文章编号:1000-0550(2013)02-0248-11

祁连山北缘旱峡早白垩世下沟组一中沟组沉积相研究 $^\circ$

刘 海¹² 旷红伟² 胡湘瑜³ 柳永清² 彭 楠⁴ 王西宁⁵ 徐加林⁵ 薛沛霖⁵ 陈 军⁴

(1.油气资源与勘探技术教育部重点实验室 长江大学 地球物理与石油资源学院 湖北荆州 434023;
2.中国地质科学院地质研究所 北京 100037;3.中国石油勘探开发研究院国际项目评价研究所 北京 100083;
4.中国地质大学 地球科学与资源学院 北京 100083; 5.长江大学地球科学学院 湖北荆州 434023)

摘 要 祁连山北缘旱峡地区发育完整的下白垩统下沟组一中沟组沉积序列;以陆源碎屑岩为主,发育砾岩、砂岩、 钙质粉砂岩和页岩等;其中砾石分选差、磨圆一般、成分以灰白色砂岩为主,砂岩成分、结构成熟度中等一差。岩石组 合、沉积序列和综合沉积特征研究表明,下沟组和中沟组主要由湖泊、扇三角洲、河流等3种类型沉积相、亚相与微相 类型组成,发育了一系列重力流成因的沉积类型;湖泊沉积主要发育在下沟组底部和中沟组,扇三角洲沉积分布在下 沟组中一上部,中沟组发育河流沉积。研究区早白垩世中期古流向以 EN 向为主,早白垩世晚期以 W 向为主,表明沉 积沉降中心也由早期的旱峡西移至研究区西南侧。在综合分析的基础上,建立了研究区下白垩统下沟组一中沟组沉 积相模式。

关键词 祁连山北缘 旱峡 下白垩统 下沟组一中沟组 沉积相 第一作者简介 刘海 男 1988 年出生 硕士研究生 测井地质学 E-mail: cjdxliuhai@163.com 通讯作者 旷红伟 E-mail: kuanghw@126.com 中图分类号 P512.2 文献标志码 A

旱峡地区位于祁连山造山带北缘和阿尔金断裂 之间 属于酒西白垩纪─新生代盆地的一部分。酒西 盆地被旱峡─大黄沟断裂和阿尔金等断裂围限(图 1) 经历了白垩纪断陷和新生代坳陷两个演化阶段, 系一个中、新生代叠合盆地^[1]。

酒西盆地基底为志留系、泥盆系及石炭系。盆地 内充填有侏罗系、白垩系及新生界。白垩系角度不整 合于侏罗系之上。前人对该区白垩纪地层进行过系

图1 研究区及周边地区地质一构造略图

Fig. 1 Sketch map showing geology and tectonics in the study area and its neighbouring

①国家自然科学基金重点项目(批准号: 90914003)、中国地质调查局项目(编号:1212011085477)、中国地质科学院地质研究所中央级公益性基本 业务费专项基金(编号: J1106)联合资助

收稿日期: 2012-02-16; 收修改稿日期: 2012-05-04

统研究^[2~5] 由下至上可分为赤金桥组、赤金堡组、下 沟组和中沟组^[2~9]。祁连山为双向逆冲断裂系所夹 持的挤出体^[10];周晓峰等认为祁连山逆掩推覆带是 有利的油气勘探区带[11]; 葛肖虹等将中生代—第三 纪的北祁连造山带归于准平原化的产物 认为祁连山 造山带与整个青藏高原的隆升同步形成 。受控于早更 新世末的晚喜马拉雅运动^[12]。至今,有关祁连山北 缘逆冲推覆构造^[13]、酒西盆地^[14,15]以及阿尔金断裂 构造特征^[16,17]仍是该区基础地质研究的热点。陈柏 林等^[18]认为旱峡—大黄沟断裂形成于中新世晚期, 并一直活动至今。前人对研究区白垩纪沉积岩相做 过部分研究 如李奋其认为旱峡地区的中沟组下段为 辫状河沉积体系^[19];牛绍武将下沟组以及中沟组底 部解释为山麓—洪积相,下沟组上部为湖泊相[4];王 晓丰等认为下沟组底部为洪积扇,中沟组底部属于洪 积一冲积扇沉积^[20]。

旱峡地区地处祁连山北缘(酒西盆地西南缘), 经历了白垩纪到新生代的叠合沉积演化过程,因此, 深入、系统研究白垩系沉积充填序列、沉积相及其演 化规律,对于深化前期研究成果,进一步确定祁连山 北缘早白垩世盆地大地构造演化,特别是探讨阿尔金 断裂的活动及可能的对盆地和沉积充填的影响与控 制作用等,都具有重要的地质科学意义。本文在对祁 连山北缘及酒西盆地系统的野外调查(旱峡、红柳 峡、新民堡以及昌马地区)以及室内综合分析的基础 上,以旱峡下白垩统地层为重点,系统研究了该区下 白垩统沉积序列、沉积相特征及演化规律,以期为了 解祁连山和华北板块接壤地带的大地构造演化以及 为油气勘探远景提供基础性的资料和成果。

1 早白垩世下沟组一中沟组地层

由于新生代祈连山北缘逆冲推覆作用^[12,18],旱 峡地区尚未见早白垩世早期赤金桥组和赤金堡组出 露,实地调查的剖面底部下沟组直接与早古生代志留 系紫红色变质砂岩断层接触,顶部中沟组与新近系白 杨河组砾岩角度不整合接触。旱峡地区下沟组一中 沟组虽然局部见有倒转,但整体呈北倾单斜产状,倾 角47°~82°,实测地层厚度1091.9 m(图1)。

野外实测和系统观察表明,下沟组一中沟组由陆 相湖泊一扇三角洲体系沉积物构成。下沟组底部为 深灰色页岩夹灰白色灰质角砾岩;中部巨厚深灰色页 岩夹灰白色粉砂岩;上部为灰色玄武安山岩、安山岩 夹薄层细一中砾岩(图2a)。中沟组底部为灰白色钙 质泥岩与钙质粉砂岩互层 ,局部夹中一厚层中砾岩; 中部深灰色中一粗粒砂岩、钙质泥岩、灰岩以及泥灰 岩互层 ,局部间夹厚层细砾岩;上部为灰黄色中砂岩、 灰绿色钙质粉砂岩和灰绿色页岩互层。

旱峡下沟组—中沟组实测剖面如下:

上覆地层: 新近系白杨河组砾岩

-----角度不整合接触------总厚度:1 091.9 m

56 褐黄色厚层状砂岩与灰绿色厚层钙质粉砂岩、泥岩互层, 局部夹泥灰岩。产鱼 Qilianichthys hanxiaensis; 叶肢介 Yanjiestheria sinensis, Y. yumenensis, Y. hanhsiaensis, Neodiestheria sp.; 昆虫 Coptoclava longipoda; 孢粉 Lygodioisp orites sp., Cicatricosisp orites mediotriatus 等^[8]。243.50 m

55 灰色厚层砾岩 砾石成分为硬砂岩、紫色砂岩和粗砂岩 ,硅 质等 ,分选中一差 ,次棱一次圆状。25.15 m

54 灰色中—薄层含砾粗砂岩,向上变为灰绿、灰色粗砂岩,灰 黑色薄层钙质泥岩,顶部为灰黄色泥灰岩夹灰色泥灰岩,可见 4 个向上变细旋回。产叶肢介 Yanjiestheria spp.; Neodiestheria spp.; 孢粉 Cicatricosisp orites mediotriatus, C. australiensis, Classopollis annulatus 等^[8]。115.79 m

53 底部灰绿色砾岩,上部灰白、灰黄色钙质粉砂岩、钙质泥岩 和泥灰岩互层。产介形类、昆虫及植物 Pagiophyllum sp.; 孢 粉 Lygodiumsp orites subsimplex, Cicatricosisp orites mediotriatus, C. australiensis 等^[8]。71.72 m

- 52 灰白、灰绿色钙质泥岩。 21.85 m
- 51 灰色、灰绿色中—薄层泥灰岩。7.81 m
- 50 灰黑色含气孔玄武岩。35.03 m
- 49 紫色砾岩与灰黄色钙质粉砂岩。27.67 m
- 48 灰绿、灰黑色气孔安山岩,发育气孔一杏仁构造。46.50 m
- 47 玄武安山岩。长石 Ar-Ar 年龄 106~112 Ma^[1]。171.87 m
- 46 角岩化粉砂岩。11.17 m
- 45 灰绿色页岩。9.45 m

44 下部厚层砾岩,分选差,磨圆中等,叠瓦构造,上部灰绿色 页岩。12.03 m

43 灰色板状泥岩 ,上部夹黄色砂岩。5.22 m

42 下部灰黑色页岩与灰黄色页岩,顶部黄色中层状钙质砂岩。14.80 m

41 下部厚层粗砾岩,分选差,磨圆中等,上部黄色薄层砂岩。 4.35 m

40 下部灰黑色页岩,上部为灰黑色厚层页岩,夹薄层钙质粉砂岩。6.1 m

39 灰黑色页岩。2.38 m

38 下部厚层中一细砾岩 叠瓦构造 底部砾石粗大 向上逐渐 变小 分选差 磨圆中等;中部为灰黄色厚层页岩 ,上部细砾岩 夹页岩 ,顶部薄层砂岩。7.94 m

37 灰黑色页岩夹灰黄色页岩。含孢粉 Lygodiumsp orites subsimplex Cicatricosisp orites mediotriatus 等^[8]。16.67 m 36 下部中层状细砾岩夹灰黑色页岩,中部灰黑色页岩,上部 中层砾岩夹灰黑色页岩 砾石分选差 磨圆中等。12.70 m 35 下部黄色页岩夹砂岩透镜体 ,上部灰色页岩。9.71 m 34 下部灰黑色页岩,顶部中一薄层细一粉砂岩,平行层理。 3.73 m 33 下部灰黑色页岩 顶部灰绿色中层状细砂岩。4.48 m 32 下部灰黑色页岩 顶部夹薄层细砂岩。5.97 m 31 下部黄色页岩,顶部灰黄色中一厚层细砂岩,平行层理。 5.23 m 30 灰绿色厚层状中—细砾岩,下部砾石粗大,向上变小,磨圆 一般 /分选差 /成分以硬砂岩为主。11.95 m 29 下部灰色页岩 顶部黄色中层状细砂岩。20.45 m 28 下部中层状灰绿色细砂岩,上部灰黑色页岩。7.19 m 27 下部薄层粉砂岩 上部灰黑色页岩。3.60 m 26 灰黑色页岩。10.79 m 25 灰黑色、黄色页岩。17.72 m 24 薄层—中层状细砂岩 底部含砾 ,平行层理。4.43 m 23 灰黑色页岩。8.86 m 22 下部灰黑色厚层页岩 顶部薄层状泥灰岩 同生揉皱发育。 13.30 m 21 灰黑色页岩。7.49 m 20 灰黑色页岩扭曲变形。14.99 m 19 灰黑色页岩 顶部夹薄层泥灰岩。25.27 m 18 灰黑色页岩。3.4 m 17 褐黄色页岩。3.4 m 16 灰黑色页岩 同生揉皱发育。13.61 m 15 灰黑色页岩 同生揉皱发育 顶部夹泥灰岩。10.30 m 14 灰黑色厚层页岩 底部见泥灰岩透镜体 顶部中层状含砾 砂岩透镜体。10.31 m 13 厚层块状细砾岩。1.59 m 12 灰黑色厚层页岩。3.17 m 11 黄色厚层页岩。5.55 m 10 厚层灰黑色页岩夹泥灰岩透镜体。3.17 m 9杂色厚层中一粗砾岩,砾石分选差,磨圆一般,成分主要为 粉砂岩、细砂岩。7.97 m 8 灰色灰岩---灰黑色页岩韵律,每个韵律厚度向上逐渐增厚。 4.78 m 7 灰黑色页岩。11.16 m 6 土黄色页岩 底部夹砂岩透镜体。1.71 m 5 灰黑色页岩。4.27 m 4 下部深灰色页岩 ,上部含细砾、中砾砂岩 ,夹薄层深灰色页 岩。4.27 m 3 灰黄色页岩 顶部夹砂砾岩透镜体。7.69 m 2 深灰色页岩,下部夹褐黄色砂岩透镜体。7.69 m 1 细砾岩—中砾岩、砾径2~150 mm、分选差、次棱角状—次圆 状 成分粉砂岩、细砂岩为主 顶部夹薄层深灰色页岩。20.02 m

2 沉积相划分与特征

2.1 沉积相划分依据

在野外系统观测基础上,综合应用岩性、岩石组 合、沉积序列以及沉积指相标志,在旱峡剖面下白垩 统下沟组一中沟组共识别出湖泊相、扇三角洲相和曲 流河相等3种主要沉积相类型(图2)。

下沟组下部以灰黑色页岩为主,夹砂砾岩透镜 体。砾岩中砾石的成分为粉砂岩和细砂岩,次棱角一 次圆状,同时砾岩层多呈不同规模的透镜体状,对下 伏地层或沉积物具有明显冲刷或截切现象,砾石大小 混杂堆积,夹持在上下黑色页岩中,前者指示为一种 深湖或半深湖沉积环境,后者代表水下重力流沉积。

下沟组中上部以灰色或灰绿色中一细砾岩、灰黑 色或灰绿色中一细砂岩以及灰黑色或灰黄色页岩为 主。叠瓦构造发育,砾石分布杂乱、磨圆一般、分选 差,个别砾石直径达到300 mm(图3b)。灰黄色和灰 黑色页岩交替出现表明氧化还原环境的交替发育,沉 积序列末见明显的二元结构等特征都指示了扇三角 洲相的特点。

中沟组下部除火山岩发育外 岩性主要为棕黄色 厚层钙质粉砂岩以及紫红色中层中砾岩 砾石分选磨 圆较好 沉积序列二元结构明显 因此为曲流河相。

中沟组主体为灰黑色泥岩、钙质粉砂岩、中砂岩 和灰白色细砾岩的互层,泥岩中水平层理发育,为滨 浅湖相。

2.2 沉积相分布

2.2.1 湖泊相沉积体系

滨浅湖亚相:主要发育在剖面的 28~29 层以及 52~56 层(图2),主要为灰绿色、灰黄色细砂岩与灰 黑色页岩和灰白色细砾岩、中砂岩、灰岩以及灰绿色 钙质粉砂岩、灰绿色泥岩,且夹有多层泥灰岩(图 3c)。发育水平层理和平行层理,砂砾岩成熟度低、 分选一般、次棱一次圆状,砾石成分主要为硬砂岩、石 英,砂泥分异较好,成层性明显。平行层理、水平层理 等沉积构造指示高能与低能水动力条件频繁转变。

半深湖亚相:发育在剖面 14~27 层(图 2) ,岩性 以灰黑色页岩(图 3d ,图 4b)为主,夹少量泥灰岩或 零星细砂岩透镜体,页岩揉皱变形(图 3e)。

湖泊重力流亚相:出现在剖面 1~13 层(图 2)。 由于河流入湖夹带大量的悬浮泥沙形成密度流 在湖

细	层	标	岩性	古流向	岩性描述	沉积构造	沉积相		
~11	号	尺		- DET 3		UUUUU	微相	亚相	相
中沟组	56 55	900m 1000m			中上部为黄色厚层状砂岩与 灰绿色厚层钙质粉砂岩、泥 岩互层,局部旋回顶部为泥 灰岩。下部为灰白色、灰色 厚层状砾岩,砾石成分为硬 砂岩、紫色砂岩和粗砂岩, 石英等,分选中差,次棱- 次圆状。		滨湖 滨砂 滨湖 滨砂 滨湖	÷	
	54	700m 800m		灰色、灰白色中薄层状含砾 粗砂岩,向上变为灰绿、灰 色粗砂岩,灰黑色薄层钙质 泥岩,顶部为灰黄色泥灰岩 与灰色泥灰岩,可见多个旋 回。	图3-c。	<u>滨砂滨湖滨砂滨湖滨砂滨湖滨</u>	- 供浅湖 	湖泊	
	53 52 51 	600m			上部为灰白钙质粉砂岩、钙 质泥岩和泥灰岩互层,钙质 泥岩水平层理发育。下部为 灰绿色砾岩、钙质泥岩。	平行层理发育。	砂滨湖滨砂 滨湖 演砂 滨湖		
下沟组	50				此在近出上去共在远氏机场出		河漫滩	河温	.11.
	49	500m		紧 巴 啉石与 火 更巴钙庾粉砂石。		河床滞	河床	流河	
	48 47	00m			顶部灰绿、灰黑色气孔安山 岩,局部气孔充填方解石。 底部为厚层的玄武安山岩。	图3-a、3-g。	留讥积 分流 河道	扇三角 洲平原	Ύμ
	46 30	300m 40		n=27 (****) (*****) (**********************	灰白色、灰绿色细砾岩与灰 黑色中细砂岩及灰黑色页岩 互层。	叠瓦构造发育 (图3-b、3-i、3-j)。 平行层理发育, 叠瓦构造发育(图 3-k、3-h)。 平行层理发育。 图3-1。 平行层理发育	水流 前角洲下河扇洲 前角水流前角洲	扇洲 三 扇 洲 前 角 角 第 二 扇 二 扇 二 扇 二 扇 二 扇 二 扇 二 扇 二 扇 二 扇 二	扇三角洲
	29 17	200m			灰黑色页岩夹灰绿色细砂岩 和灰白色灰岩。	水平层理发育, 局部发育平行层 理 漆镜体(图)。	水下分 道 、 演 湖 与 坝	扇三角 洲前缘 滨浅 湖	
	16 	6 E		<i>n</i> =0	灰黑页岩夹灰白色细砾岩。	-d, 3-e)	半深 湖泥	半深 湖	湖泊
	10 9 1 2 1	10			灰黑色厚层页岩夹灰白色中 厚层细砾岩。 灰白色细砾岩,成分以砂岩 为主,分选差,磨圆一般。	水平层理发育, 砂砾岩、砾岩透 镜体发育,叠瓦 构造发育。 图3-f。	湖底扇 与半深 湖泥 扇扇	湖泊 重力 流	

图 2 旱峡地区下白垩统下沟组一中沟组沉积序列综合柱状图

Fig. 2 Columnar section of sedimentary sequences of the Lower Cretaceous Xiagou and Zhonggou Formations in Hanxia area

图 3 旱峡下沟组一中沟组主要岩性与沉积构造

(a. 玄武安山岩; b. 扇三角洲平原亚相砾岩; c. 中沟组黄色泥灰岩; d. 湖泊相灰黑色页岩; e. 变形的湖泊相灰黑色页岩; f. 湖底扇砾岩; g. 顶部枕状玄武安山质熔岩; h. 扇三角洲的角岩化砂岩; i. 扇三角洲平原亚相正韵律砾岩; j. 扇三角洲平原亚相砾岩; k. 扇三角洲前缘亚相 叠瓦构造; l. 前扇三角洲灰黑色页岩夹灰黄色页岩; 除 c 外其余照片均为下沟组)

Fig. 3 Lithologies and sedimentary structures of the Xiagou-Zhonggou Formation in Hanxia

盆边缘由于坡度陡 在重力的作用下 沿湖底或水下河 道流入湖泊中央深水区堆积下来 形成洪水型重力流 沉积(图4a)。旱峡下沟组底部为一套粒径为2~150 mm、分选差的细砾一中砾岩(图3f) 砾石成分以灰白 色粉砂岩、细砂岩为主 次棱角状一次圆状。向上为厚 层深灰色或灰黄色页岩夹薄层灰白色砾岩、以及一些 灰黄色砂岩、薄层灰岩的互层。由于该砾岩多尖灭在 半深湖相的泥岩中 因此解释为湖泊重力流沉积物。

2.2.2 扇三角洲沉积体系

扇三角洲最早由 Holmes1965 年^[21] 定义为从邻 近山地直接推进到稳定水体(湖或海)的冲积扇。 Nemec 和 Stell1988 年对扇三角洲的含义提出新的的 解释^[22],认为"扇三角洲是由冲积扇(包括旱地扇和 湿地扇)提供物源,在活动的扇体与稳定水体交界地 带沉积的沿岸沉积体系"。酒西盆地早白垩世扇三 角洲沉积比较发育,常见于赤金堡组和下沟组。依据 其岩石组合、沉积构造,可进一步划分为扇三角洲平 原、扇三角洲前缘和前扇三角洲3个亚相。旱峡剖面 30~46 层属于扇三角洲的沉积(图 2)。30~35 层为 灰黄色或灰黑色中一厚层页岩夹灰黄色薄层砂岩和 灰白色厚层砾岩的透镜体(图 2),36~46 层岩性为 灰黑色、灰白色、灰黄色页岩夹灰白色块状薄层中一 细砾岩和中砂岩透镜体,见枕状熔岩(图3g)以及火山烘烤过的角岩化砂岩(图3h)。

扇三角洲平原亚相:发育在下沟组 44、45、46 层 (图2)。可进一步分为泥石流沉积、河道充填沉积和 漫滩沉积 3 个微相,其中在旱峡以河道充填沉积微相 为主,而泥石流、漫滩沉积微相则不发育。这几层包 含大套灰白色厚层细砾岩,砾石含量高,下部砾石粗 大,向上变细,呈现正韵律(图3i),砾石成熟度低,出 现大量叠瓦构造和基底式胶结(图3j),总体磨圆一 般,分选差,砾石成分以硬砂岩为主。

扇三角洲前缘亚相:扇三角洲前缘亚相可进一步 划分为碎屑流、水下分流河道、河口坝、远砂坝、分流 间湾和前缘席状砂等几个沉积微相,其前端可伴生有 滑塌浊积岩沉积。在下沟组以灰绿色、灰白色厚层细 砾岩为主,由灰白色细砾岩、灰黑色薄层中砂岩透镜 体、以及灰黄色页岩构成向上变细层序。砾石粒径为 2~120 mm,磨圆一般、分选差,成分以硬砂岩为主, 发育叠瓦构造(图3k),为水下分流河道沉积微相(图 4d)。主要出现在剖面的30~31、36、38~43 层(图 2)。

前扇三角洲亚相:主要表现为灰黑色厚层页岩夹 灰黄色页岩(图 31)、灰绿色或灰黄色薄层细砂岩以 及粉砂岩透镜体,不含砾(图4c), 剖面的32~35 层 以及37 层(图2)为前扇三角洲泥岩。

2.2.3 曲流河沉积体系

仅仅出现在中沟组 49 层(图 2),为河床滞留沉 积和河漫滩沉积 岩性主要为紫色砾岩和灰黄色厚层 钙质粉砂岩,砾石磨圆一般、分选差。

河床亚相: 剖面 49 层底部(图 2) 为灰白色中厚 层中砾岩属于河床滞留沉积。

河漫亚相: 剖面 49 层的灰黄色钙质粉砂岩应为 河床外侧河谷底部较平坦部分的河漫滩沉积。

3 分析与讨论

3.1 古气候

旱峡地区下沟组产孢粉 Lygodiumsp orites subsimplex, Cicatricosisp orites mediotriatus 等。中沟组产鱼 Qilianichthys hanxiaensis; 叶肢介 Yanjiestheria sinensis, Y. yumenensis, Y. hanhsiaensis, Neodiestheria sp.; 昆虫 Coptoclava longipoda; 孢粉 Lygodioisp orites sp., Cicatricosisp orites mediotriatus 等^[8]。从以上动、植物现代 分布来看主要产于热带及亚热带,因此,早白垩世中 期,旱峡地区的气候属于温暖湿润的亚热带型^[8]。 从旱峡的沉积序列来看下沟组早期处于湖水淹没时

图 4 旱峡下沟组沉积微相特征

(SF一湖底扇; SDLM一半深湖泥; PFM一前扇三角洲泥; SDC一水下分流河道)

Fig. 4 Sedimentary microfacies of the Xiagou Formation in the Hanxia area

(SF. sublacustrine fan; SDLM. semi-deep lacustrine mud; PFM. pro-fandelta mud; SDC. subsea distributary channel)

期,中晚期露出湖面,发育扇三角洲和河流沉积;中沟 组受湖平面升降、气候变化等影响时而淹没时而暴 露。因此,在不考虑构造抬升情况下,其沉积特征反 映了湖平面由早到晚由上升到下降到再上升的过程, 总体表现为湖水由深一浅,湖平面由高一低的过程, 结合古生物特征,可能反映了下沟一中沟期古气候湿 热一干热的变动过程。

3.2 旱峡及其邻区沉积相演化

早白垩世早期(赤金桥沉积期)形成一系列 NE 向及近 SN 向生长正断裂,边缘活动强烈,从而在本 地区形成半地堑式裂陷盆地^[20],沉积了代表初始裂 陷过程中冲积扇一砾质辫状河沉积。其中旱峡、昌马 地区普遍未见早白垩世早期沉积,新民堡地区发育辫 状河河床亚相的河道滞留沉积、心滩沉积,红柳峡地 区则发育辫状河河床亚相的河道滞留沉积。

早白垩世中期(赤金堡一下沟沉积期)雅鲁藏布 洋的又一次扩张波及本区^[20] 伸展作用持续 盆地强 烈下陷 沉降可容纳空间迅速增加 盆地发育辫状河 三角洲以及湖泊沉积。新民堡地区在赤金堡时期以 辫状河三角洲前缘亚相以及平原亚相沉积为主,下沟 沉积期以辫状河三角洲与辫状河沉积为主。昌马地 区未见赤金堡期沉积,下沟沉积期表现为半深湖亚相 过渡到辫状河三角洲前缘亚相沉积。红柳峡地区赤 金堡时期发育辫状河河床以及滨浅湖沉积,下沟组时 期则以滨浅湖沉积为主。旱峡地区未见赤金堡期的 沉积 到下沟沉积期岩性以深灰色厚层页岩夹灰色中 层砾岩以及灰绿色薄层中一细砂岩的韵律组成 表现 为半深湖、湖泊重力流亚相与扇三角洲沉积。从沉积 相平面分布上看 旱峡以及昌马地区处在一个水体相 对较深区域 与旱峡下沟组沉积期处在一个湿热的古 气候环境结论一致。

早白垩世晚期(中沟沉积期)区域性挤压应力开 始占主导作用^[20 23],使得旱峡及其邻区地壳逐渐减 薄,断陷盆地发育终止,湖盆迅速进入衰亡期,仅在旱 峡以及红柳峡地区发育滨浅湖沉积。其中新民堡地 区发育冲积扇、辫状河沉积以及曲流河沉积,昌马发 育曲流河河床亚相沉积,红柳峡以滨浅湖、水下扇沉 积为主,旱峡地区中沟组则沉积了一套灰绿色钙质泥 岩、灰色泥岩夹灰绿色钙质粉砂岩的滨浅湖沉积。

3.3 早白垩世中一晚期古流向特征

研究古水流方向主要通过收集具有指向意义的 砾石叠瓦构造、岩石斜层理产状数据来恢复沉积盆地 沉积时水流方向。笔者测量了研究区不同地区露头 砾石叠瓦构造以及岩石斜层理数据,经过水平矫正 后,恢复了早白垩世中一晚期古水流方向(图 5A、 B)。下沟组沉积时期,实测^[24]的红柳峡剖面表现为 WN、S向,新民堡地区与旱峡地区表现为 EN 向,前 人^[20]测量的红柳峡地区古流向为 NW—N 向。古地 理面貌整体上表现为 WS 向 EN 逐渐变低的态势,同 时在红柳峡、新民堡等地区存在局部的古隆起。古流 向趋于稳定,反映出在长期的伸展构造背景下,断陷 沉积中心趋于稳定^[24]。中沟组沉积时期,前人^[20]测 量的红柳峡地区、旱峡地区的古流向为 W 向,实 测^[24]的昌马地区以及新民堡地区古流向也表现为 W 向,可见在早白垩世晚期,沉积中心发生明显转移。 3.4 早白垩世中一晚期酒西盆地沉积、沉降中心

沉降中心是沉积盆地中基底沉降幅度最大的部 位,一般此部位有最大的水深,充填有较大的沉积物 厚度。而沉积中心是沉积盆地中 沉积速率最大的部 位 表现为该处有最大的沉积厚度[25] 和最细的沉积 物粒度。前人^[24]认为北祁连北缘一酒西盆地在赤金 堡期一下沟期成为南抵中祁连山,北至北山地区,东 达酒东盆地 西达阿尔金断裂带以西的古敦煌隆起的 巨大泛盆沉积。中沟沉积期,古流向指向凹陷中心, 湖盆萎缩^[24],北祁连与酒西地区仍为同一泛盆^[26]。 而旱峡地区与周边地区(昌马盆地和酒西盆地西部) 同期沉积相及沉积厚度和岩性对比分析表明 其西南 侧的昌马盆地下沟一中沟期分别以半深湖与曲流河 沉积为主,东北方向的新民堡下沟一中沟期以辫状河 三角洲以及冲积扇、曲流河沉积为主,而位于其正北 方向的红柳峡地区下沟—中沟组以滨浅湖沉积为主; 此期旱峡则发育半深湖、滨浅湖亚相沉积,且旱峡在 早白垩世中—晚期是四个地区中沉积厚度最大的区 域(图6)。说明旱峡地区为酒西盆地早白垩世中晚 期的沉积、沉降中心(图6A、B)。

3.5 酒泉盆地构造属性

研究区早白垩世中期的古水流方位较为散乱,砾 石成分也较为简单,砂岩组分分析表明以单晶石英为 主,来源于再旋回造山带的远距离搬运产物,其可能 来自局部的小隆起或中祁连地区。下沟和中沟组中 还发育了一系列深湖相湖底扇沉积和扇三角洲沉积, 沉积物粒度粗细不均,分选不好,磨圆一般,砂岩以岩 屑砂岩为主,砾岩成分主要为来自基底的变质砂岩或 硬砂岩^[24] 较低的成分成熟度和结构成熟度。下沟 组湖底扇相的发育可能说明,酒西盆地有陡坡带存 在,且构造环境不太稳定。阿尔金断裂与祁连山逆冲

Fig. 5

图 5 早白垩世中—晚期北祁连—酒西地区古流向特征 (图中引用古流向来自文献[20、24] A. 早白垩世中期; B. 早白垩世晚期) Reconstruction of paleocurrents in the middle and late period of Early Cretaceous in the northern Qilian-Jiuxi areas

(A. the middle period of Early Cretaceous; B. the late period of Early Cretaceous)

推覆构造带交汇处报道有偏碱性基性火山岩^[27],年 龄 107 Ma 和 112.0 Ma^[28]; 昌马间泉子也发育该类火 山岩,年龄为 113 Ma 和 119 Ma^[27]。我们利用 U – Pb 测年方法测得旱峡中近 100 m 厚的玄武安山岩年龄 为(113.7 ± 1.8) Ma,红柳峡地区火山岩年龄为 (115.6 ± 1.1) Ma,与前人^[1]认为上述两地区的火山 岩属于同源同期产物的结论一致,而碱性火山岩往往 被视为伸展环境的产物^[29]。这些特征表明,旱峡地 区下沟一中沟组沉积时期(100~120 Ma^[27 28])可能 处于伸展构造背景,阿尔金断裂的活动^[30]可能是酒 西盆地发育以及处于伸展应力背景下的主要动力机 制(图7)。

4 结论

旱峡发育湖泊、扇三角洲以及曲流河三种沉积 相。湖泊以湖泊重力流、滨浅湖和半深湖亚相为主; 扇三角洲平原以分流河道沉积微相为主,扇三角洲前 缘为水下分流河道沉积微相,前扇三角洲则为前扇三 角洲泥微相;曲流河主要发育河漫和河床亚相;早白 垩世中一晚期处于热带及亚热带地区,古气候处于湿 热一干热的转换过程;酒西盆地旱峡地区较为发育半 深湖、滨浅湖相,沉积物、沉积厚度最大,是该区早白 垩世中一晚期沉积沉降中心;研究区早白垩世处于伸 展应力构造背景,沉积特征和火山岩岩石学暗示阿尔

金断裂的活动与伸展构造背景和酒西断陷盆地的发 育有关。

致谢 中国地质科学院地质研究所研究员姬书 安、尤海鲁和吕君昌以及博士生江小均参加了部分野 外工作,在此一并表示衷心感谢!

参考文献(References)

 王晓丰,张志诚,郭召杰,等. 酒西盆地南缘旱峡早白垩世火山岩 地球化学特征及其构造意义[J]. 高校地质学报,2004,10(4): 569-577 [Wang Xiaofeng, Zhang Zhicheng, Guo Zhaojie, *et al.* Geochemical characteristics and tectonic significance of the Early Cretaceous volcanic rocks in the southern margin of Jiuxi Basin [J]. Geological Journal of China Universities , 2004 , 10(4): 569-577]

- 2 马其鸿,林启彬,叶春辉,等. 酒泉盆地西部赤金堡组与新民堡群 的划分和对比[J]. 地层学杂志,1982,6(2): 112-120 [Ma Qihong, Lin Qibin, Ye Chunhui, *et al.* The division and correlation from the Chijinpu Formation and the Xinminpu Group in the western Jiuquan Basin [J]. Journal of Stratigraphy, 1982,6(2): 112-120]
- 3 马其鸿,林启彬,叶春辉,等.甘肃酒泉盆地西部新民堡群的划分 和对比[J]. 地层学杂志,1984,8(4): 255-270 [Ma Qihong, Lin Qibin, Ye Chunhui, et al. The division and correlation from the Xinminpu Group in the western Jiuquan Basin, Gansu Province [J]. Journal of Stratigraphy, 1984,8(4): 255-270]
- 4 玉门油田石油地质志编写组.中国石油地质志玉门油田卷[M]. 北京:石油工业出版社,1987:99-100 [Yumen Oilfield Writing Group of Petroleum Geology. Yumen Oilfield of China Petroleum Geology Volume [M]. Beijing: Petroleum Industry Press,1987:99-100]
- 5 牛绍武. 甘肃酒泉盆地晚期中生代地层[J]. 地层学杂志, 1987, 11(1): 1-22 [Niu Shaowu. Late Mesozoic strata of Jiuquan Basin in Gansu[J]. Journal of Stratigraphy, 1987, 11(1): 1-22]
- 6 孙健初. 祁连山一带地质史纲要[J]. 地质评论, 1942, 7(1-3): 17-25 [Sun Jianchu. Outline of geological history along the Qilian Mountains[J]. Geological Review, 1942, 7(1-3): 17-25]
- 7 宋杰己. 甘肃省的白垩系[J]. 甘肃地质学报, 1993, (增刊): 1-50 [Song Jieyi. Cretaceous of Gansu Province [J]. Acta Geologica Gansu, 1993, (Suppl.): 1-50]
- 8 刘兆生. 甘肃玉门旱峡早白垩世孢粉组合[J]. 微体古生物学报, 2000,17(3):73-84 [Liu Zhaosheng. Early Cretaceous sporopollen assemblage from the Hanxia of Yumen in Gansu, NW China [J]. Acta Micropalaeontologica Sinica, 2000,17(3):73-84]
- 9 胡艳霞,徐东来.甘肃玉门下沟地区早白垩世下沟组介形类[J]. 微体古生物学报,2005,22(2):173-184[Hu Yanxia,Xu Donglai. Early Cretaceous ostracods from the Xiagou Formation of Hongliuxia in the Yumen Area, Gansu of NW China[J]. Acta Micropalaeontologica Sinica,2005,22(2):173-184]
- 10 许志琴,杨经绥,姜枚,等.大陆俯冲作用及青藏高原周缘造山 带的崛起[J]. 地学前缘,1999,6(3):139-151 [Xu Zhiqin, Yang Jingsui, Jiang Mei, et al. Continental subduction and uplifting of the orogenic belts at the margin of the Qinghai-Tibet Plateau [J]. Earth Science Frontiers, 1999,6(3):139-151]
- 11 周晓峰,何顺利,赵全国,等.新生代酒西盆地的背驮式结构特征[J].新疆石油地质,2007,28(6):697-699[Zhou Xiaofeng, He Shunli, Zhao Quanguo, *et al.* The piggyback configuration of Cenozoic in Jiuxi Basin[J]. Xinjiang Petroleum Geology,2007,28(6): 697-699]
- 12 葛肖虹,刘俊来.北祁连造山带的形成与背景[J].地学前缘, 1999,6(4):223-230[Ge Xiaohong,Liu Junlai. Formation and tectonic background of the northern Qilian Orogenic Belt[J]. Earth Science Frontiers, 1999,6(4):223-230]
- 13 何海军,李绪善,李百祥. 阿尔金一祁连山结合部重力场特征及 其构造变形[J]. 西北地质,2010,43(2): 13-19[He Haijun,Li

Xushan , Li Baixiang. Probe into structural deformation in the joint part between Altyn and Qilian Mountains based on gravitational characteristcs [J]. Northwestern Geology , 2010 , 43(2) : 13-19]

- 14 李奋其,王成善.王崇孝. 酒泉早白垩世盆地群构造特征和成因 [J]. 地质学报,2006,80(2): 181-191 [Li Fenqi, Wang Chengshan, Wang Chongxiao. Tectonic characteristics and origin of Jiuquan Basin Group [J]. Acta Geologica Sinica,2006,80(2): 181-191]
- 15 苏建平,吴保祥,雷怀彦,等.甘肃酒西白垩纪盆地沉积构成及 盆地演化动力学分析[J]. 沉积学报,2002,20(4):568-573[Su Jianping, Wu Baoxiang, Lei Huaiyan, et al. The sedimentary formation and analyses for dynamic evolution of Jiuxi Cretaceous Basin, Gansu Province [J]. Acta Sedimentologica Sinica, 2002,20(4): 568-573]
- 16 鲁如魁,张国伟,钟华明,等. 阿尔金断裂带西段磁组构特征及 其构造意义[J]. 地球物理学报,2008,51(3):752-761 [Lu Rukui, Zhang Guowei, Zhong Huaming, et al. Characteristics of magnetic fabrics in the western segment of the Altyn fault belt and its tectonic significance [J]. Chinese Journal of Geophysics, 2008, 51 (3):752-761]
- 17 李海兵,杨经绥,许志琴,等.阿尔金断裂带对青藏高原北部生长、隆升的制约[J]. 地学前缘,2006,13(4):59-79[Li Haibing, Yang Jinsui, Xu Zhiqin, *et al.* The constraint of the Altyn Tagh Fault system to the growth and rise of the northern Tibetan Plateau [J]. Earth Science Frontiers,2006,13(4):59-79]
- 18 陈柏林,王春宇,崔玲玲,等. 祁连山北缘一河西走廊西段晚新 生代逆冲推覆断裂发育模式[J]. 地学前缘,2008,15(6):260-277[Chen Bailin, Wang Chunyu, Cui Lingling, et al. Developing model of thrust fault system in the western part of northern Qilian Mountains margin-Hexi Corridor basin during late Quaternary [J]. Earth Science Frontiers,2008,15(6): 260-277]
- 19 李奋其. 酒泉盆地形成机制与演化[D]. 成都: 成都理工大学, 2004: 68-69[Li Fenqi. Formative Mechanics and Evolvement of Jiuquan Basin [D]. Chengdu: Chengdu University of Technology, 2004: 68-69]
- 20 王晓丰,张志诚,郭召杰,等. 酒西盆地早白垩世沉积特征及原型盆地恢复[J]. 石油天然气地质,2008,29(3): 303-311 [Wang Xiaofeng, Zhang Zhicheng, Guo Zhaojie, et al. Sedimentary characteristics of the Lower Cretaceous and reconstruction of the prototype basin in the Jiuxi Basin [J]. Oil & Gas Geology, 2008,29(3): 303-311]
- 21 Homels. A Principles of Physical Geology [M]. London: Thom as Nelson and Sons Ltd , 1965: 288
- 22 Nemec W N , Steel R J. Fan Delta: Sedimentology and Tectonic Settings[M]. Blackie and Son , 1988: 3-13
- 23 肖序常,王军. 青藏高原构造演化及隆升的简要评述[J]. 地质 论评,1998,44(4): 372-381 [Xiao Xuchang, Wang Jun. A brief review of tectonic evolution and uplift of the Qinghai-Tibet Plateau [J]. Geological Review, 1998,44(4): 372-381]
- 24 彭楠,旷红伟,柳永清.北祁连一酒西地区早白垩世盆地沉积特 征与古地理演化[J].地学前缘,2011,18(4):077-087 [Peng Nan, Kuang Hongwei, Liu Yongqing. Sedimentary evolution and

palaeogeography of the Early Cretaceous basins from the northern Qilian Mountains to Jiuxi areas [J]. Earth Science Frontiers , 2011 , 18 (4): 077-087]

- 25 何幼斌,王文广. 沉积岩与沉积相[M]. 北京:石油工业出版社, 2007: 281 [He Youbin, Wang Wenguang. Sedimentary Petrology and Facies [M]. Beijing: Petroleum Industry Press, 2007: 281]
- 26 李相博,陈启林,魏伟,等.蒙甘青地区白垩纪原型盆地分布特 征及盆地格局[J].地球科学与环境学报,2006,28(3):24-28 [Li Xiangbo, Chen Qilin, Wei Wei, et al. Distribution of Cretaceous proto-basin and basin-mountain frame work in Iner Mongolia-Gansu-Qinghai area[J]. Journal of Earth Sciences and Environment, 2006, 28(3):24-28]
- 27 李海兵,杨经绥. 青藏高原北部白垩纪隆升的证据[J]. 地学前缘,2004,11(4): 345-359[Li Haibing,Yang Jingsui. Evidence for Cretaceous uplift of the northern Qinghai-Tibetan plateau [J]. Earth Science Frontiers, 2004,11(4): 345-359]

Formations is synthesized finally.

- 28 杨经绥,孟繁聪,张建新,等. 重新认识阿尔金断裂东段红柳峡 火山岩的时代及构造意义[J]. 中国科学: D 辑,2001,31(增): 83-89 [Yang Jingsui, Meng Fancong, Zhang Jianxin. Recognition of the geologic age of volcanic rock distributed in the eastern end of Hongliuxia Fault and its tectonic significance [J]. Science in China: Series D,2001,31(Suppl.): 83-89]
- 29 刘妍,黄增芳,张德全,等.内蒙古锡林郭勒盟多伦地区张家口 组首次发现的碱性火山岩及其地质意义[J].地球学报,2005, 26(6):541-546[Liu Yan,Huang Zengfang,Zhang Dequan, et al. Discovery of alkali volcanic rocks in the Zhangjiakou Formation of the Duolun Area, Inner Mongolia, and its geological significance [J]. Acta Geoscientica Sinica,2005,26(6):541-546]
- 30 王洪潜. 酒泉盆地构造特征及找油方向[J]. 石油勘探与开发, 1993,20(增刊): 15-49 [Wang Hongqian. Structure character and targets of searching oil of Jiuquan Basin [J]. Petroleum Exploration and Development, 1993,20(Suppl.): 15-49]

Sedimentary Facies of the Lower Cretaceous Xiagou and Zhonggou Formation in Hanxia, Northern Oilian Mountain, Gansu Province, Northwest China

LIU Hai^{1 2} KUANG Hong-wei² HU Xiang-yu³ LIU Yong-qing²

PENG Nan⁴ WANG Xi-ning⁵ XU Jia-lin⁵ XUE Pei-lin⁵ CHEN Jun⁴

(1. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education;

School of Geophysics and Oil Resources of Yangtze University, Jingzhou, Hubei 434023;

2. Institute of Geology, Chinese Academy of Geological Science, Beijing 100037;

3. Department of Overseas New Ventures Assessment, RIPED, Beijing 100083;

4. School of the Earth Science and Resources , China University of Geosciences , Beijing 100083;

5. Institute of Geosciences of Yangtze University , Jingzhou , Hubei 434023)

Abstract: Depositional succession of the Lower Cretaceous Xiagou-Zhonggou Formations is widely distributed in Hanxia of the northern Qilian Mountain , and mainly composed of conglomerates , sandstones , calcareous siltstone , mudstone or shale. Gravels within conglomerates are poorly sorted and subrounded. Sandstones are characterized of poor or medium compositional maturities. Depositional succession lithological associations and facies indicate that both the Xiagou and Zhonggou Formations consist of lacustrine , fan delta or fluvial facies as well as gravity flow deposits. Lacustrine is mainly in the bottom of the Xiagou Formation and the Zhonggou Formation. Fan delta facies is dominantly in the middle and upper parts of the Xiagou Formation. Fluvial facies is common in the Zhonggou Formation. Correlation and synthesized analysis of stratigraphy , depositional facies and lithological associations in Hanxia and its adjacent areas(Changma basin and the western Jiuquan basin) illustrate that the Xiagou and Zhonggou Formations in Changma to the southwest of Hanxia , are interpreted as deposits of shallow lacustrine and meandering river facies , and then Hongliuxia to the north of Hanxia was shallow lacustrine environment , Xinminpu(to the northeast of Hanxia) , however , is mainly and meandering river facies. Based on the huge stratigraphic thickness in Hanxia than the mentioned three areas else and deepening shallow lacustrine depositional subfacies as well , was regarded as a depocenter of the Jiuxi basin of mid-late Early Cretaceous. Paleocurrent reconstruction show northeastwards in the Xiagou Formation and westward in the Zhonggou Formation. A dispositional model of the Lower Cretaceous Xiagou and Zhonggou

Key words: Northen Qilian Mountain; the Hanxia area; the Lower Cretaceous; Xiagou-Zhonggou Formation; Sedimentary facies