[1] Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates[J]. Science, 1997, 278(5341): 1257-1266.
[2] Bond G, Kromer B, Beer J, et al. Persistent solar influence on North Atlantic climate during the Holocene[J]. Science, 2001, 294(5549): 2130-2136.
[3] Mayewski P A, Rohling E E, Stager J C, et al. Holocene climate variability[J]. Quaternary Research, 2004, 62(3): 243-255.
[4] Wanner H, Solomina O, Grosjean M, et al. Structure and origin of Holocene cold events[J]. Quaternary Science Reviews, 2011, 30(21/22): 3109-3123.
[5] Weiss H. 4.2 ka BP megadrought and the akkadian collapse[M]//Weiss H. Megadrought and collapse: From early agriculture to Angkor. Oxford: Oxford University Press, 2017: 93-160.
[6] Walker M J C, Berkelhammer M, Björck S, et al. Formal subdivision of the Holocene Series/Epoch: A Discussion Paper by a Working Group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy)[J]. Journal of Quaternary Science, 2012, 27(7): 649-659.
[7] 王权,刘殿兵,汪永进,等. 湖北神农架年纹层石笋记录的YD与8.2 ka事件转型模式研究[J]. 沉积学报,2015,33(6):1140-1148.

Wang Quan, Liu Dianbing, Wang Yongjin, et al. Transitional patterns of YD and 8.2 ka event recorded by annually-laminated stalagmites from Qingtian cave, Mt. Shennongjia[J]. Acta Sedimentologica Sinica, 2015, 33(6): 1140-1148.
[8] 张华生,殷建军,程海,等. 全新世早期弱夏季风事件的精确定位及机制探讨:以湖南莲花洞LHD5石笋为例[J]. 沉积学报,2016,34(2):281-291.

Zhang Huasheng, Yin Jianjun, Cheng Hai, et al. Discussion about the mechanism of the weak summer monsoon events during the Early Holocence: A case study of precisely dated stalagmite record from Lianhua cave, Hunan province, China[J]. Acta Sedimentologica Sinica, 2016, 34(2): 281-291.
[9] Zhang H W, Cheng H, Cai Y J, et al. Hydroclimatic variations in southeastern China during the 4.2 ka event reflected by stalagmite records[J]. Climate of the Past, 2018, 14(11): 1805-1817.
[10] Tan L C, Li Y Z, Wang X Q, et al. Holocene monsoon change and abrupt events on the western Chinese Loess Plateau as revealed by accurately dated stalagmites[J]. Geophysical Research Letters, 2020, 47(21): e2020GL090273.
[11] 彭子成,张兆峰,蔡演军,等. 贵州七星洞晚更新世晚期石笋的古气候环境记录[J]. 第四纪研究,2002,22(3):273-282.

Peng Zicheng, Zhang Zhaofeng, Cai Yanjun, et al. The paleoclimatic records from the Late Pleistocene stalagmite in Guizhou Qixing cave[J]. Quaternary Sciences, 2002, 22(3): 273-282.
[12] 张美良,程海,袁道先,等. 末次冰期贵州七星洞石笋高分辨率气候记录与Heinrich事件[J]. 地球学报,2004,25(3):337-344.

Zhang Meiliang, Cheng Hai, Yuan Daoxian, et al. The high resolution climate records from two stalagmites in Qixing cave of Guizhou and the Heinrich events of the last glacial period[J]. Acta Geoscientica Sinica, 2004, 25(3): 337-344.
[13] 覃嘉铭,袁道先,程海,等. 贵州都匀七星洞石笋剖面晚更新世高分辨率的气候地层学[J]. 第四纪研究,2004,24(3):318-324.

Qin Jiaming, Yuan Daoxian, Cheng Hai, et al. A high resolution Late Pleistocene climato-stratigraphy of 4 stalagmites from Qixing cave, Duyun, Guizhou[J]. Quaternary Sciences, 2004, 24(3): 318-324.
[14] Cai Yanjun, Zhang Meiliang, Peng Zicheng, et al. The δ 18O Variation of a Stalagmite from Qixing cave, Guizhou province and indicated climate change during the Holocene[J]. Chinese Science Bulletin, 2001, 46(22): 1904-1908.
[15] 马乐,蔡演军,秦世江. 贵州七星洞石笋记录的最近2300年气候和环境变化[J]. 地球环境学报,2015,6(3):135-144.

Ma Le, Cai Yanjun, Qin Shijiang. A high resolution paleoclimate record of the last 2300 years in stalagmite QX-3 from the Qixing cave, Guizhou province[J]. Journal of Earth Environment, 2015, 6(3): 135-144.
[16] 殷建军,林玉石,唐伟,等. 贵州七星洞石笋记录的一次强降水事件的探讨[J]. 地球学报,2016,37(3):326-332.

Yin Jianjun, Lin Yushi, Tang Wei, et al. A tentative discussion on a heavy precipitation event recorded by stalagmites from Qixing cave, Guizhou province[J]. Acta Geoscientia Sinica, 2016, 37(3): 326-332.
[17] Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5723): 854-857.
[18] 张美良,林玉石,覃嘉铭,等. 黔南七星洞石笋古气候变化记录及末次间冰期终止点的确定[J]. 沉积学报,2003,21(3):473-481.

Zhang Meiliang, Lin Yushi, Qin Jiaming, et al. The record of paleoclimatic change and the termination of the last interglacial period from a stalagmite of Qingxing cave in south Guizhou[J]. Acta Sedimentologica Sinica, 2003, 21(3): 473-481.
[19] 张美良,程海,林玉石,等. 贵州荔波地区2000年来石笋高分辨率的气候记录[J]. 沉积学报,2006,24(3):339-348.

Zhang Meiliang, Cheng Hai, Lin Yushi, et al. High-resolution climatic record from a stalagmite in the past 2000 years in Libo, Guizhou province[J]. Acta Sedimentologica Sinica, 2006, 24(3): 339-348.
[20] 张美良,袁道先,林玉石,等. 贵州荔波董哥洞3号石笋的同位素年龄及古气候信息[J]. 沉积学报,2001,19(3):425-432.

Zhang Meiliang, Yuan Daoxian, Lin Yushi, et al. Isotopic ages and paleoclimatic implications of No. 1 stalagmite from Dongge cave in Libo[J]. Acta Sedimentologica Sinica, 2001, 19(3): 425-432.
[21] Zhu X L, Wang S J, Luo W J. Characteristics of strontium isotopes and their implications in the Qixing cave of Guizhou, China[J]. Chinese Science Bulletin, 2011, 56(7): 670-675.
[22] Luo W J, Wang S J, Xie X N, et al. Temporal and spatial variations in hydro-geochemistry of cave percolation water and their implications for four caves in Guizhou, China[J]. Chinese Journal of Geochemistry, 2013, 32(2): 119-129.
[23] 张会领,余克服,赵建新,等. 文石方解石化对文石石笋δ 18O记录的影响[J]. 热带地理,2016,36(3):457-467.

Zhang Huiling, Yu Kefu, Zhao Jianxin, et al. Process of calcitization of aragonite altering δ 18O records of aragonite stalagmites[J]. Tropical Geography, 2016, 36(3): 457-467.
[24] Shao Q F, Pons-Branchu E, Zhu Q P, et al. High precision U/Th dating of the rock paintings at Mt. Huashan, Guangxi, southern China[J]. Quaternary Research, 2017, 88(1): 1-13.
[25] Cheng H, Edwards R L, Shen C-C, et al. Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry[J]. Earth and Planetary Science Letters, 2013, 371-372: 82-91.
[26] Zhang H W, Cai Y J, Tan L C, et al. Stable isotope composition alteration produced by the aragonite-to-calcite transformation in speleothems and implications for paleoclimate reconstructions[J]. Sedimentary Geology, 2014, 309: 1-14.
[27] Hercman H, Pawlak J. MOD-AGE: An age-depth model construction algorithm[J]. Quaternary Geochronology, 2012, 12: 1-10.
[28] Hendy C H. The isotopic geochemistry of speleothems-I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators[J]. Geochimica et Cosmochimica Acta, 1971, 35(8): 801-824.
[29] Zhang Z Q, Wang Y J, Liu D B, et al. Multi-scale variability of the Asian monsoon recorded in an annually-banded stalagmite during the Neoglacial from Qixing cave, southwestern China[J]. Quaternary International, 2018, 487: 78-86.
[30] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu cave, China[J]. Science, 2001, 294(5550): 2345-2348.
[31] 汪永进,刘殿兵. 亚洲古季风变率和机制的洞穴石笋档案[J]. 科学通报,2016,61(9):938-951.

Wang Yongjin, Liu Dianbing. Speleothem records of Asian paleomonsoon variability and mechanisms[J]. Chinese Science Bulletin, 2016, 61(9): 938-951.
[32] Cheng H, Sinha A, Wang X F, et al. The global paleomonsoon as seen through speleothem records from Asia and the Americas[J]. Climate Dynamics, 2012, 39(5): 1045-1062.
[33] Pausata F S R, Battisti D S, Nisancioglu K H, et al. Chinese stalagmite δ 18O controlled by changes in the Indian monsoon during a simulated Heinrich event[J]. Nature Geoscience, 2011, 4(7): 474-480.
[34] 谭明. 环流效应:中国季风区石笋氧同位素短尺度变化的气候意义:古气候记录与现代气候研究的一次对话[J]. 第四纪研究,2009,29(5):851-862.

Tan Ming. Circulation effect: Climatic significance of the short term variability of the oxygen isotopes in stalagmites from monsoonal China: Dialogue between paleoclimate records and modern climate research[J]. Quaternary Sciences, 2009, 29(5): 851-862.
[35] Cheng H, Zhang H W, Zhao J Y, et al. Chinese stalagmite paleoclimate researches: A review and perspective[J]. Science China (Seri. D): Earth Sciences, 2019, 62(10): 1489-1513.
[36] Zhang H W, Brahim Y A, Li H Y, et al. The Asian summer monsoon: Teleconnections and forcing mechanisms—a review from Chinese speleothem δ 18O records[J]. Quaternary, 2019, 2(3): 26.
[37] Cheng H, Zhang H W, Cai Y J, et al. Orbital-scale Asian summer monsoon variations: Paradox and exploration[J]. Science China (Seri. D): Earth Sciences, 2021, 64(4): 529-544.
[38] Zhang H W, Zhang X, Cai Y J, et al. A data-model comparison pinpoints Holocene spatiotemporal pattern of East Asian summer monsoon[J]. Quaternary Science Reviews, 2021, 261: 106911.
[39] Tan L C, Cai Y J, An Z S, et al. A Chinese cave links climate change, social impacts and human adaptation over the last 500 years[J]. Scientific Reports, 2015, 5: 12284.
[40] Tan L C, Cai Y J, An Z S, et al. Decreasing monsoon precipitation in southwest China during the last 240 years associated with the warming of tropical ocean[J]. Climate Dynamics, 2017, 48(5/6): 1769-1778.
[41] Zhao K, Wang Y J, Edwards R L, et al. Late Holocene monsoon precipitation changes in southern China and their linkage to northern Hemisphere temperature[J]. Quaternary Science Reviews, 2020, 232: 106191.
[42] 周运超,王世杰,谢兴能,等. 贵州4个洞穴滴水对大气降雨响应的动力学及其意义[J]. 科学通报,2004,49(21):2220-2227.

Zhou Yunchao, Wang Shijie, Xie Xingneng, et al. Significance and dynamics of drip water responding to rainfall in four caves of Guizhou, China[J]. Chinese Science Bulletin, 2004, 49(21): 2220-2227.
[43] 杨琰,袁道先,程海,等. 洞穴石笋初始234U/238U值变化的古气候记录意义[J]. 地质学报,2008,82(5):692-701.

Yang Yan, Yuan Daoxian, Cheng Hai, et al. Initial 234U/238U variation of stalagmites: Implications for paleoclimate reconstruction[J]. Acta Geologica Sinica, 2008, 82(5): 692-701.
[44] Cai Y J, Tan L C, Cheng H, et al. The variation of summer monsoon precipitation in central China since the last deglaciation[J]. Earth and Planetary Science Letters, 2010, 291(1/2/3/4): 21-31.
[45] Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640,000 years and ice age terminations[J]. Nature, 2016, 534(7609): 640-646.
[46] Cosford J, Qing H R, Eglington B, et al. East Asian monsoon variability since the Mid-Holocene recorded in a high-resolution, absolute-dated aragonite speleothem from eastern China[J]. Earth and Planetary Science Letters, 2008, 275(3/4): 296-307.
[47] Railsback L B, Brook G A, Chen J, et al. Environmental controls on the petrology of a Late Holocene speleothem from Botswana with annual layers of aragonite and calcite[J]. Journal of Sedimentary Research, 1994, 64(1): 147-155.
[48] Wassenburg J A, Immenhauser A, Richter D K, et al. Climate and cave control on Pleistocene/Holocene calcite-to-aragonite transitions in speleothems from Morocco: Elemental and isotopic evidence[J]. Geochimica et Cosmochimica Acta, 2012, 92: 23-47.
[49] Frisia S, Borsato A, Fairchild I J, et al. Aragonite-calcite relationships in speleothems (Grotte de Clamouse, France): Environment, fabrics, and carbonate geochemistry[J]. Journal of Sedimentary Research, 2002, 72(5): 687-699.
[50] McMillan E A, Fairchild I J, Frisia S, et al. Annual trace element cycles in calcite-aragonite speleothems: Evidence of drought in the western Mediterranean 1200-1100 yr BP[J]. Journal of Quaternary Science, 2005, 20(5): 423-433.
[51] Tan L C, Cai Y J, Cheng H, et al. Centennial- to decadal-scale monsoon precipitation variations in the Upper Hanjiang River region, China over the past 6650 years[J]. Earth and Planetary Science Letters, 2018, 482: 580-590.
[52] Zhang H W, Cheng H, Spötl C, et al. A 200-year annually laminated stalagmite record of precipitation seasonality in southeastern China and its linkages to ENSO and PDO[J]. Scientific Reports, 2018, 8(1): 12344.
[53] Ayliffe L K, Gagan M K, Zhao J X, et al. Rapid interhemispheric climate links via the Australasian monsoon during the last deglaciation[J]. Nature Communications, 2013, 4: 2908.
[54] Griffiths M L, Kimbrough A K, Gagan M K, et al. Western Pacific hydroclimate linked to global climate variability over the past two millennia[J]. Nature Communications, 2016, 7: 11719.
[55] Zhang H B, Griffiths M L, Huang J H, et al. Antarctic link with East Asian summer monsoon variability during the Heinrich Stadial-Bølling interstadial transition[J]. Earth and Planetary Science Letters, 2016, 453: 243-251.
[56] Griffiths M L, Drysdale R N, Gagan M K, et al. Increasing Australian-Indonesian monsoon rainfall linked to Early Holocene sea-level rise[J]. Nature Geoscience, 2009, 2(9): 636-639.
[57] An Z S. The history and variability of the East Asian paleomonsoon climate[J]. Quaternary Science Reviews, 2000, 19(1/2/3/4/5): 171-187.
[58] Yan M, Liu J. Physical processes of cooling and mega-drought during the 4.2 ka BP event: Results from TraCE-21ka simulations[J]. Climate of the Past, 2019, 15(1): 265-277.
[59] WAIS Divide Project Members. Precise interpolar phasing of abrupt climate change during the last ice age[J]. Nature, 2015, 520(7549): 661-665.
[60] Denton G H, Anderson R F, Toggweiler J R, et al. The last glacial termination[J]. Science, 2010, 328(5986): 1652-1656.
[61] Wang X F, Auler A S, Edwards R L, et al. Millennial-scale precipitation changes in southern Brazil over the past 90,000 years[J]. Geophysical Research Letters, 2007, 34(23): L23701.
[62] Wang X F, Edwards R L, Auler A S, et al. Hydroclimate changes across the Amazon lowlands over the past 45,000 years[J]. Nature, 2017, 541(7636): 204-207.
[63] Schneider T, Bischoff T, Haug G H. Migrations and dynamics of the intertropical convergence zone[J]. Nature, 2014, 513(7516): 45-53.
[64] Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Niño/southern Oscillation activity at millennial timescales during the Holocene Epoch[J]. Nature, 2002, 420(6912): 162-165.
[65] Tan M. Circulation background of climate patterns in the past millennium: Uncertainty analysis and re-reconstruction of ENSO-like state[J]. Science China (Seri. D): Earth Sciences, 2016, 59(6): 1225-1241.