| [1] | Jenkyns H C. The Early Toarcian (Jurassic) anoxic event; stratigraphic, sedimentary and geochemical evidence[J]. American Journal of Science, 1988, 288(2): 101-151. |
| [2] | Bailey T R, Rosenthal Y, McArthur J M, et al. Paleoceanographic changes of the Late Pliensbachian–Early Toarcian interval: A possible link to the genesis of an Oceanic Anoxic Event[J]. Earth and Planetary Science Letters, 2003, 212(3/4): 307-320. |
| [3] | Them T R, Gill B C, Caruthers A H, et al. Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(26): 6596-6601. |
| [4] | Dera G, Pucéat E, Pellenard P, et al. Water mass exchange and variations in seawater temperature in the NW Tethys during the Early Jurassic: Evidence from neodymium and oxygen isotopes of fish teeth and belemnites[J]. Earth and Planetary Science Letters, 2009, 286(1/2): 198-207. |
| [5] | Pieńkowski G, Hodbod M, Ullmann C V. Fungal decomposition of terrestrial organic matter accelerated Early Jurassic climate warming[J]. Scientific Reports, 2016, 6(1): 31930. |
| [6] | Pálfy J, Smith P L. Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism[J]. Geology, 2000, 28(8): 747-750. |
| [7] | Hesselbo S P, Gröcke D R, Jenkyns H C, et al. Massive dissociation of gas hydrate during a Jurassic Oceanic Anoxic Event[J]. Nature, 2000, 406(6794): 392-395. |
| [8] | Xu W M, Ruhl M, Jenkyns H C, et al. Carbon sequestration in an expanded lake system during the Toarcian Oceanic Anoxic Event[J]. Nature Geoscience, 2017, 10(2): 129-134. |
| [9] | Liu M, Sun P, Them II T R, et al. Organic geochemistry of a lacustrine shale across the Toarcian Oceanic Anoxic Event (Early Jurassic) from NE China[J]. Global and Planetary Change, 2020, 191: 103214. |
| [10] | Lu J, Zhou K, Yang M F, et al. Terrestrial organic carbon isotopic composition (δ 13Corg) and environmental perturbations linked to Early Jurassic volcanism: Evidence from the Qinghai-Tibet Plateau of China[J]. Global and Planetary Change, 2020, 195: 103331. |
| [11] | Jin X, Shi Z Q, Baranyi V, et al. The Jenkyns event (Early Toarcian OAE) in the Ordos Basin, North China[J]. Global and Planetary Change, 2020, 193: 103273. |
| [12] | Jin X, Zhang F, Baranyi V, et al. Early Jurassic massive release of terrestrial mercury linked to floral crisis[J]. Earth and Planetary Science Letters, 2022, 598: 117842. |
| [13] | Guillemette F, von Wachenfeldt E, Kothawala D N, et al. Preferential sequestration of terrestrial organic matter in boreal lake sediments[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(4): 863-874. |
| [14] | Cullers R L. The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the wet mountains region, Colorado, U.S.A.[J]. Chemical Geology, 1995, 123(1/2/3/4): 107-131. |
| [15] | Castañeda I S, Schouten S. A review of molecular organic proxies for examining modern and ancient lacustrine environments[J]. Quaternary Science Reviews, 2011, 30(21/22): 2851-2891. |
| [16] | Li B B, Jin X, Corso J D, et al. Complex pattern of environmental changes and organic matter preservation in the NE Ordos lacustrine depositional system (China) during the T-OAE (Early Jurassic)[J]. Global and Planetary Change, 2023, 221: 104045. |
| [17] | Yan D T, Chen D Z, Wang Q C, et al. Predominance of stratified anoxic Yangtze Sea interrupted by short-term oxygenation during the Ordo-Silurian transition[J]. Chemical Geology, 2012, 291: 69-78. |
| [18] | Wei H Y, Wei X M, Qiu Z, et al. Redox conditions across the G-L boundary in South China: Evidence from pyrite morphology and sulfur isotopic compositions[J]. Chemical Geology, 2016, 440: 1-14. |
| [19] | Liu A Q, Tang D J, Shi X Y, et al. Growth mechanisms and environmental implications of carbonate concretions from the ~1.4 Ga Xiamaling Formation, North China[J]. Journal of Palaeogeography, 2019, 8: 20. |
| [20] | Liu Q Y, Zhu D Y, Jin Z J, et al. Influence of volcanic activities on redox chemistry changes linked to the enhancement of the ancient Sinian source rocks in the Yangtze Craton[J]. Precambrian Research, 2019, 327: 1-13. |
| [21] | 王春连,刘成林,徐海明,等. 湖北江陵凹陷古新统沙市组四段硫酸盐硫同位素组成及其地质意义[J]. 吉林大学学报(地球科学版),2013,43(3):691-703. Wang Chunlian, Liu Chenglin, Xu Haiming, et al. Sulfur isotopic composition of sulfate and its geological significance of member 4 of Palaeocene Shashi Formation in Jiangling Depression of Hubei province[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(3): 691-703. |
| [22] | 宋柳霆,刘丛强,王中良,等. 贵州红枫湖硫酸盐来源及循环过程的硫同位素地球化学研究[J]. 地球化学,2008,37(6):556-564. Song Liuting, Liu Congqiang, Wang Zhongliang, et al. Stable sulfur isotopic geochemistry to investigate potential sources and cycling behavior of sulfate in Lake Hongfeng, Guizhou province[J]. Geochimica, 2008, 37(6): 556-564. |
| [23] | Ke C W, Li S M, Greenwood P, et al. Maturity and depositional controls on compound-specific sulfur isotope values of saline lacustrine source rocks in the north Dongpu Depression, Bohai Bay Basin[J]. Journal of Petroleum Science and Engineering, 2022, 212: 110286. |
| [24] | 史忠生,陈开远,史军,等. 东濮盐湖古近系硫酸盐硫同位素组成及地质意义[J]. 石油勘探与开发,2004,31(6):44-46. Shi Zhongsheng, Chen Kaiyuan, Shi Jun, et al. Sulfur isotopic composition and its geological significance of the Paleogene sulfate rock deposited in Dongpu Depression[J]. Petroleum Exploration and Development, 2004, 31(6):44-46. |
| [25] | Lowenstein T K, Timofeeff M N, Kovalevych V M, et al. The major-ion composition of Permian seawater[J]. Geochimica et Cosmochimica Acta, 2005, 69(7): 1701-1719. |
| [26] | Zerkle A L, Kamyshny Jr A, Kump L R, et al. Sulfur cycling in a stratified euxinic lake with moderately high sulfate: Constraints from quadruple S isotopes[J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 4953-4970. |
| [27] | Johnston D T. Multiple sulfur isotopes and the evolution of Earth’s surface sulfur cycle[J]. Earth-Science Reviews, 2011, 106(1/2): 161-183. |
| [28] | Wang N, Li M J, Hong H T, et al. Biological sources of sedimentary organic matter in Neoproterozoic–lower Cambrian shales in the Sichuan Basin (SW China): Evidence from biomarkers and microfossils[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 516: 342-353. |
| [29] | Pang Y M, Guo X W, Shi B B, et al. Hydrocarbon generation evaluation, burial history, and thermal maturity of the Lower Triassic-Silurian organic-rich sedimentary rocks in the central uplift of the South Yellow Sea Basin, East Asia[J]. Energy & Fuels, 2020, 34(4): 4565-4578. |
| [30] | Berner R A, Raiswell R. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: A new theory[J]. Geochimica et Cosmochimica Acta, 1983, 47(5): 855-862. |
| [31] | Berner R A. Sedimentary pyrite formation: An update[J]. Geochimica et Cosmochimica Acta, 1984, 48(4): 605-615. |
| [32] | Chen G, Chang X C, Gang W Z, et al. Anomalous positive pyrite sulfur isotope in lacustrine black shale of the Yanchang Formation, Ordos Basin: Triggered by paleoredox chemistry changes[J]. Marine and Petroleum Geology, 2020, 121: 104587. |
| [33] | Tuttle M L, Rice C A, Goldhaber M B. Geochemistry of organic and inorganic sulfur in ancient and modern lacustrine environments: Case studies of freshwater and saline lakes[M]//Orr W L, White C M. Geochemistry of sulfur in fossil fuels. Washington: American Chemical Society, 1990: 114-148. |
| [34] | Cao H S, Kaufman A J, Shan X L, et al. Sulfur isotope constraints on marine transgression in the lacustrine Upper Cretaceous Songliao Basin, northeastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 451: 152-163. |
| [35] | Ding X D, Li D W, Zheng L W, et al. Sulfur geochemistry of a lacustrine record from Taiwan reveals enhanced marine aerosol input during the Early Holocene[J]. Scientific Reports, 2016, 6: 38989. |
| [36] | Brumsack H J. Inorganic geochemistry of the German ‘Posidonia Shale’: Palaeoenvironmental consequences[M]//Tyson R V, Pearson T H. Modern and ancient continental shelf anoxia. London: Geological Society, Special Publications, 1991: 353-362. |
| [37] | Ebli O, Vető I, Lobitzer H, et al. Primary productivity and early diagenesis in the Toarcian Tethys on the example of the Mn-rich black shales of the Sachrang Formation, northern Calcareous Alps[J]. Organic Geochemistry, 1998, 29(5/6/7): 1635-1647. |
| [38] | Gill B C, Lyons T W, Jenkyns H C. A global perturbation to the sulfur cycle during the Toarcian Oceanic Anoxic Event[J]. Earth and Planetary Science Letters, 2011, 312(3/4): 484-496. |
| [39] | Han Z, Hu X M, He T C, et al. Early Jurassic long-term oceanic sulfur-cycle perturbations in the Tibetan Himalaya[J]. Earth and Planetary Science Letters, 2022, 578: 117261. |
| [40] | Liu S, Yang S. Upper Triassic–Jurassic sequence stratigraphy and its structural controls in the western Ordos Basin, China[J]. Basin Research, 2000, 12(1): 1-18. |
| [41] | 何自新. 鄂尔多斯盆地演化与油气[M]. 北京:石油工业出版社,2003:66-83. He Zixin. Evolution and hydrocarbon in Ordos Basin[M]. Beijing: Petroleum Industry Press, 2003: 66-83. |
| [42] | 刘池洋,赵红格,王锋,等. 鄂尔多斯盆地西缘(部)中生代构造属性[J]. 地质学报,2005,79(6):737-747. Liu Chiyang, Zhao Hongge, Wang Feng, et al. Attributes of the Mesozoic structure on the west margin of the Ordos Basin[J]. Acta Geologica Sinica, 2005, 79(6): 737-747. |
| [43] | 赵俊兴,陈洪德,张锦泉. 鄂尔多斯盆地下侏罗统富县组沉积体系及古地理[J]. 岩相古地理,1999,19(5):40-46. Zhao Junxing, Chen Hongde, Zhang Jinquan. The depositional systems and palaeogeography of the Lower Jurassic Fuxian Formation in the Ordos Basin[J]. Sedimentary Facies and Palaeogeography, 1999, 19(5): 40-46. |
| [44] | 杨俊杰. 鄂尔多斯盆地构造演化与油气分布规律[M]. 北京:石油工业出版社,2002:228. Yang Junjie. Tectonic evolution and oil-gas reservoirs distribution in Ordos Basin[M]. Beijing: Petroleum Industry Press, 2002: 228. |
| [45] | 葛道凯,杨起,付泽明,等. 陕西榆林侏罗纪煤系基底古侵蚀面的地貌特征及其对富县组沉积作用的控制[J]. 沉积学报,1991,9(3):65-73. Ge Daokai, Yang Qi, Fu Zeming, et al. The palaeornorphologic features of the basement of the Jurassic coal measures and its control on the sedimentation of Fuxian Formation in Yulin, Shaanxi[J]. Acta Sedimentologica Sinica, 1991, 9(3): 65-73. |
| [46] | 冯云鹤. 鄂尔多斯盆地(内蒙古部分)富县组的发现及其意义[J]. 地层学杂志,2014,38(4):449-453. Feng Yunhe. The discovery of the Fuxian Formation in the Ordos Basin (Inner Mongolia part) and its implications[J]. Journal of Stratigraphy, 2014, 38(4): 449-453. |
| [47] | 朱广社. 鄂尔多斯盆地晚三叠世—中侏罗世碎屑岩、沉积、层序充填过程及其成藏效应[D]. 成都:成都理工大学,2014. Zhu Guangshe. Sedimentary, sequence filling process and its accumulation effect of Late Triassic to Middle Jurassic in Ordos Basin[D]. Chengdu: Chengdu University of Technology, 2014. |
| [48] | 杨华,席胜利,魏新善,等. 鄂尔多斯多旋回叠合盆地演化与天然气富集[J]. 中国石油勘探,2006,11(1):17-24. Yang Hua, Xi Shengli, Wei Xinshan, et al. Evolution and natural gas enrichment of multicycle superimposed basin in Ordos Basin[J]. China Petroleum Exploration, 2006, 11(1): 17-24. |
| [49] | 李昌昊,葛禹,金鑫,等. 鄂尔多斯盆地早侏罗世富县期沉积演化:大洋缺氧事件前后陆地气候变化的响应[J]. 古地理学报,2022,24(4):697-712. Li Changhao, Ge Yu, Jin Xin, et al. Sedimentological evolution during the Early Jurassic Fuxian period in Ordos Basin: Palaeoclimatic response to Toarcian Oceanic Anoxic Event[J]. Journal of Palaeogeography, 2022, 24(4): 697-712. |
| [50] | 贾本文. 鄂尔多斯盆地东南部侏罗系延安组延10物源分析[D]. 西安:长安大学,2020. Jia Benwen. Provenance analysis of Yan 10 in Yan'an Formation of Jurassic in the southeast of Ordos Basin[D]. Xi’an: Chang'an University, 2020. |
| [51] | 张云望,金鑫,乔培军,等. 鄂尔多斯盆地东北部下侏罗统富县组沉积物源分析:来自榆林安崖剖面砂岩的岩石学及元素地球化学证据[J]. 沉积学报,2023,41(5):1414-1429. Zhang Yunwang, Jin Xin, Qiao Peijun, et al. Petrological and geochemical constraints on sedimentary provenance of the Fuxian Formation (Lower Jurassic) sandstones in the northeastern Ordos Basin[J]. Acta Sedimentologica Sinica, 2023, 41(5): 1414-1429. |
| [52] | 葛道凯,杨起,付泽明,等. 陕北榆林富县组中的遗迹化石及其环境意义[J]. 煤田地质与勘探,1989,17(6):1-3. Ge Daokai, Yang Qi, Fu Zeming, et al. The trace fossils and depositional environments of Fuxian Formation, Yulin county, northern Shaanxi province[J]. Coal Geology & Exploration, 1989, 17(6): 1-3. |
| [53] | Baranyi V, Jin X, Dal Corso J, et al. Collapse of terrestrial ecosystems linked to heavy metal poisoning during the Toarcian Oceanic Anoxic Event[J]. Geology, 2023, 51(7): 652-656. |
| [54] | Canfield D E, Raiswell R, Westrich J T, et al. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales[J]. Chemical Geology, 1986, 54(1/2): 149-155. |
| [55] | Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3897-3912. |
| [56] | Canfield D E. Biogeochemistry of sulfur isotopes[J]. Reviews in Mineralogy and Geochemistry, 2001, 43(1): 607-636. |
| [57] | Taylor S R, McLennan S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2): 241-265. |
| [58] | Owens J D, Lyons T W, Li X N, et al. Iron isotope and trace metal records of iron cycling in the proto-North Atlantic during the Cenomanian-Turonian Oceanic Anoxic Event (OAE-2)[J]. Paleoceanography, 2012, 27(3): PA3223. |
| [59] | Jenkyns H C. Geochemistry of oceanic anoxic events[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q03004. |
| [60] | Kaplan I R, Rittenberg S C. Microbiological fractionation of sulphur isotopes[J]. Journal of General Microbiology, 1964, 34(2): 195-212. |
| [61] | Ryu J H, Zierenberg R A, Dahlgren R A, et al. Sulfur biogeochemistry and isotopic fractionation in shallow groundwater and sediments of Owens Dry Lake, California[J]. Chemical Geology, 2006, 229(4): 257-272. |
| [62] | Nara F W, Watanabe T, Kakegawa T, et al. Climate control of sulfate influx to Lake Hovsgol, northwest Mongolia, during the last glacial–postglacial transition: Constraints from sulfur geochemistry[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 298(3/4): 278-285. |
| [63] | Algeo T J, Shen Y A, Zhang T G, et al. Association of 34S-depleted pyrite layers with negative carbonate δ 13C excursions at the Permian-Triassic boundary: Evidence for upwelling of sulfidic deep-ocean water masses[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04025. |
| [64] | Huang Y J, Yang G S, Gu J, et al. Marine incursion events in the Late Cretaceous Songliao Basin: Constraints from sulfur geochemistry records[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 152-161. |
| [65] | 常鑫,张明宇,谷玉,等. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展,2020,35(12):1306-1320. Chang Xin, Zhang Mingyu, Gu Yu, et al. Formation mechanism and controlling factors of authigenic pyrite in mudsediments on the shelf of the Yellow Sea and the East China Sea[J]. Advances in Earth Science, 2020, 35(12): 1306-1320. |
| [66] | 张生. 碳、硫同位素储库效应的定量理论模式[J]. 地质论评,1997,43(2):174-180. Zhang Sheng. Theoretical models of reservoir effects on carbon and sulfur isotopes[J]. Geological Review, 1997, 43(2): 174-180. |
| [67] | Jiang K X, Lin C M, Zhang X, et al. Storm-driven variations in depositional environments modify pyrite sulfur isotope records[J]. Earth and Planetary Science Letters, 2023, 610: 118118. |
| [68] | Tenger, Liu W H, Xu Y C, et al. Comprehensive geochemical identification of highly evolved marine hydrocarbon source rocks: Organic matter, paleoenvironment and development of effective hydrocarbon source rocks[J]. Chinese Journal of Geochemistry, 2006, 25(4): 333-340. |
| [69] | 袁伟,柳广弟,罗文斌. 鄂尔多斯盆地延长组长7段沉积速率及其对烃源岩有机质丰度的影响[J]. 西安石油大学学报(自然科学版),2016,31(5):20-26. Yuan Wei, Liu Guangdi, Luo Wenbin. Deposition rate of the Seventh member of Yangchang Formation, Ordos Basin and its impact on organic matter abundance of hydrocarbon source rock[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2016, 31(5): 20-26. |
| [70] | Habicht K S, Gade M, Thamdrup B, et al. Calibration of sulfate levels in the Archean Ocean[J]. Science, 2002, 298(5602): 2372-2374. |
| [71] | Bradley A S, Leavitt W D, Schmidt M, et al. Patterns of sulfur isotope fractionation during microbial sulfate reduction[J]. Geobiology, 2016, 14(1): 91-101. |
| [72] | Lang X G, Shen B, Peng Y B, et al. Transient marine euxinia at the end of the terminal Cryogenian glaciation[J]. Nature Communications, 2018, 9(1): 3019. |
| [73] | Cao H S, He W T, Chen F J, et al. Integrated chemostratigraphy (δ 13C-δ 34S-δ 15N) constrains Cretaceous lacustrine anoxic events triggered by marine sulfate input[J]. Chemical Geology, 2021, 559: 119912. |
| [74] | Canfield D E. Isotope fractionation by natural populations of sulfate-reducing bacteria[J]. Geochimica et Cosmochimica Acta, 2001, 65(7): 1117-1124. |
| [75] | Lang X G, Tang W B, Ma H R, et al. Local environmental variation obscures the interpretation of pyrite sulfur isotope records[J]. Earth and Planetary Science Letters, 2020, 533: 116056. |
| [76] | Algeo T J, Ingall E. Sedimentary Corg: P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2 [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 256(3/4): 130-155. |
| [77] | Canfield D E, Thamdrup B. Towards a consistent classification scheme for geochemical environments, or, why we wish the term “suboxic” would go away[J]. Geobiology, 2009, 7(4): 385-392. |
| [78] | Fry B, Ruf W, Gest H, et al. Sulfur isotope effects associated with oxidation of sulfide by O2 in aqueous solution[J]. Chemical Geology: Isotope Geoscience section, 1988, 73(3): 205-210. |
| [79] | Ries J B, Fike D A, Pratt L M, et al. Superheavy pyrite (δ 34Spyr > δ 34SCAS) in the terminal Proterozoic Nama Group, southern Namibia: A consequence of low seawater sulfate at the dawn of animal life[J]. Geology, 2009, 37(8): 743-746. |
| [80] | Adams D D, Hurtgen M T, Sageman B B. Volcanic triggering of a biogeochemical cascade during Oceanic Anoxic Event 2[J]. Nature Geoscience, 2010, 3(3): 201-204. |
| [81] | Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407(6804): 623-626. |
| [82] | 聂应. 南羌塘Toarcian大洋缺氧事件期间的古环境研究[D]. 成都:成都理工大学,2021. Nie Ying. A study on the paleo-environment during the Toarcian Oceanic Anoxic Event in the southern Qiangtang[D]. Chengdu: Chengdu University of Technology, 2021. |