[1] IPCC. Intergovernmental Panel On Climate Change (IPCC). Climate change 2022-impacts, adaptation and vulnerability: Working group II contribution to the sixth assessment report of the intergovernmental panel on climate change[M]. UK: Cambridge University Press, 2023.
[2] Le Quéré C, Andrew R M, Friedlingstein P, et al. Global carbon budget 2018[J]. Earth System Science Data, 2018, 10(4): 2141-2194.
[3] Cui Y, Li M S, van Soelen E E, et al. Massive and rapid predominantly volcanic CO2 emission during the end-Permian mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(37): e2014701118.
[4] McElwain J C, Wade-Murphy J, Hesselbo S P. Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals[J]. Nature, 2005, 435(7041): 479-482.
[5] Adloff M, Greene S E, Parkinson I J, et al. Unravelling the sources of carbon emissions at the onset of Oceanic Anoxic Event (OAE) 1a[J]. Earth and Planetary Science Letters, 2020, 530: 115947.
[6] Kuroda J, Ogawa N O, Tanimizu M, et al. Contemporaneous massive subaerial volcanism and Late Cretaceous Oceanic Anoxic Event 2[J]. Earth and Planetary Science Letters, 2007, 256(1/2): 211-223.
[7] Foster G L, Hull P, Lunt D J, et al. Placing our current 'hyperthermal' in the context of rapid climate change in our geological past[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 376(2130): 20170086.
[8] Gutjahr M, Ridgwell A, Sexton P F, et al. Very large release of mostly volcanic carbon during the Palaeocene-Eocene Thermal Maximum[J]. Nature, 2017, 548(7669): 573-577.
[9] McInerney F A, Wing S L. The Paleocene-Eocene Thermal Maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future[J]. Annual Review of Earth and Planetary Sciences, 2011, 39(1/2): 489-516.
[10] Zachos J C, Dickens G R, Zeebe R E. An Early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics[J]. Nature, 2008, 451(7176): 279-283.
[11] Zachos J C, McCarren H, Murphy B, et al. Tempo and scale of Late Paleocene and Early Eocene carbon isotope cycles: Implications for the origin of hyperthermals[J]. Earth and Planetary Science Letters, 2010, 299(1/2): 242-249.
[12] Dickens G R, O'neil J R, Rea D K, et al. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene[J]. Paleoceanography and Paleoclimatology, 1995, 10(6): 965-971.
[13] Zeebe R E, Lourens L J. Solar system chaos and the Paleocene-Eocene boundary age constrained by geology and astronomy[J]. Science, 2019, 365(6456): 926-929.
[14] Westerhold T, Röhl U, Frederichs T, et al. Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the chaotic behavior of the solar system?[J]. Climate of the Past, 2017, 13(9): 1129-1152.
[15] Murphy B H, Farley K A, Zachos J C. An extraterrestrial 3He-based timescale for the Paleocene-Eocene Thermal Maximum (PETM) from Walvis Ridge, IODP Site 1266[J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 5098-5108.
[16] Röhl U, Westerhold T, Bralower T J, et al. On the duration of the Paleocene-Eocene Thermal Maximum (PETM)[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(12): Q12002.
[17] Tierney J E, Zhu J, Li M S, et al. Spatial patterns of climate change across the Paleocene-Eocene Thermal Maximum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(42): e2205326119.
[18] Miller K G, Browning J V, Schmelz W J, et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records[J]. Science Advances, 2020, 6(20): eaaz1346.
[19] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present [J]. Science, 2001, 292(5517): 686-693.
[20] John C M, Bohaty S M, Zachos J C, et al. North American continental margin records of the Paleocene-Eocene Thermal Maximum: Implications for global carbon and hydrological cycling[J]. Paleoceanography and Paleoclimatology, 2008, 23(2): PA2217.
[21] Mariani E, Kender S, Hesselbo S P, et al. Large igneous province control on ocean anoxia and eutrophication in the North Sea at the Paleocene-Eocene Thermal Maximum[J]. Paleo-ceanography and Paleoclimatology, 2024, 39(4): e2023PA004756.
[22] Sluijs A, Brinkhuis H, Schouten S, et al. Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary[J]. Nature, 2007, 450(7173): 1218-1221.
[23] Alegret L, Ortiz S. Global extinction event in benthic forami-nifera across the Paleocene Eocene boundary at the Dababiya Stratotype section[J]. Micropaleontology, 2006, 52(5): 433-447.
[24] Gingerich P D. Environment and evolution through the Paleocene-Eocene Thermal Maximum[J]. Trends in Ecology & Evolution, 2006, 21(5): 246-253.
[25] Thomas E. Development of Cenozoic deep-sea benthic foraminiferal faunas in Antarctic waters[M]//Crame J A. Proceedings of the origins and evolution of the Antarctic biota. London: Geological Society, London, Special Publications, 1989, 47: 283-296.
[26] Lowery C M, Bown P R, Fraass A J, et al. Ecological response of plankton to environmental change: thresholds for extinction[J]. Annual Review of Earth and Planetary Sciences, 2020, 48: 403-429.
[27] Sluijs A, Brinkhuis H, Crouch E M, et al. Eustatic variations during the Paleocene-Eocene greenhouse world[J]. Paleo-ceanography and Paleoclimatology, 2008, 23(4): PA4216.
[28] Schmitz B, Pujalte V. Abrupt increase in seasonal extreme precipitation at the Paleocene-Eocene boundary[J]. Geology, 2007, 35(3): 215-218.
[29] Carmichael M J, Inglis G N, Badger M P S, et al. Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene-Eocene Thermal Maximum [J]. Global and Planetary Change, 2017, 157: 114-138.
[30] Zachos J C, Röhl U, Schellenberg S A, et al. Rapid acidification of the ocean during the Paleocene-Eocene Thermal Maximum[J]. Science, 2005, 308(5728): 1611-1615.
[31] Yao W Q, Paytan A, Wortmann U G. Large-scale ocean deoxygenation during the Paleocene-Eocene Thermal Maximum[J]. Science, 2018, 361(6404): 804-806.
[32] Dickens G R. Down the Rabbit Hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene Thermal Maximum and other past hyperthermal events[J]. Climate of the Past, 2011, 7(3): 831-846.
[33] Gu G S, Dickens G R, Bhatnagar G, et al. Abundant Early Palaeogene marine gas hydrates despite warm deep-ocean temperatures[J]. Nature Geoscience, 2011, 4(12): 848-851.
[34] DeConto R M, Galeotti S, Pagani M, et al. Past extreme warming events linked to massive carbon release from thawing permafrost[J]. Nature, 2012, 484(7392): 87-91.
[35] Lourens L J, Sluijs A, Kroon D, et al. Astronomical pacing of Late Palaeocene to Early Eocene global warming events[J]. Nature, 2005, 435(7045): 1083-1087.
[36] Li M S, Bralower T J, Kump L R, et al. Astrochronology of the Paleocene-Eocene Thermal Maximum on the Atlantic Coastal Plain[J]. Nature Communications, 2022, 13(1): 5618.
[37] Piedrahita V A, Galeotti S, Zhao X, et al. Orbital phasing of the Paleocene-Eocene Thermal Maximum[J]. Earth and Planetary Science Letters, 2022, 598: 117839.
[38] Kent D V, Cramer B S, Lanci L, et al. A case for a comet impact trigger for the Paleocene/Eocene Thermal Maximum and carbon isotope excursion[J]. Earth and Planetary Science Letters, 2003, 211(1/2): 13-26.
[39] Cramer B S, Kent D V. Bolide summer: The Paleocene/Eocene Thermal Maximum as a response to an extraterrestrial trigger [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 224(1/2/3): 144-166.
[40] Schaller M F, Fung M K, Wright J D, et al. Impact ejecta at the Paleocene-Eocene boundary[J]. Science, 2016, 354(6309): 225-229.
[41] Svensen H, Planke S, Malthe-Sørenssen A, et al. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming[J]. Nature, 2004, 429(6991): 542-545.
[42] Storey M, Duncan R A, Swisher C C. Paleocene-Eocene Thermal Maximum and the opening of the northeast Atlantic[J]. Science, 2007, 316(5824): 587-589.
[43] Storey M, Duncan R A, Tegner C. Timing and duration of volcanism in the North Atlantic Igneous Province: Implications for geodynamics and links to the Iceland hotspot[J]. Chemical Geology, 2007, 241(3/4): 264-281.
[44] Jin S M, Kemp D B, Yin R S, et al. Mercury isotope evidence for protracted North Atlantic magmatism during the Paleocene-Eocene Thermal Maximum[J]. Earth and Planetary Science Letters, 2023, 602: 117926.
[45] Berndt C, Planke S, Alvarez Zarikian C A, et al. Shallow-water hydrothermal venting linked to the Palaeocene-Eocene Thermal Maximum[J]. Nature Geoscience, 2023, 16(9): 803-809.
[46] Jones S M, Hoggett M, Greene S E, et al. Large igneous province thermogenic greenhouse gas flux could have initiated Paleocene-Eocene Thermal Maximum climate change[J]. Nature Communications, 2019, 10: 5547.
[47] Matsumoto H, Coccioni R, Frontalini F, et al. Long-term Aptian marine osmium isotopic record of Ontong Java Nui activity[J]. Geology, 2021, 49(9): 1148-1152.
[48] Westerhold T, Marwan N, Drury A J, et al. An astronomically dated record of Earth's climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6509): 1383-1387.
[49] Hu D P, Li M H, Zhang X L, et al. Large mass-independent sulphur isotope anomalies link stratospheric volcanism to the Late Ordovician mass extinction[J]. Nature Communications, 2020, 11(1): 2297.
[50] Li R C, Shen S Z, Xia X P, et al. Atmospheric ozone destruction and the end-Permian crisis: Evidence from multiple sulfur isotopes[J]. Chemical Geology, 2024, 647: 121936.
[51] Grasby S E, Them T R, Chen Z H, et al. Mercury as a proxy for volcanic emissions in the geologic record[J]. Earth-Science Reviews, 2019, 196: 102880.
[52] Shen J, Feng Q L, Algeo T J, et al. Sedimentary host phases of mercury (Hg) and implications for use of Hg as a volcanic proxy[J]. Earth and Planetary Science Letters, 2020, 543: 116333.
[53] Shen J, Yin R S, Zhang S, et al. Intensified continental chemical weathering and carbon-cycle perturbations linked to volcanism during the Triassic-Jurassic transition[J]. Nature Communications, 2022, 13(1): 299.
[54] Zhou T, Pan X, Sun R Y, et al. Cryogenian interglacial greenhouse driven by enhanced volcanism: Evidence from mercury records[J]. Earth and Planetary Science Letters, 2021, 564: 116902.
[55] Jones M T, Percival L M E, Stokke E W, et al. Mercury anomalies across the Palaeocene-Eocene Thermal Maximum[J]. Climate of the Past, 2019, 15(1): 217-236.
[56] Kender S, Bogus K, Pedersen G K, et al. Paleocene/Eocene carbon feedbacks triggered by volcanic activity[J]. Nature Communications, 2021, 12(1): 5186.
[57] Ernst R E, Youbi N. How large igneous provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2017, 478: 30-52.
[58] Saunders A D, Fitton J G, Kerr A C, et al. The North Atlantic Igneous Province[M]//Mahoney J J, Coffin M F. Large Igneous Provinces: Continental, oceanic, and planetary flood volcanism. Washington, D.C.: American Geophysical Union, 1997, 100: 45-93.
[59] Eldholm O, Thomas E. Environmental impact of volcanic margin formation[J]. Earth and Planetary Science Letters, 1993, 117(3/4): 319-329.
[60] Wilkinson C M, Ganerød M, Hendriks B W H, et al. Compilation and appraisal of geochronological data from the North Atlantic Igneous Province (NAIP)[C]//Péron-Pinvidic G, Hopper J R, Funck T, et al. Proceedings of the NE Atlantic region: A reappraisal of crustal structure, tectonostratigraphy and magmatic evolution, London: Geological Society, Special Publications, 2017, 447: 69-103.
[61] Larsen L M, Waagstein R, Pedersen A K, et al. Trans-Atlantic correlation of the Palaeogene volcanic successions in the Faeroe Islands and East Greenland[J]. Journal of the Geological Society, 1999, 156(6) 1081-1095.
[62] Larsen L M, Fitton J G, Pedersen A K J L. Paleogene volcanic ash layers in the Danish Basin: compositions and source areas in the North Atlantic Igneous Province [J].Lithos, 2003, 71(1): 47-80.
[63] Egger H, Brückl E. Gigantic volcanic eruptions and climatic change in the Early Eocene[J]. International Journal of Earth Sciences, 2006, 95(6): 1065-1070.
[64] Svensen H, Planke S, Corfu F. Zircon dating ties NE Atlantic sill emplacement to initial Eocene global warming[J]. Journal of the Geological Society, 2010, 167(3): 433-436.
[65] Frieling J, Svensen H H, Planke S, et al. Thermogenic methane release as a cause for the long duration of the PETM[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(43): 12059-12064.
[66] Schmitz B, Peucker-Ehrenbrink B, Heilmann-Clausen C, et al. Basaltic explosive volcanism, but no comet impact, at the Paleocene-Eocene boundary: high-resolution chemical and isotopic records from Egypt, Spain and Denmark[J]. Earth and Planetary Science Letters, 2004, 225(1/2): 1-17.
[67] Wieczorek R, Fantle M S, Kump L R, et al. Geochemical evidence for volcanic activity prior to and enhanced terrestrial weathering during the Paleocene Eocene Thermal Maximum[J]. Geochimica Et Cosmochimica Acta, 2013, 119: 391-410.
[68] Jones M T, Stokke E W, Rooney A D, et al. Tracing North Atlantic volcanism and seaway connectivity across the Paleocene-Eocene Thermal Maximum (PETM)[J]. Climate of the Past, 2023, 19(8): 1623-1652.
[69] Leavitt S W. Annual volcanic carbon dioxide emission: An estimate from eruption chronologies[J]. Environmental Geology, 1982, 4(1): 15-21.
[70] Caldeira K, Rampino M R. Carbon dioxide emissions from Deccan volcanism and a K/T boundary greenhouse effect[J]. Geophysical Research Letters, 1990, 17(9): 1299-1302.
[71] Jones M T, Jerram D A, Svensen H H, et al. The effects of large igneous provinces on the global carbon and sulphur cycles[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2016, 441: 4-21.
[72] Svensen H, Planke S, Jamtveit B, et al. Seep carbonate formation controlled by hydrothermal vent complexes: A case study from the Vøring Basin, the Norwegian Sea[J]. Geo-Marine Letters, 2003, 23(3/4): 351-358.
[73] Heimdal T H, Svensen H H, Ramezani J, et al. Large-scale sill emplacement in Brazil as a trigger for the end-Triassic crisis[J]. Scientific Reports, 2018, 8(1): 141.
[74] Schroeder W H, Munthe J. Atmospheric mercury: An overview[J]. Atmospheric Environment, 1998, 32(5): 809-822.
[75] Futsaeter G, Wilson S. The UNEP global mercury assessment: Sources, emissions and transport[C]//Proceedings of the E3S Web of Conferences, Les Ulis: EDP Sciences, 2013: 36001.
[76] Selin N E. Global biogeochemical cycling of mercury: A review[J]. Annual Review of Environment and Resources, 2009, 34: 43-63.
[77] Varekamp J C, Buseck P R. Mercury emissions from Mount St Helens during September 1980[J]. Nature, 1981, 293(5833): 555-556.
[78] Pyle D M, Mather T A. The importance of volcanic emissions for the global atmospheric mercury cycle[J]. Atmospheric Environment, 2003, 37(36): 5115-5124.
[79] Selin N E, Jacob D J, Yantosca R M, et al. Global 3-D land-ocean-atmosphere model for mercury: Present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition[J]. Global Biogeochemical Cycles, 2008, 22(2): GB2011.
[80] Mason R P. Mercury emissions from natural processes and their importance in the global mercury cycle[M]//Mason R, Pirrone N. Mercury fate and transport in the global atmosphere: Emissions, measurements and models. Boston: Springer, 2009: 173-191.
[81] Grasby S E, Liu X J, Yin R S, et al. Toxic mercury pulses into Late Permian terrestrial and marine environments[J]. Geology, 2020, 48(8): 830-833.
[82] Bergquist B A. Mercury, volcanism, and mass extinctions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(33): 8675-8677.
[83] Demers J D, Blum J D, Zak D R. Mercury isotopes in a forested ecosystem: Implications for air-surface exchange dynamics and the global mercury cycle[J]. Global Biogeochemical Cycles, 2013, 27(1): 222-238.
[84] Kongchum M, Hudnall W H, Delaune R D. Relationship between sediment clay minerals and total mercury[J]. Journal of Environmental Science and Health, Part A, 2011, 46(5): 534-539.
[85] Mason R P, Fitzgerald W F, Morel F M M. The biogeochemical cycling of elemental mercury: Anthropogenic influences[J]. Geochimica et Cosmochimica Acta, 1994, 58(15): 3191-3198.
[86] Dunkley Jones T, Lunt D J, Schmidt D N, et al. Climate model and proxy data constraints on ocean warming across the Paleocene-Eocene Thermal Maximum[J]. Earth-Science Reviews, 2013, 125: 123-145.
[87] Ravichandran M. Interactions between mercury and dissolved organic matter: A review[J]. Chemosphere, 2004, 55(3): 319-331.
[88] Shen J, Algeo T J, Planavsky N J, et al. Mercury enrichments provide evidence of Early Triassic volcanism following the end-Permian mass extinction[J]. Earth-Science Reviews, 2019, 195: 191-212.
[89] Percival L M E, Witt M L I, Mather T A, et al. Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: A link to the Karoo-Ferrar Large Igneous Province[J]. Earth and Planetary Science Letters, 2015, 428: 267-280.
[90] 龚清,凌明星,郑旺. 汞稳定同位素示踪地质记录中火山活动的应用[J]. 中国科学:地球科学,2024,54(5):1459-1483.

Gong Qing, Ling Mingxing, Zheng Wang. Applications of mercury stable isotopes for tracing volcanism in the geologic record[J]. Science China Earth Sciences, 2024, 54(5): 1459-1483.
[91] Bergquist B A, Blum J D. Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems[J]. Science, 2007, 318(5849): 417-420.
[92] Blum J D, Sherman L S, Johnson M W. Mercury isotopes in earth and environmental sciences[J]. Annual Review of Earth and Planetary Sciences, 2014, 42: 249-269.
[93] 郑旺,赵亚秋,孙若愚,等. 汞的稳定同位素分馏机理[J]. 矿物岩石地球化学通报,2021,40(5):1087-1116.

Zheng Wang, Zhao Yaqiu, Sun Ruoyu, et al. The mechanism of mercury stable isotope fractionation: A review[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(5): 1087-1116.
[94] Zambardi T, Sonke J E, Toutain J P, et al. Mercury emissions and stable isotopic compositions at Vulcano Island (Italy)[J]. Earth and Planetary Science Letters, 2009, 277(1/2): 236-243.
[95] Grasby S E, Shen W J, Yin R S, et al. Isotopic signatures of mercury contamination in latest Permian oceans[J]. Geology, 2017, 45(1): 55-58.
[96] Keller G, Mateo P, Punekar J, et al. Environmental changes during the Cretaceous-Paleogene mass extinction and Paleocene-Eocene Thermal Maximum: Implications for the Anthropocene[J]. Gondwana Research, 2018, 56: 69-89.
[97] Liu Z Y, Horton D E, Tabor C, et al. Assessing the contributions of comet impact and volcanism toward the climate perturbations of the Paleocene-Eocene Thermal Maximum[J]. Geophysical Research Letters, 2019, 46(24): 14798-14806.
[98] Tremblin M, Khozyem H, Adatte T, et al. Mercury enrichments of the Pyrenean foreland basins sediments support enhanced volcanism during the Paleocene-Eocene Thermal Maximum (PETM)[J]. Global and Planetary Change, 2022, 212: 103794.
[99] Jin S M, Kemp D B, Shen J, et al. Spatiotemporal distribution of global mercury enrichments through the Paleocene-Eocene Thermal Maximum and links to volcanism[J]. Earth-Science Reviews, 2024, 248: 104647.
[100] Schoon P L, Heilmann-Clausen C, Schultz B P, et al. Warming and environmental changes in the eastern North Sea Basin during the Palaeocene-Eocene Thermal Maximum as revealed by biomarker lipids[J]. Organic Geochemistry, 2015, 78: 79-88.
[101] Dypvik H, Riber L, Burca F, et al. The Paleocene-Eocene Thermal Maximum (PETM) in Svalbard: Clay mineral and geochemical signals[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 302(3/4): 156-169.
[102] Dickson A J, Cohen A S, Coe A L. Seawater oxygenation during the Paleocene-Eocene Thermal Maximum[J]. Geology, 2012, 40(7): 639-642.
[103] Rodríguez-Tovar F J, Uchman A, Alegret L, et al. Impact of the Paleocene-Eocene Thermal Maximum on the macrobenthic community: Ichnological record from the Zumaia section, northern Spain[J]. Marine Geology, 2011, 282(3/4): 178-187.
[104] Wagner C L, Stassen P, Thomas E, et al. Magnetofossils and benthic foraminifera record changes in food supply and deoxygenation of the coastal marine seafloor during the Paleocene-Eocene Thermal Maximum[J]. Paleoceanography and Paleoclimatology, 2022, 37(10): e2022PA004502.
[105] Stassen P, Thomas E, Speijer R P. Integrated stratigraphy of the Paleocene-Eocene Thermal Maximum in the New Jersey Coastal Plain: Toward understanding the effects of global warming in a shelf environment[J]. Paleoceanography and Paleoclimatology, 2012, 27(4): PA4210.
[106] Lippert P C, Zachos J C. A biogenic origin for anomalous fine-grained magnetic material at the Paleocene-Eocene boundary at Wilson Lake, New Jersey[J]. Paleoceanography and Paleoclimatology, 2007, 22(4): PA4104.
[107] Schulte P, Scheibner C, Speijer R P. Fluvial discharge and sea-level changes controlling black shale deposition during the Paleocene-Eocene Thermal Maximum in the Dababiya Quarry section, Egypt[J]. Chemical Geology, 2011, 285(1/2/3/4): 167-183.
[108] Chun C O J, Delaney M L, Zachos J C. Paleoredox changes across the Paleocene-Eocene Thermal Maximum, Walvis Ridge (ODP Sites 1262, 1263, and 1266): Evidence from Mn and U enrichment factors[J]. Paleoceanography and Paleoclimatology, 2010, 25(4): 9A4202.
[109] Shen J, Algeo T J, Chen J B, et al. Mercury in marine Ordovician/Silurian boundary sections of South China is sulfide-hosted and non-volcanic in origin[J]. Earth and Planetary Science Letters, 2019, 511: 130-140.
[110] Sanei H, Grasby S E, Beauchamp B. Latest Permian mercury anomalies[J]. Geology, 2012, 40(1): 63-66.
[111] Mazrui N M, Jonsson S, Thota S, et al. Enhanced availability of mercury bound to dissolved organic matter for methylation in marine sediments[J]. Geochimica et Cosmochimica Acta, 2016, 194: 153-162.
[112] Grasby S E, Sanei H, Beauchamp B, et al. Mercury deposition through the Permo-Triassic Biotic Crisis [J]. Chemical Geology, 2013, 351: 209-216.
[113] Bower J, Savage K S, Weinman B, et al. Immobilization of mercury by pyrite (FeS2)[J]. Environmental Pollution, 2008, 156(2): 504-514.
[114] Han D S, Orillano M, Khodary A, et al. Reactive iron sulfide (FeS)-supported ultrafiltration for removal of mercury (Hg(II)) from water[J]. Water Research, 2014, 53: 310-321.
[115] Kalvoda J, Kumpan T, Qie W, et al. Mercury spikes at the Devonian-Carboniferous boundary in the eastern part of the Rhenohercynian Zone (central Europe) and in the South China Block[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 531: 109221.
[116] Shen J, Yu J X, Chen J B, et al. Mercury evidence of intense volcanic effects on land during the Permian-Triassic transition[J]. Geology, 2019, 47(12): 1117-1121.
[117] Bouffard A, Amyot M. Importance of elemental mercury in lake sediments[J]. Chemosphere, 2009, 74(8): 1098-1103.
[118] Sánchez D M, Quejido A J, Fernández M, et al. Mercury and trace element fractionation in Almaden soils by application of different sequential extraction procedures[J]. Analytical and Bioanalytical Chemistry, 2005, 381(8): 1507-1513.
[119] Kender S, Stephenson M H, Riding J B, et al. Marine and terrestrial environmental changes in NW Europe preceding carbon release at the Paleocene–Eocene transition[J]. Earth and Planetary Science Letters, 2012, 353-354: 108-120.
[120] Harding I C, Charles A J, Marshall J E A, et al. Sea-level and salinity fluctuations during the Paleocene-Eocene Thermal Maximum in Arctic Spitsbergen [J]. Earth and Planetary Science Letters, 2011, 303(1/2): 97-107.
[121] Dunkley Jones T D, Manners H R, Hoggett M, et al. Dynamics of sediment flux to a bathyal continental margin section through the Paleocene-Eocene Thermal Maximum [J]. Climate of the Past, 2018, 14(7): 1035-1049.
[122] Khozyem H, Adatte T, Spangenberg J E, et al. New geochemical constraints on the Paleocene-Eocene Thermal Maximum: Dababiya GSSP, Egypt[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2015, 429: 117-135.
[123] Wright J D, Schaller M F. Evidence for a rapid release of carbon at the Paleocene-Eocene Thermal Maximum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(40): 15908-15913.
[124] Frieling J, Mather T A, März C, et al. Effects of redox variability and early diagenesis on marine sedimentary Hg records[J]. Geochimica et Cosmochimica Acta, 2023, 351: 78-95.
[125] Them T R, Jagoe C H, Caruthers A H, et al. Terrestrial sources as the primary delivery mechanism of mercury to the oceans across the Toarcian Oceanic Anoxic Event (Early Jurassic)[J]. Earth and Planetary Science Letters, 2019, 507: 62-72.
[126] Shen J, Yin R S, Algeo T J, et al. Mercury evidence for combustion of organic-rich sediments during the end-Triassic crisis[J]. Nature Communications, 2022, 13(1): 1307.
[127] Sluijs A, Schouten S, Pagani M, et al. Subtropical arctic ocean temperatures during the Palaeocene/Eocene Thermal Maximum [J]. Nature, 2006, 441(7093): 610-613.
[128] Gleason J D, Blum J D, Moore T C, et al. Sources and cycling of mercury in the paleo Arctic Ocean from Hg stable isotope variations in Eocene and Quaternary sediments [J]. Geochimica Et Cosmochimica Acta, 2017, 197: 245-262.
[129] Storme J Y, Dupuis C, Schnyder J, et al. Cycles of humid-dry climate conditions around the P/E boundary: New stable isotope data from terrestrial organic matter in Vasterival section (NW France) [J]. Terra Nova, 2012, 24(2): 114-122.