[1] 赵雨,樊双虎,孙泽文. 陕西宝鸡金陵河盆地下白垩统和尚铺组砾石统计及地质意义[J]. 河北地质大学学报,2021,44(2):44-52.

Zhao Yu, Fan Shuanghu, Sun Zewen. Gravel characteristics of the Lower Cretaceous Heshangpu Formation in Jinling River Basin, Baoji city, Shaanxi province and the geological significance[J]. Journal of Hebei GEO University, 2021, 44(2): 44-52.
[2] 张宜梅,王建力,钟俊. 重庆江北砾岩的砾石统计及其沉积环境探究[J]. 重庆师范大学学报(自然科学版),2013,30(1):48-52.

Zhang Yimei, Wang Jianli, Zhong Jun. The gravel statistics and sedimentary environment of Jiangbei conglomerate in Chongqing[J]. Journal of Chongqing Normal University (Natural Science Edition), 2013, 30(1): 48-52.
[3] 张倬元,陈叙伦,刘世青,等. 丹棱—思濛砾石层成因与时代[J]. 山地学报,2000,18(增刊):8-16.

Zhang Zhuoyuan, Chen Xulun, Liu Shiqing, et al. Origin and geological age of the Danling-Simong gravel bed[J]. Mountain Research, 2000, 18(Suppl.): 8-16.
[4] 朱大岗,赵希涛,孟宪刚,等. 念青唐古拉山主峰地区第四纪砾石层砾组分析[J]. 地质力学学报,2002,8(4):323-332.

Zhu Dagang, Zhao Xitao, Meng Xiangang, et al. Fabric analysis of gravel in Quaternary gravel beds on backbone area of Nianqingtanggulashan Mountains[J]. Journal of Geomechanics, 2002, 8(4): 323-332.
[5] 吴磊伯,沈淑敏. 海滨砾石组构分析的一个实例[J]. 地质学报,1962,42(4):353-361.

Wu Leibo, Shen Shumin. An example of fabric analysis of beach gravels[J]. Acta Geological Sinica, 1962, 42(4): 353-361.
[6] 梅惠,胡道华,陈方明,等. 武汉阳逻砾石层砾石统计分析研究[J]. 地球与环境,2011,39(1):42-47.

Mei Hui, Hu Daohua, Chen Fangming, et al. Study on the statistical analysis of gravels at Yangluo in Wuhan city[J]. Earth and Environment, 2011, 39(1): 42-47.
[7] Burr D M, Enga M T, Williams R M E, et al. Pervasive aqueous paleoflow features in the Aeolis/Zephyria Plana region, Mars[J]. Icarus, 2009, 200(1): 52-76.
[8] Burr D M, Williams R M E, Wendell K D, et al. Inverted fluvial features in the Aeolis/Zephyria Plana region, Mars: Formation mechanism and initial paleodischarge estimates[J]. Journal of Geophysical Research-Planets, 2010, 115(E7): E07011.
[9] Williams R M E, Irwin III R P, Zimbelman J R, et al. Field guide to exhumed paleochannels near Green River, Utah: Terrestrial analogs for sinuous ridges on Mars[M]//Garry W B, Bleacher J E. Analogs for planetary exploration. McLean: Geological Society of America, 2011: 483-505.
[10] Williams R M E, Irwin R P, Burr D M, et al. Variability in Martian sinuous ridge form: Case study of Aeolis Serpens in the Aeolis Dorsa, Mars, and insight from the Mirackina paleoriver, South Australia[J]. Icarus, 2013, 225(1): 308-324.
[11] Banks M E, Lang N P, Kargel J S, et al. An analysis of sinuous ridges in the southern Argyre Planitia, Mars using HiRISE and CTX images and MOLA data[J]. Journal of Geophysical Research: Planets, 2009, 114(E9): E09003.
[12] Zhao J N, Huang J, Kraft M D, et al. Ridge-like lava tube systems in southeast Tharsis, Mars[J]. Geomorphology, 2017, 295: 831-839.
[13] Telfer M W, Radebaugh J, Cornford B, et al. Long-wavelength sinuosity of linear dunes on earth and Titan and the effect of underlying topography[J]. Journal of Geophysical Research: Planets, 2019, 124(9): 2369-2381.
[14] Zhao J N, Wang J, Zhang M J, et al. Unique curvilinear ridges in the Qaidam Basin, NW China: Implications for Martian fluvial ridges[J]. Geomorphology, 2021, 372: 107472.
[15] 张镱锂. 青藏高原边界数据总集[R]. 北京:国家青藏高原科学数据中心,2019.

Zhang Yili. Integration dataset of Tibet Plateau boundary[R]. Beijing: National Tibetan Plateau Data Center, 2019.
[16] 李星波,季军良,曹展铭,等. 柴达木盆地北缘古—新近纪河湖相沉积物颜色的气候意义[J]. 地球科学,2021,46(9):3278-3289.

Li Xingbo, Ji Junliang, Cao Zhanming, et al. The climatic significance of the color of the Paleo-Neogene fluvial and lacustrine sediments in the northern Qaidam Basin[J]. Earth Science, 2021, 46(9): 3278-3289.
[17] 鲍锋. 柴达木盆地察尔汗盐湖地区风沙地貌发育环境与过程[D]. 西安:陕西师范大学,2016.

Bao feng. Development environment and process of aeolian landforms in the Chaerhan Salt Lake area, Qaidam Basin[D]. Xi'an: Shaanxi Normal University, 2016.
[18] 安福元,马海州,魏海成,等. 柴达木盆地察尔汗湖相沉积物的粒度分布模式及其环境意义[J]. 干旱区地理,2013,36(2):212-220.

An Fuyuan, Ma Haizhou, Wei Haicheng, et al. Grain-size distribution patterns of lacustrine sediments of Qarhan area and its environmental significance[J]. Arid Land Geography, 2013, 36(2): 212-220.
[19] 吕宝凤,张越青,杨书逸. 柴达木盆地构造体系特征及其成盆动力学意义[J]. 地质论评,2011,57(2):167-174.

Baofeng Lü, Zhang Yueqing, Yang Shuyi. Characteristics of structural system and its implication for formation dynamics in Qaidam Basin[J]. Geological Review, 2011, 57(2): 167-174.
[20] Zhuang G S, Hourigan J K, Ritts B D, et al. Cenozoic multiple-phase tectonic evolution of the northern Tibetan Plateau: Constraints from sedimentary records from Qaidam Basin, Hexi Corridor, and Subei Basin, Northwest China[J]. American Journal of Science, 2011, 311(2): 116-152.
[21] Fang X M, Li M H, Wang Z R, et al. Oscillation of mineral compositions in core SG-1b, western Qaidam Basin, NE Tibetan Plateau[J]. Scientific Reports, 2016, 6: 32848.
[22] 朱允铸,钟坚华,李文生. 柴达木盆地新构造运动及盐湖发展演化[M]. 北京:地质出版社,1994.

Zhu Yunzhu, Zhong Jianhua, Li Wensheng. The neotectonic movement and evolution of saline lakes of Qaidam Basin[M]. Beijing: Geological Publishing House, 1994.
[23] Heermance R V, Pullen A, Kapp P, et al. Climatic and tectonic controls on sedimentation and erosion during the Pliocene-Quaternary in the Qaidam Basin (China)[J]. Geological Society of America Bulletin, 2013, 125(5/6): 833-856.
[24] Zhou J X, Xu F Y, Wang T C, et al. Cenozoic deformation history of the Qaidam Basin, NW China: Results from cross-section restoration and implications for Qinghai–Tibet Plateau tectonics[J]. Earth and Planetary Science Letters, 2006, 243(1/2): 195-210.
[25] Wang E, Xu F Y, Zhou J X, et al. Eastward migration of the Qaidam Basin and its implications for Cenozoic evolution of the Altyn Tagh fault and associated river systems[J]. Geological Society of America Bulletin, 2006, 118(3/4): 349-365.
[26] Wang J Y, Fang X M, Appel E, et al. Magnetostratigraphic and radiometric constraints on salt formation in the Qaidam Basin, NE Tibetan Plateau[J]. Quaternary Science Reviews, 2013, 78: 53-64.
[27] Han W X, Ma Z B, Lai Z P, et al. Wind erosion on the north‐eastern Tibetan Plateau: Constraints from OSL and U‐Th dating of playa salt crust in the Qaidam Basin[J]. Earth Surface Processes and Landforms, 2014, 39(6): 779-789.
[28] Yang Y B, Yang R S, Li X Y, et al. Glacial-interglacial climate change on the northeastern Tibetan Plateau over the last 600 kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 476: 181-191.
[29] 谭毅. 柴达木盆地水系、地表水资源及其特点[J]. 水利科技与经济,2014,20(4):51-54.

Tan Yi. Qaidam Basin water system, surface water resources and their characteristics[J]. Water Conservancy Science and Technology and Economy, 2014, 20(4): 51-54.
[30] Gao X M, Dong Z B, Duan Z H, et al. Wind regime for long-ridge Yardangs in the Qaidam Basin, Northwest China[J]. Journal of Arid Land, 2019, 11(5): 701-712.
[31] Halimov M, Fezer F. Eight Yardang types in central Asia[J]. Zeitschrift für Geomorphologie, 1989, 33(2): 205-217.
[32] Zingg T. Beitrag zur schotteranalyse[J]. Schweizerische Minera-logische und Petrographische Mitteilungen, 1935, 15: 39-140.
[33] Sneed E D, Folk R L. Pebbles in the Lower Colorado River, Texas a study in particle morphogenesis[J]. The Journal of Geology, 1958, 66(2): 114-150.
[34] Luettig G. The shape of pebbles in the continental, fluviatile and marine facies[J]. International Association of Scientific Hydrology, 1962, 59: 253-258.
[35] Dobkins J E, Folk R L. Shape development on Tahiti-Nui[J]. Journal of Sedimentary Research, 1970, 40(4): 1167-1203.
[36] Illenberger W K. Pebble shape (and size!)[J]. Journal of Sedimentary Research, 1991, 61(5): 756-767.
[37] 韩建恩,余佳,孟庆伟,等. 西藏阿里地区札达盆地第四纪砾石统计及其意义[J]. 地质通报,2005,24(7):630-636.

Han Jian’en, Yu Jia, Meng Qingwei, et al. Analysis of Quaternary gravels in the Zhanda Basin, Ngari area, Tibet, China[J]. Regional Geology of China, 2005, 24(7): 630-636.
[38] 王节涛,裴来政,张宏鑫,等. 大别山南麓阳逻组砾石层砾石形貌学研究[J]. 中国地质,2021,48(1):139-148.

Wang Jietao, Pei Laizheng, Zhang Hongxin, et al. Morphology of gravels from the Yangluo Formation in the southern piedment of Dabie Mountains[J]. Geology in China, 2021, 48(1): 139-148.
[39] McCave I N, Syvitski J P M. Principles and methods of geological particle size analysis[M]//Syvitski J P M. Principles, methods and application of particle size analysis. Cambridge: Cambridge University Press, 1991: 3-21.
[40] Folk R L, Ward W C. Brazos River bar [Texas]; A study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 1957, 27(1): 3-26.
[41] Sames C W. Morphometric data of some recent pebble associations and their application to ancient deposits[J]. Journal of Sedimentary Research, 1966, 36(1): 126-142.
[42] Stratten T. Notes on the application of shape parameters to differentiate between beach and river deposits in southern Africa[J]. South African Journal of Geology, 1974, 77(1): 383-384.
[43] Madi K, Ndlazi N Z. Pebble morphometric analysis as signatures of the fluvial depositional environment of the Katberg Formation near Kwerela River around East London, eastern Cape province, South Africa[J]. Arabian Journal of Geosciences, 2020, 13(5): 235.
[44] Graham D J, Midgley N G. Graphical representation of particle shape using triangular diagrams: An excel spreadsheet method[J]. Earth Surface Processes and Landforms, 2000, 25(13): 1473-1477.
[45] Kezao C, Bowler J M. Late Pleistocene evolution of salt lakes in the Qaidam Basin, Qinghai province, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1986, 54(1/2/3/4): 87-104.
[46] Mischke S, Sun Z C, Herzschuh U, et al. An ostracod-inferred large Middle Pleistocene freshwater lake in the presently hyper-arid Qaidam Basin (NW China)[J]. Quaternary International, 2010, 218(1/2): 74-85.
[47] 丁召静. 柴达木盆地雅丹释光年代学及其环境意义[D]. 武汉:中国地质大学,2020.

Ding Zhaojing. Optically stimulated luminescence chronology and paleo-environmental implications of Yardangs in the Qaidam Basin[D]. Wuhan: China University of Geosciences, 2020.
[48] Ding Z J, Yu L P, Lai Z P, et al. Post-IR IRSL chronology of paleo-lacustrine sediments from Yardangs in the Qaidam Basin, NE Tibetan Plateau[J]. Geochronometria, 2021, 48(1): 313-324.
[49] An F Y, Liu X J, Zhang Q X, et al. Drainage geomorphic evolution in response to paleoclimatic changes since 12.8 ka in the eastern Kunlun Mountains, NE Qinghai-Tibetan Plateau[J]. Geomorphology, 2018, 319: 117-132.
[50] Osterkamp W R, Hedman E R. Perennial-streamflow characteristics related to channel geometry and sediment in Missouri River Basin[R]. Alexandria: U.S. Geological Survey, 1982.
[51] 胡春生,吴立,杨立辉. 青弋江上游泾县段阶地砾石层砾组结构及其沉积环境研究[J]. 地理科学,2016,36(6):951-958.

Hu Chunsheng, Wu Li, Yang Lihui. Gravel fabric and sedimentary environment of terrace gravel layers of the upper Qingyijiang River at Jingxian county[J]. Scientia Geographica Sinica, 2016, 36(6): 951-958.
[52] 窦国仁. 再论泥沙起动流速[J]. 泥沙研究,1999(6):1-9.

Dou Guoren. Incipient motion of coarse and fine sediment[J]. Journal of Sediment Research, 1999(6): 1-9.