[1] 师展,赵靖舟,孙雄伟,等. 鄂尔多斯盆地东南部上古生界煤系烃源岩特征及生烃潜力评价[J]. 天然气地球科学,2023,34(9):1612-1626.

Shi Zhan, Zhao Jingzhou, Sun Xiongwei, et al. Characteristics and hydrocarbon generation potential of Upper Paleozoic coal measure source rocks in the southeastern Ordos Basin[J]. Natural Gas Geoscience, 2023, 34(9): 1612-1626.
[2] 郭艳琴,李文厚,郭彬程,等. 鄂尔多斯盆地沉积体系与古地理演化[J]. 古地理学报,2019,21(2):293-320.

Guo Yanqin, Li Wenhou, Guo Bincheng, et al. Sedimentary systems and palaeogeography evolution of Ordos Basin[J]. Journal of Palaeogeography, 2019, 21(2): 293-320.
[3] 陈世悦,刘焕杰. 含煤建造露头层序地层分析:以太原西山石炭二叠系剖面为例[J]. 煤田地质与勘探,1995,23(2):13-18.

Chen Shiyue, Liu Huanjie. Sequence stratigraphic analysis of coal-bearing formation outcrop: Based on Carboniferous-Permian profile, Xishan, Taiyuan[J]. Coal Geology & Exploration, 1995, 23(2): 13-18.
[4] 田雯. 鄂尔多斯盆地东南部二叠系山西组沉积体系研究[D]. 西安:西北大学,2016.

Tian Wen. Sedimentary System study of Permian Shaanxi Formation in south-eastern Ordos Basin[D]. Xi’an: Northwest University, 2016.
[5] 王岚. 鄂尔多斯西缘地区二叠系太原组、山西组沉积体系研究[D]. 西安:西北大学,2006.

Wang Lan. Research on sedimentary system of Permian Taiyuan and Shanxi Formation in western area of Ordos Basin[D]. Xi’an: Northwest University, 2006.
[6] 王若谷,周进松,杜永慧,等. 鄂尔多斯盆地东南部延安气田石炭系—二叠系沉积演化模式[J]. 地质科学,2021,56(4):1088-1105.

Wang Ruogu, Zhou Jinsong, Du Yonghui, et al. Deposition evolution model of the Carboniferous-Permian in Yan'an gas field, the southeastern Ordos Basin[J]. Chinese Journal of Geology, 2021, 56(4): 1088-1105.
[7] 于波. 鄂尔多斯东南部上古生界层序地层特征[J]. 西北地质,2016,49(1):92-100.

Yu Bo. Characteristic of Upper Paleozoic sequence stratigraphy in east-southern Ordos Basin[J]. Northwestern Geology, 2016, 49(1): 92-100.
[8] 付锁堂. 鄂尔多斯盆地北部上古生界沉积体系及砂体展布规律研究[D]. 成都:成都理工大学,2005.

Fu Suotang. The study on the depositional system and sand body spreading regularity of Upper Paleozoic in north Ordos Basin[D]. Chengdu: Chengdu University of Technology, 2005.
[9] 付超,于兴河,李顺利,等. 鄂尔多斯盆地东南部晚古生代陆表海层序演化过程与其控制下的聚煤模式[J]. 沉积学报,2023,41(5):1598-1608.

Fu Chao, Yu Xinghe, Li Shunli, et al. Stratigraphic sequence evolution in southeastern Ordos Basin and coal accumulation pattern in an epicontinental sea basin[J]. Acta Sedimentologica Sinica, 2023, 41(5): 1598-1608.
[10] 高莲凤,丁惠,万晓樵. 豫淮盆地太原组顶部斯威特刺(Sweetognathus)种的分类修正及其地层意义[J]. 微体古生物学报,2005,22(4):370-382.

Gao Lianfeng, Ding Hui, Wan Xiao-qiao. Taxonomic revision of conodont Sweetognathus species in the uppermost Taiyuan Formation, Yuhuai Basin and its significance[J]. Acta Micropalaeontologica Sinica, 2005, 22(4): 370-382.
[11] 沈树忠,张华,张以春,等. 中国二叠纪综合地层和时间框架[J]. 中国科学:地球科学,2019,49(1):160-193.

Shen Shuzhong, Zhang Hua, Zhang Yichun, et al. Permian integrative stratigraphy and timescale of China[J]. Science China Earth Science, 2019, 49(1): 160-193.
[12] 沈树忠,徐海鹏,袁东勋,等. 中国二叠纪地层及标志化石图集[M]. 杭州:浙江大学出版社,2020.

Shen Shuzhong, Xu Haipeng, Yuan Dongxun, et al. Permian stratigraphy and index fossils of China[M]. Hangzhou: Zhejiang University Press, 2020.
[13] 申博恒,沈树忠,吴琼,等. 华北板块石炭纪—二叠纪地层时间框架[J]. 中国科学:地球科学,2022,52(7):1181-1212.

Shen Boheng, Shen Shuzhong, Wu Qiong, et al. Carboniferous and Permian integrative stratigraphy and timescale of North China Block[J]. Science China Earth Science, 2022, 52(7): 1181-1212.
[14] 董国栋,刘新社,裴文超,等. 鄂尔多斯盆地二叠系太原组致密灰岩储层特征及主控因素[J]. 天然气地球科学,2023,34(6):1018-1027.

Dong Guodong, Liu Xinshe, Pei Wenchao, et al. Characteristics and main controlling factors of tight limestone reservoir in Taiyuan Formation of Ordos Basin[J]. Natural Gas Geoscience, 2023, 34(6): 1018-1027.
[15] 郭旭升,周德华,赵培荣,等. 鄂尔多斯盆地石炭系—二叠系煤系非常规天然气勘探开发进展与攻关方向[J]. 石油与天然气地质,2022,43(5):1013-1023.

Guo Xusheng, Zhou Dehua, Zhao Peirong, et al. Progresses and directions of unconventional natural gas exploration and development in the Carboniferous-Permian coal measure strata, Ordos Basin[J]. Petroleum and Gas Geology, 2022, 43(5): 1013-1023.
[16] 王小洪,刘大锰,姚艳斌,等. 鄂尔多斯韩城地区石炭—二叠系含煤沉积体系及其控气作用[J]. 石油实验地质,2013,35(6):646-650.

Wang Xiaohong, Liu Dameng, Yao Yanbin, et al. Carboniferous-Permian coal-bearing depositional system and its controlling role of coalbed methane in Hancheng area in Ordos Basin[J]. Petroleum Geology & Experiment, 2013, 35(6): 646-650.
[17] 孙振飞. 鄂尔多斯盆地东缘石炭—二叠纪煤系黑色页岩沉积及地化特征[D]. 北京:中国地质大学(北京),2016.

Sun Zhenfei. Sedimentary and geochemistry characteristics of coal-bearing black shales of Permo-Carboniferous in the eastern Ordos Basin[D]. Beijing: China University of Geosciences (Beijing), 2016.
[18] 蒋裕强,温声明,蔡光银,等. 鄂尔多斯盆地海陆过渡相页岩岩性组合特征及页岩气勘探潜力[J]. 天然气工业,2023,43(4):62-75.

Jiang Yuqiang, Wen Shengming, Cai Guangyin, et al. Lithologic assemblage characteristics and shale gas exploration potential of transitional shale in the Ordos Basin[J]. Natural Gas Industry, 2023, 43(4): 62-75.
[19] 焦方正,温声明,刘向君,等. 鄂尔多斯盆地海陆过渡相页岩气勘探理论与技术研究新进展[J]. 天然气工业,2023,43(4):11-23.

Jiao Fangzheng, Wen Shengming, Liu Xiangjun, et al. Research progress in exploration theory and technology of transitional shale gas in the Ordos Basin[J]. Natural Gas Industry, 2023, 43(4): 11-23.
[20] Dickinson W R, Gehrels G E. U-Pb ages of detrital zircons in Jurassic eolian and associated sandstones of the Colorado Plateau: Evidence for transcontinental dispersal and intraregional recycling of sediment[J]. Geological Society of America Bulletin, 2009, 121(3/4): 408-433.
[21] Nelson D R. An assessment of the determination of depositional ages for Precambrian clastic sedimentary rocks by U-Pb dating of detrital zircons[J]. Sedimentary Geology, 2001, 141-142: 37-60.
[22] Johnston S, Gehrels G, Valencia V, et al. Small-volume U-Pb zircon geochronology by laser ablation-multicollector-ICP-MS[J]. Chemical Geology, 2009, 259(3/4): 218-229.
[23] 李洪颜,徐义刚,黄小龙,等. 华北克拉通北缘晚古生代活化:山西宁武—静乐盆地上石炭统太原组碎屑锆石U-Pb测年及Hf同位素证据[J]. 科学通报,2009,54(5):632-640.

Li Hongyan, Xu Yigang, Huang Xiaolong, et al. Activation of northern margin of the North China Craton in Late Paleozoic: Evidence from U-Pb dating and Hf isotopes of detrital zircons from the Upper Carboniferous Taiyuan Formation in the Ningwu-Jingle Basin[J]. Chinese Science Bulletin, 2009, 54(5): 632-640.
[24] Xie H Q, Liu D Y, Yin X Y, et al. Formation age and tectonic environment of the Gantaohe Group, North China Craton: Geology, geochemistry, SHRIMP zircon geochronology and Hf-Nd isotopic systematics[J]. Chinese Science Bulletin, 2012, 57(36): 4735-4745.
[25] Tucker R T, Roberts E M, Hu Y, et al. Detrital zircon age constraints for the Winton Formation, Queensland: Contextualizing Australia's Late Cretaceous dinosaur faunas[J]. Gondwana Research, 2013, 24(2): 767-779.
[26] Lawton T F, Bradford B A. Correlation and provenance of Upper Cretaceous (Campanian) fluvial strata, Utah, U.S.A., from zircon U-Pb geochronology and petrography[J]. Journal of Sedimentary Research, 2011, 81(7): 495-512.
[27] Robinson A C, Ducea M, Lapen T J. Detrital zircon and isotopic constraints on the crustal architecture and tectonic evolution of the northeastern Pamir[J]. Tectonics, 2012, 31(2): TC2016.
[28] 陈洪德,侯中健,田景春,等. 鄂尔多斯地区晚古生代沉积层序地层学与盆地构造演化研究[J]. 矿物岩石,2001,21(3):16-22.

Chen Hongde, Hou Zhongjian, Tian Jingchun, et al. Study on sequence stratigraphy of deposits and tectono-sedimentary evolution in Ordos Basin during Late Palaeozoic[J]. Journal of Mineralogy and Petrology, 2001, 21(3): 16-22.
[29] 何自新,付金华,孙六一. 鄂尔多斯盆地西北部地区天然气成藏地质特征与勘探潜力[J]. 中国石油勘探,2002,7(1):56-66.

He Zixin, Fu Jinhua, Sun Liuyi. Geological characteristics and exploration potential of natural gas reservoir in northwest region of Ordos Basin[J]. China Petroleum Exploration, 2002, 7(1): 56-66.
[30] 何自新. 鄂尔多斯盆地演化与油气[M]. 北京:石油工业出版社,2003:95-105.

He Zixin. Evolvement and oil & gas of Ordos Basin[M]. Beijing: Petroleum Industry Press, 2003:95-105.
[31] 李文厚,张倩,李克永,等. 鄂尔多斯盆地及周缘地区晚古生代沉积演化[J]. 古地理学报,2021,23(1):39-52.

Li Wenhou, Zhang Qian, Li Keyong, et al. Sedimentary evolution of the Late Paleozoic in Ordos Basin and its adjacent areas[J]. Journal of Palaeogeography, 2021, 23(1): 39-52.
[32] Vermeesch P. How many grains are needed for a provenance study?[J]. Earth and Planetary Science Letters, 2004, 224(3/4): 441-451.
[33] 柳小明,高山,第五春容,等. 单颗粒锆石的20μm小斑束原位微区LA-ICP-MSU-Pb年龄和微量元素的同时测定[J]. 科学通报,2007,52(2):228-235.

Liu Xiaoming, Gao Shan, Chunrong Diwu, et al. Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20 μm spot size[J]. Chinese Science Bulletin, 2007, 52(2): 228-235.
[34] Yuan H L, Gao S, Liu X M, et al. Accurate U‐Pb age and trace element determinations of zircon by laser ablation‐inductively coupled plasma‐mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370.
[35] Vermeesch P. On the visualisation of detrital age distributions[J]. Chemical Geology, 2012, 312-313: 190-194.
[36] 张凌,王平,陈玺赟,等. 碎屑锆石U-Pb年代学数据获取、分析与比较[J]. 地球科学进展,2020,35(4):414-430.

Zhang Ling, Wang Ping, Chen Xiyun, et al. Review in detrital zircon U-Pb geochronology: Data acquisition, analysis and comparison[J]. Advances in Earth science, 2020, 35(4): 414-430.
[37] 李长民. 锆石成因矿物学与锆石微区定年综述[J]. 地质调查与研究,2009,32(3):161-174.

Li Changmin. A review on the minerageny and situ microanalytical dating techniques of zircons[J]. Geological Survey and Research, 2009, 32(3): 161-174.
[38] 吴元保,郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报,2004,49(16):1589-1604.

Wu Yuanbao, Zheng Yongfei. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(16): 1589-1604.
[39] Gehrels G E, Valencia V A, Ruiz J. Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(3): Q03017.
[40] Fildani A, Cope T D, Graham S A, et al. Initiation of the Magallanes foreland basin: Timing of the southernmost Patagonian Andes orogeny revised by detrital zircon provenance analysis[J]. Geology, 2003, 31(12): 1081-1084.
[41] Barbeau Jr D L, Olivero E B, Swanson-Hysell N L, et al. Detrital-zircon geochronology of the eastern Magallanes foreland basin: Implications for Eocene kinematics of the northern Scotia Arc and Drake Passage[J]. Earth and Planetary Science Letters, 2009, 284(3/4): 489-503.
[42] Schwartz T M, Fosdick J C, Graham S A. Using detrital zircon U‐Pb ages to calculate Late Cretaceous sedimentation rates in the Magallanes‐Austral Basin, Patagonia[J]. Basin Research, 2017, 29(6): 725-746.
[43] Rainbird R H, Hamilton M A, Young G M. Detrital zircon geochronology and provenance of the Torridonian, NW Scotland[J]. Journal of the Geological Society, 2001, 158(1): 15-27.
[44] Wang C L, Zhang L C, Dai Y P, et al. Geochronological and geochemical constraints on the origin of clastic meta-sedimentary rocks associated with the Yuanjiacun BIF from the Lüliang Complex, North China[J]. Lithos, 2015, 212-215: 231-246.
[45] Percival J A, Davis W J, Hamilton M A. U–Pb zircon geochronology and depositional history of the Montresor Group, Rae province, Nunavut, Canada[J]. Canadian Journal of Earth Sciences, 2017, 54(5): 512-528.
[46] Senger M H, Davies J H F L, Ovtcharova M, et al. Improving the chronostratigraphic framework of the Transvaal Supergroup (South Africa) through in-situ and high-precision U-Pb geochronology[J]. Precambrian Research, 2023, 392: 107070.
[47] Coutts D S, Matthews W A, Hubbard S M. Assessment of widely used methods to derive depositional ages from detrital zircon populations[J]. Geoscience Frontiers, 2019, 10(4): 1421-1435.
[48] Sharman G R, Malkowski M A. Needles in a haystack: Detrital zircon U-Pb ages and the maximum depositional age of modern global sediment[J]. Earth-Science Reviews, 2020, 203: 103109.
[49] Peng P, Liu F, Zhai M G, et al. Age of the Miyun dyke swarm: Constraints on the maximum depositional age of the Changcheng System[J]. Chinese Science Bulletin, 2011, 57(1): 105-110.
[50] Vermeesch P. Maximum depositional age estimation revisited[J]. Geoscience Frontiers, 2021, 12(2): 843-850.
[51] Galbraith R F, Laslett G M. Statistical models for mixed fission track ages[J]. Nuclear Tracks and Radiation Measurements, 1993, 21(4): 459-470.
[52] Yang J H, Cawood P A, Montañez I P, et al. Enhanced continental weathering and large igneous province induced climate warming at the Permo-Carboniferous transition[J]. Earth and Planetary Science Letters, 2020, 534: 116074.
[53] Wu Y Y, Tong J N, Algeo T J, et al. Organic carbon isotopes in terrestrial Permian-Triassic boundary sections of North China: Implications for global carbon cycle perturbations[J]. GSA Bulletin, 2020, 132(5/6): 1106-1118.
[54] Wang M, Zhong Y T, He B, et al. Geochronology and geochemistry of the fossil-flora-bearing Wuda Tuff in North China Craton and its tectonic implications[J]. Lithos, 2020, 364-365: 105485.
[55] Schmitz D M, Pfefferkorn W H, Shen S Z, et al. A volcanic tuff near the Carboniferous–Permian boundary, Taiyuan Formation, North China: Radioisotopic dating and global correlation[J]. Review of Palaeobotany and Palynology, 2021, 294: 104244.
[56] Yang J H, Wu F Y, Shao J A, et al. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China[J]. Earth and Planetary Science Letters, 2006, 246(3/4): 336-352.
[57] Zhao G C. Palaeoproterozoic assembly of the North China Craton[J]. Geological Magazine, 2001, 138(1): 87-91.
[58] Davydov V I, Glenister B F, Spinosa C, et al. Proposal of Aidaralash as global stratotype section and point (GSSP) for base of the Permian System[J]. Episodes, 1998, 21(1): 11-18.
[59] Montañez I P, Poulsen C J. The Late Paleozoic ice age: An evolving paradigm[J]. Annual Review of Earth and Planetary Sciences, 2013, 41: 629-656.
[60] Zhang H, Shen G L, He Z L. A carbon isotopic stratigraphic pattern of the Late Palaeozoic coals in the North China Platform and its palaeoclimatic implications[J]. Acta Geologica Sinica- English Edition, 1999, 73(1): 111-119.
[61] Liu G H. Permo-Carboniferous paleogeography and coal accumulation and their tectonic control in the North and South China continental plates[J]. International Journal of Coal Geology, 1990, 16(1/2/3): 73-117.
[62] 王自强,王立新. 华北石千峰群下部晚二叠世植物化石[C]//中国地质科学院天津地质矿产研究所文集(15). 北京: 地质出版社,1987.

Wang Ziqiang, Wang Lixin. Late Permian fossil plants from the lower part of the Shiqianfeng (Shihchienfeng) Group in North China[C]//Collected Works of Tianjin Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences ( 15). Beijing: Geological Publishing House, 1987.
[63] Wang J. Late Paleozoic macrofloral assemblages from Weibei coalfield, with reference to vegetational change through the Late Paleozoic ice-age in the North China Block[J]. International Journal of Coal Geological Publishing House, 2010, 83(2/3): 292-317.
[64] 罗顺社,潘志远,吕奇奇,等. 鄂尔多斯盆地西南部上古生界碎屑锆石U-Pb年龄及其构造意义[J]. 中国地质,2017,44(3):556-574.

Luo Shunshe, Pan Zhiyuan, Qiqi Lü, et al. The Upper Paleozoic detrital zircon U-Pb geochronology and its tectonic significance in southwestern Ordos Basin[J]. Geology in China, 2017, 44(3): 556-574.
[65] Sun J P, Yang L, Dong Y P, et al. Permian tectonic evolution of the southwestern Ordos Basin, North China: Integrating constraints from sandstone petrology and detrital zircon geochronology[J]. Geological Journal, 2020, 55(12): 8068-8091.
[66] Zhu X Q, Zhu W B, Ge R F, et al. Late Paleozoic provenance shift in the south-central North China Craton: Implications for tectonic evolution and crustal growth[J]. Gondwana Research, 2014, 25(1): 383-400.
[67] Yang J H, Cawood P A, Du Y S, et al. Global continental weathering trends across the Early Permian glacial to postglacial transition: Correlating high-and low-paleolatitude sedimentary records[J]. Geology, 2014, 42(10): 835-838.
[68] Wu Q, Ramezani J, Zhang H, et al. High-precision U-Pb age constraints on the Permian floral turnovers, paleoclimate change, and tectonics of the North China Block[J]. Geology, 2021, 49(6): 677-681.
[69] Cleal C J, Thomas B A. Palaeozoic tropical rainforests and their effect on global climates: Is the past the key to the present?[J]. Geobiology, 2005, 3(1): 13-31.
[70] Liu F, Zhu H C, Ouyang S. Late Pennsylvanian to Wuchiapingian palynostratigraphy of the Baode section in the Ordos Basin, North China[J]. Journal of Asian Earth Sciences, 2015, 111: 528-552.
[71] Stevens L G, Hilton J, Bond D P G, et al. Radiation and extinction patterns in Permian floras from North China as indicators for environmental and climate change[J]. Journal of the Geological Society, 2011, 168(2): 607-619.