009, 27 (3): 419-426 [Huang Wenbiao Lu Shuangfang Meng Yuanlin *et al*. Prediction of the secondary porosity zone of Fuyu oil layer in the West of Daqing Placanticline [J]. Acta Sedimentologica Sinica, 2009, 27 (3): 419-426]

New Prediction Technology of the Secondary Porosity Zone and Its Application in the Western Part of Daqing Peripheral

LIU Shao-jun¹ LU Shuang-fang² ZHANG Ya-jin¹ HUANG Wen-biao² (1. Exploration and Development Research Institute PetroChina Daqing Oilfield Company, Daqing Heilongjiang 163712;

2. Northeast Petroleum University, Daqing Heilongjiang 163318)

Abstract The genetic mechanism of secondary porosity is complex , there are a lot of factors that control the development of secondary porosity. Looking at the various theories , regardless of the theory of formation water , geothermal field , precipitation , or the theory of organic matter evolution. From the mechanism point of view , dissolution of sandstone and formation of secondary porosity can be attributed to the organic acid and inorganic acid. The burial effect of clastic rocks on reservoir properties has two-way effect , one is the negative effect , that is the deterioration of reservoir properties , mainly are mechanical compaction and diagenetic cementation; the other is a positive effect , that is making reservoir properties better , mainly are the dissolution of acid fluid such as leaching of meteoric water , carbonate and bicarbonate , organic acids and so on. Combining with the oil geological features of the western part of Daqing Placanticline , the controlling factors of secondary porosity are analysesed in this paper. The author believe that secondary porosity in the study area is mainly controled by mechanical compaction , diagenetic cementation , meteoric water filtering effects and dissolution of acid fluid such as organic acids. The three controlling factors such as compaction , organic acids and carbonate , confirmed their threshold value of controling development of secondary porosity and the corresponding quantitative assessment model were set up.

Porosity is greatly influenced by depth, Athy (1930) and Hedberg (1936) believed that porosity and depth are an exponential relationship under the normal effect of compaction. This paper established normal compaction curve formulas for three lithologies such as coarse sandstone, fine sandstone and siltstone in the study area, the formulas are $\phi(z) = 44 \exp(-0.000\ 65 \cdot z)$, $\phi(z) = 47.8 \exp(-0.000\ 68 \cdot z)$, $\phi(z) = 48 \exp(-0.000\ 7 \cdot z)$, where Z represents the depth, $\phi(z)$ represents the porosity at present.

During the process of thermal evolution and degradation of organics , organic acid and CO_2 are generated. They could form organic acid thermal fluid in water , which could corrode aluminosilicate mineral and carbonate cement in reservoir and thus form the secondary porosity (Surdam ,1989). According to the cross-plot analysis of the abnormal high porosity data and organic acid content in the formation water and the cross-plot analysis of the abnormal high porosity data and the value of $HCO_3^- + CO_3^{2-}$ in the research area , data shows that they have a good correlation , and the four abnormal high porosity areas on vertical (500 ~ 850 m , 1 050 ~ 1 350 m , 1 500 ~ 2 050 m , 2 125 ~ 2 350 m;) correspond to high value areas of acid organic and $HCO_3^- + CO_3^{2-}$ respectively.

Then how to give a plane quantitative prediction to the secondary porosity? It has been proved that when the value of organic acid is higher than 1 000 mg/l or the value of $HCO_3^- + CO_3^{2-}$ is higher than 3 000 mg/l the secondary porosity is extremely developed. Then what is the threshold of the porosity? The threshold is a normal compaction curve formula and it varies with depth. The developed area of the secondary porosity can be drawn on plane by using the value higher than the thresholds. In order to predict the plane characteristics of the secondary porosity better , reservoir group can also be divided. The area where the value is higher than zero is the relative developed area of the secondary porosity , and the area where the value is lower than zero is the relative area of diagenesis cementation and zero area is the normal compaction area or cancellation area. The higher the value is , the more developed the secondary porosity is.

Sedimentary facies is a congenital factor that controls the original physical properties of the reservoir , while diagenetic facies , as an acquired factor , is the consequence of late reformation. Consequently , study of sedimentary facies and diagenetic facies should not be neglected when the secondary porosity is researched. Based on the predicted isoline map of abnormal high porosity , organic acid value and the concentration of $HCO_3^- + CO_3^{2-}$, combined with the sedimentary facies and the diagenetic facies , secondary porosity can be predicted.

In order to check applicability of this method, the predicted results and the reserve areas are superimposed in this paper. The reserve areas in each formation coincide well with the results predicted in the paper. Thin section analysis also gives convincing evidence that there is a lot of secondary porosity in this area. Therefore, this method is convincible to predict the secondary porosity. It also provides a direct indication method for exploration deployment and the submission of reserves.

Key words secondary porosity; organic acid; carbonate; compaction; prediction of reservoir