[1] 操应长,梁超,韩豫,等. 基于物质来源及成因的细粒沉积岩分类方案探讨[J]. 古地理学报,2023,25(4):729-741.

Cao Yingchang, Liang Chao, Han Yu, et al. discussions on classification scheme for fine-grained sedimentary rocks based on sediments sources and genesis[J]. Journal of Palaeogeography, 2023, 25(4): 729-741.
[2] 姜在兴,王运增,王力,等. 陆相细粒沉积岩物质来源、搬运—沉积机制及多源油气甜点[J]. 石油与天然气地质,2022,43(5):1039-1048.

Jiang Zaixing, Wang Yunzeng, Wang Li, et al. Review on provenance, transport-sedimentation dynamics and multi-source hydrocarbon sweet spots of continental fine-grained sedimentary rocks[J]. Oil & Gas Geology, 2022, 43(5): 1039-1048.
[3] 朱如凯,李梦莹,杨静儒,等. 细粒沉积学研究进展与发展方向[J]. 石油与天然气地质,2022,43(2):251-264.

Zhu Rukai, Li Mengying, Yang Jingru, et al. Advances and trends of fine-grained sedimentology[J]. Oil & Gas Geology, 2022, 43(2): 251-264.
[4] 姜在兴,孔祥鑫,杨叶芃,等. 陆相碳酸盐质细粒沉积岩及油气甜点多源成因[J]. 石油勘探与开发,2021,48(1):26-37.

Jiang Zaixing, Kong Xiangxin, Yang Yepeng, et al. Multi-source genesis of continental carbonate-rich fine-grained sedimentary rocks and hydrocarbon sweet spots[J]. Petroleum Exploration and Development, 2021, 48(1): 26-37.
[5] 陈晨,姜在兴,孔祥鑫,等. 潜江凹陷潜江组盐间细粒岩沉积特征及其对页岩含油性的控制[J]. 地学前缘,2021,28(5):421-435.

Chen Chen, Jiang Zaixing, Kong Xiangxin, et al. Sedimentary characteristics of intersalt fine-grained sedimentary rocks and their control on oil-bearing ability of shales in the Qianjiang Formation, Qianjiang Sag[J]. Earth Science Frontiers, 2021, 28(5): 421-435.
[6] 王昕尧. 四川下侏罗统陆相细粒岩储层形成机理及质量控制因素[D]. 北京:中国石油大学(北京),2021.

Wang Xinyao. Formation mechanism and controlling factors on quality of the Lower Jurassic nonmarine fine-grained rock reservoirs in Sichuan[D]. Beijing: China University of Petroleum (Beijing), 2021.
[7] 郭英海,赵迪斐,陈世悦. 细粒沉积物及其古地理研究进展与展望[J]. 古地理学报,2021,23(2):263-283.

Guo Yinghai, Zhao Difei, Chen Shiyue. Research progress and prospect of fine-grained sediments and palaeogeography[J]. Journal of Palaeogeography, 2021, 23(2): 263-283.
[8] 邓远,陈世悦,蒲秀刚,等. 渤海湾盆地沧东凹陷孔店组二段细粒沉积岩形成机理与环境演化[J]. 石油与天然气地质,2020,41(4):811-823,890.

Deng Yuan, Chen Shiyue, Pu Xiugang, et al. Formation mechanism and environmental evolution of fine-grained sedimentary rocks from the Second member of Kongdian Formation in the Cangdong Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2020, 41(4): 811-823, 890.
[9] 刘姝君. 东营凹陷古近系细粒沉积岩沉积作用及其驱动因素:以沙四上—沙三下亚段为例[D]. 青岛:中国石油大学(华东),2019.

Liu Shujun. Sedimentation and its motivation of the Paleogene fine-grained sedimentary rocks in Dongying Sag: Taking the Es4s-Es3x as an example[D]. Qingdao: China University of Petroleum (East China), 2019.
[10] 宋立斌,孙凯,姜宏官. 伏龙泉断陷登娄库组地层再认识及对勘探的地质意义[J]. 非常规油气,2023,10(6):8-17.

Song Libin, Sun Kai, Jiang Hongguan. Reevaluation of the Denglouku Formation in Fulongquan fault depression and its geological significance for exploration[J]. Unconventional Oil & Gas, 2023, 10(6): 8-17.
[11] 杨辉,朱代强,刘祥刚,等. 细粒沉积学研究动态及探讨[J]. 非常规油气,2021,8(1):1-7.

Yang Hui, Zhu Daiqiang, Liu Xianggang, et al. The research and discussion of fine-grained sedimentology[J]. Unconventional Oil & Gas, 2021, 8(1): 1-7.
[12] 彭军,杨一茗,刘惠民,等. 陆相湖盆细粒混积岩的沉积特征与成因机理:以东营凹陷南坡陈官庄地区沙河街组四段上亚段为例[J]. 石油学报,2022,43(10):1409-1426.

Peng Jun, Yang Yiming, Liu Huimin, et al. Sedimentary characteristics and genetic mechanism of fine-grained hybrid sedimentary rocks in continental lacustrine basin: A case study of the upper submember of member 4 of Shahejie Formation in Chenguanzhuang area, southern slope of Dongying Sag[J]. Acta Petrolei Sinica, 2022, 43(10): 1409-1426.
[13] 刘惠民,王勇,杨永红,等. 东营凹陷细粒混积岩发育环境及其岩相组合:以沙四上亚段泥页岩细粒沉积为例[J]. 地球科学,2020,45(10):3543-3555.

Liu Huimin, Wang Yong, Yang Yonghong, et al. Sedimentary environment and lithofacies of fine-grained hybrid sedimentary in Dongying Sag: A case of fine-grained sedimentary system of the Es4 [J]. Earth Science, 2020, 45(10): 3543-3555.
[14] 杜学斌,刘晓峰,陆永潮,等. 陆相细粒混合沉积分类、特征及发育模式:以东营凹陷为例[J]. 石油学报,2020,41(11):1324-1333.

Du Xuebin, Liu Xiaofeng, Lu Yongchao, et al. Classification, characteristics and development models of continental fine-grained mixed sedimentation: A case study of Dongying Sag[J]. Acta Petrolei Sinica, 2020, 41(11): 1324-1333.
[15] 李书琴,印森林,高阳,等. 准噶尔盆地吉木萨尔凹陷芦草沟组混合细粒岩沉积微相[J]. 天然气地球科学,2020,31(2):235-249.

Li Shuqin, Yin Senlin, Gao Yang, et al. Study on sedimentary microfacies of mixed fine-grained rocks in Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Natural Gas Geoscience, 2020, 31(2): 235-249.
[16] 韩乔羽. 东营凹陷古近系沙河街组沙四上亚段细粒沉积岩相与成因分析[D]. 青岛:山东科技大学,2019.

Han Qiaoyu. The study on lithofacies and origin analysis of Sha4 upper member of Paleogene Shahejie Formation fine-grained sedimentary rocks in the Dongying Sag[D]. Qingdao: Shandong University of Science and Technology, 2019.
[17] 王春伟,孙志峰,杜焕福. 牛庄洼陷沙三下—沙四上泥页岩特征及沉积环境[J]. 非常规油气,2022,9(2):42-48,84.

Wang Chunwei, Sun Zhifeng, Du Huanfu. Characteristics and sedimentary environment of shale in the lower part of Sha3 and upper part of Sha4 in Niuzhuang subsag[J]. Unconventional Oil & Gas, 2022, 9(2): 42-48, 84.
[18] Neugebauer I, Brauer A, Schwab M J, et al. Lithology of the long sediment record recovered by the ICDP Dead Sea Deep Drilling Project (DSDDP)[J]. Quaternary Science Reviews, 2014, 102: 149-165.
[19] Ojala A E K, Saarinen T, Salonen V P. Preconditions for the formation of annually laminated lake sediments in southern and central Finland[J]. Boreal Environment Research, 2000, 5(3): 243-255.
[20] Anderson R Y, Dean W E. Lacustrine varve formation through time[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1988, 62(1/2/3/4): 215-235.
[21] 宋柏荣,韩洪斗,崔向东,等. 渤海湾盆地辽河坳陷古近系沙河街组四段湖相方沸石白云岩成因分析[J]. 古地理学报,2015,17(1):33-44.

Song Bairong, Han Hongdou, Cui Xiangdong, et al. Petrogenesis analysis of lacustrine analcite dolostone of the member 4 of Paleogene Shahejie Formation in Liaohe Depression, Bohai Bay Basin[J]. Journal of Palaeogeography, 2015, 17(1): 33-44.
[22] 康积伦,王家豪,马强,等. 准噶尔盆地吉木萨尔凹陷芦草沟组细粒湖底扇沉积及其页岩油储层意义[J]. 地质科技通报,2023,42(5):82-93.

Kang Jilun, Wang Jiahao, Ma Qiang, et al. Fine-grained sublacustrine fan deposits and their significance in shale oil reservoirs in the Lucaogou Formation in the Jimsar Sag, Junggar Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 82-93.
[23] 张世铭,张小军,王建功,等. 咸化湖盆混合沉积特征及控制因素分析:以柴达木盆地西部地区古近系下干柴沟组为例[J]. 中国矿业大学学报,2022,51(1):160-173.

Zhang Shiming, Zhang Xiaojun, Wang Jiangong, et al. Characteristics and their controlling factors of mixed sediments in saline lakes: A case study of Lower Ganchaigou Formation in the western Qaidam Basin[J]. Journal of China University of Mining & Technology, 2022, 51(1): 160-173.
[24] 张倚安. 鄂尔多斯盆地三叠系延长组长73亚段细粒沉积特征及成因机制研究[D]. 成都:成都理工大学,2021.

Zhang Yian. The characteristics and genetic mechanisms of fine-grained sediments of Chang73 sub-member of Triassic Yanchang Formation, Ordos Basin[D]. Chengdu: Chengdu University of Technology, 2021.
[25] 林铁锋,白云风,赵莹,等. 松辽盆地古龙凹陷青一段细粒沉积岩旋回地层分析及沉积充填响应特征[J]. 大庆石油地质与开发,2021,40(5):29-39.

Lin Tiefeng, Bai Yunfeng, Zhao Ying, et al. Cyclic stratigraphy of fine-grained sedimentary rocks and sedimentary filling response characteristics of member Qing-1 in Gulong Sag, Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(5): 29-39.
[26] 黄蕾. 湖相碳酸盐岩储层及成因机理研究:以辽河西部凹陷沙四段为例[D]. 成都:西南石油大学,2016.

Huang Lei. Reservoir characteristics and genetic mechanism of lacustrine carbonate: A case study of the Fourth member of Shahejie Formation, Western Sag Liaohe Depression[D]. Chengdu: Southwest Petroleum University, 2016.
[27] 闫伟鹏,杨涛,李欣,等. 中国陆上湖相碳酸盐岩地质特征及勘探潜力[J]. 中国石油勘探,2014,19(4):11-17.

Yan Weipeng, Yang Tao, Li Xin, et al. Geological characteristics and hydrocarbon exploration potential of lacustrine carbonate rock in China[J]. China Petroleum Exploration, 2014, 19(4): 11-17.
[28] 孙钰,钟建华,袁向春,等. 国内湖相碳酸盐岩研究的回顾与展望[J]. 特种油气藏,2008,15(5):1-6.

Sun Yu, Zhong Jianhua, Yuan Xiangchun, et al. Review and prospect of the study on domestic lacustrine carbonate rocks[J]. Special Oil and Gas Reservoirs, 2008, 15(5): 1-6.
[29] 王英华,周书欣,张秀莲. 中国湖相碳酸盐岩[M]. 徐州:中国矿业大学出版社,1993.

Wang Yinghua, Zhou Shuxin, Zhang Xiulian. Lacustrine carbonate rocks in China[M]. Xuzhou: China University of Mining and Technology Press, 1993.
[30] 周书欣. 我国湖相碳酸盐岩研究现状[J]. 石油与天然气地质,1992,13(4):461-462.

Zhou Shuxin. Research status of lacustrine carbonate rocks in China[J]. Oil & Gas Geology, 1992, 13(4): 461-462.
[31] 杜韫华. 中国湖相碳酸盐岩油气储层[J]. 陆相石油地质,1992(2):25-37.

Du Yunhua. Lacustrine carbonate rock reservoirs in China[J]. Terrestrial Petroleum Geology, 1992(2): 25-37.
[32] 周靖皓,鲜本忠,张建国,等. 高频旋回地层约束下的湖相页岩有机质富集规律:以东营凹陷古近系沙三下亚段为例[J]. 古地理学报,2022,24(4):759-770.

Zhou Jinghao, Xian Benzhong, Zhang Jianguo, et al. Organic matter enrichment law of lacustrine shale constrained by high resolution cyclostratigraphy: A case study from the lower sub-member of member 3 of Paleogene Shahejie Formation, Dongying Sag[J]. Journal of Palaeogeography, 2022, 24(4): 759-770.
[33] 栾旭伟,孔祥鑫,张金亮,等. 天文旋回约束下东营凹陷中始新统含碳酸盐细粒沉积岩成因分析[J]. 沉积学报,2024,42(2):688-700.

Luan Xuwei, Kong Xiangxin, Zhang Jinliang, et al. Astronomical forcing of origins of Eocene carbonate-bearing fine-grained sedimentary rock in Dongying Sag[J]. Acta Sedimentologica Sinica, 2024, 42(2): 688-700.
[34] 许可. 南襄盆地古近系湖盆旋回地层学研究及其在油气地质上的意义:以泌阳凹陷为例[D]. 武汉:中国地质大学,2021.

Xu Ke. Cyclostratigraphy and its implications for petroleum geology in the Paleogene lacustrine strata from the Nanxiang Basin: The case study of Biyang Sag[D]. Wuhan: China University of Geosciences, 2021.
[35] Li M S, Hinnov L, Kump L. Acycle: Time-series analysis software for paleoclimate research and education[J]. Computers & Geosciences, 2019, 127: 12-22.
[36] Li M S, Kump L R, Hinnov L A, et al. Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing[J]. Earth and Planetary Science Letters, 2018, 501: 165-179.
[37] 孙善勇,刘惠民,操应长,等. 湖相深水细粒沉积岩米兰科维奇旋回及其页岩油勘探意义:以东营凹陷牛页1井沙四上亚段为例[J]. 中国矿业大学学报,2017,46(4):846-858.

Sun Shanyong, Liu Huimin, Cao Yingchang, et al. Milankovitch cycle of lacustrine deepwater fine-grained sedimentary rocks and its significance to shale oil: A case study of the upper Es4 member of well NY1 in Dongying Sag[J]. Journal of China University of Mining & Technology, 2017, 46(4): 846-858.
[38] 伊海生. 地层记录中旋回层序界面的识别方法及原理[J]. 沉积学报,2012,30(6):991-998.

Yi Haisheng. Detection of cyclostratigraphic sequence surfaces in stratigraphic record: Its principle and approach[J]. Acta Sedimentologica Sinica, 2012, 30(6): 991-998.
[39] Fischer A G, D'Argenio B, Silva I P, et al. Cyclostratigraphic approach to Earth’s history: An introduction[M]//D’Argenio B, Fischer A G, Silva I P, et al. Cyclostratigraphy: Approaches and case histories. Tulsa: Society for Sedimentary Geology, 2004.
[40] Weedon G P. Time-series analysis and cyclostratigraphy: Examining stratigraphic records of environmental cycles[M]. New York: Cambridge University Press, 2003.
[41] Schwarzacher W. Cyclostratigraphy and the Milankovitch theory[M]. Amsterdam: Elsevier, 1993.
[42] Fischer A G, de Boer P L, Premoli Silva I. Cyclostratigraphy[M]//Beaudoin B, Ginsburg R N. Global sedimentary geology program: Cretaceous resources, events, and rhythms. Kluwer: NATO, 1988.
[43] Hays J D, Imbrie J, Shackleton N J. Variations in the Earth's orbit: Pacemaker of the ice ages: For 500,000 years, major climatic changes have followed variations in obliquity and precession[J]. Science, 1976, 194(4270): 1121-1132.
[44] Berger A. Milankovitch, the father of paleoclimate modeling[J]. Climate of the Past, 2021, 17(4): 1727-1733.
[45] Berger A L, Imbrie J, Hays J, et al. Milankovitch and climate: Understanding the response to astronomical forcing[M]. Dordrecht: Springer, 1984.
[46] Berger A. Milankovitch theory and climate[J]. Reviews of geophysics, 1988, 26(4): 624-657.
[47] Laskar J, Fienga A, Gastineau M, et al. La2010: A new orbital solution for the long-term motion of the Earth[J]. Astronomy & Astrophysics, 2011, 532: A89.
[48] Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285.
[49] Waltham D. Milankovitch Period uncertainties and their impact on cyclostratigraphy[J]. Journal of Sedimentary Research, 2015, 85(8): 990-998.
[50] 吴怀春,钟阳阳,房强,等. 古生代旋回地层学与天文地质年代表[J]. 矿物岩石地球化学通报,2017,36(5):750-770.

Wu Huaichun, Zhong Yangyang, Fang Qiang, et al. Paleozoic cyclostratigraphy and astronomical time scale[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(5): 750-770.
[51] 闫建平,言语,彭军,等. 天文地层学与旋回地层学的关系、研究进展及其意义[J]. 岩性油气藏,2017,29(1):147-156.

Yan Jianping, Yan Yu, Peng Jun, et al. The research progress, significance and relationship of astrostratigraphy with cyclostratigraphy[J]. Lithologic Reservoirs, 2017, 29(1): 147-156.
[52] 吴怀春,张世红,冯庆来,等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学:中国地质大学学报,2011,36(3):409-428.

Wu Huaichun, Zhang Shihong, Feng Qinglai, et al. Theoretical basis research advancement and prospects of cyclostratigraphy[J]. Earth Science: Journal of China University of Geosciences, 2011, 36(3): 409-428.
[53] 陈留勤. 从准层序到米级旋回:层序地层学与旋回地层学相互交融的纽带[J]. 地层学杂志,2008,32(4):447-454.

Chen Liuqin. From parasequences to meter-scale cycle: The connection between sequence stratigraphy and cyclostratigraphy[J]. Journal of Stratigraphy, 2008, 32(4): 447-454.
[54] 张家明,刘东悦,张妍煜,等. 深层页岩高分辨率层序地层控制的非均质性特征及其与含气性的关系:以渝西地区Z203井为例[J]. 非常规油气,2023,10(1):52-60.

Zhang Jiaming, Liu Dongyue, Zhang Yanyu, et al. Heterogeneity characteristics of high-resolution sequence stratigraphic control in deep shale and its relationship with gas-bearing: A case study of the well Z203 in western Chongqing area[J]. Unconventional Oil & Gas, 2023, 10(1): 52-60.
[55] 刘天娇,张妍煜,赵迪斐. 四川盆地焦石坝地区五峰组—龙马溪组页岩层序地层划分及含气性预测:以JY-2井为例[J]. 非常规油气,2022,9(2):34-41.

Liu Tianjiao, Zhang Yanyu, Zhao Difei. Sequence stratigraphic division and gas bearing prediction of the Wufeng-Longmaxi Formation shale strata in the Jiaoshiba area, Sichuan Basin: Taking well JY-2 as an example[J]. Unconventional Oil & Gas, 2022, 9(2): 34-41.
[56] 石巨业,金之钧,刘全有,等. 天文旋回在页岩油勘探及富有机质页岩地层等时对比中的应用[J]. 地学前缘,2023,30(4):142-151.

Shi Juye, Jin Zhijun, Liu Quanyou, et al. Application of astronomical cycles in shale oil exploration and in high-precision stratigraphic isochronous comparison of organic-rich fine-grain sedimentary rocks[J]. Earth Science Frontiers, 2023, 30(4): 142-151.
[57] Boulila S, Laskar J, Haq B U, et al. Long-term cyclicities in Phanerozoic sea-level sedimentary record and their potential drivers[J]. Global and Planetary Change, 2018, 165: 128-136.
[58] Boulila S, Galbrun B, Huret E, et al. Astronomical calibration of the Toarcian Stage: Implications for sequence stratigraphy and duration of the early Toarcian OAE[J]. Earth and Planetary Science Letters, 2014, 386: 98-111.
[59] 王夏斌,姜在兴,胡光义,等. 辽河盆地西部凹陷古近系沙四上亚段沉积相及演化[J]. 吉林大学学报(地球科学版),2019,49(5):1222-1234.

Wang Xiabin, Jiang Zaixing, Hu Guangyi, et al. Sedimentary facies and evolution of upper Fourth member of Paleogene Shahejie Formation in Western Sag of Liaohe Basin[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(5): 1222-1234.
[60] 单俊峰,黄双泉,李理. 辽河坳陷西部凹陷雷家湖相碳酸盐岩沉积环境[J]. 特种油气藏,2014,21(5):7-11.

Shan Junfeng, Huang Shuangquan, Li Li. Sedimentary environment of lacustrine carbonate rocks in Leijia area in West Sag of Liaohe Depression[J]. Special Oil and Gas Reservoirs, 2014, 21(5): 7-11.
[61] 赵会民. 辽河西部凹陷雷家地区古近系沙四段混合沉积特征研究[J]. 沉积学报,2012,30(2):283-290.

Zhao Huimin. Characteristics of mixed sedimentation in the meber 4 of Shahejie Formation of Paleogene at Leijia area of Western Sag of Liaohe oilfield[J]. Acta Sedimentologica Sinica, 2012, 30(2): 283-290.
[62] 惠沙沙,庞雄奇,柳广弟,等. 辽河西部凹陷沙河街组烃源岩特征及油源精细对比[J]. 地球科学,2023,48(8):3081-3098.

Hui Shasha, Pang Xiongqi, Liu Guangdi, et al. Characteristics of Paleogene source rocks and fine oil-source correlation in Liaohe Western Depression[J]. Earth Science, 2023, 48(8): 3081-3098.
[63] 汪少勇,李建忠,王社教,等. 辽河西部凹陷雷家地区沙四段油气资源结构特征[J]. 天然气地球科学,2016,27(9):1728-1741.

Wang Shaoyong, Li Jianzhong, Wang Shejiao, et al. Resource framework of the 4th member of Shaheiie Formation, Leijia district, Liaohe Western Depression[J]. Natural Gas Geoscience, 2016, 27(9): 1728-1741.
[64] 李铁军. 致密复杂储层岩性预测方法探讨:以辽河西部凹陷雷家地区沙四段白云岩为例[J]. 石油地质与工程,2016,30(4):71-74.

Li Tiejun. Discussion on the lithology prediction method of tight and complex reservoirs:Taking the dolomite of the Fourth member of Shahejie Formation in the Leijia area of the western Liaohe Depression as an example [J]. Petroleum Geology and Engineering, 2016, 30(4): 71-74.
[65] 李甜,代宗仰,李阳,等. 辽河西部凹陷雷家地区古近系沙四段湖相白云岩成因[J]. 岩性油气藏,2022,34(2):75-85.

Li Tian, Dai Zongyang, Li Yang, et al. Genesis of lacustrine dolomites of the Fourth member of Paleogene Shahejie Formation in Leijia area, western Liao Depression[J]. Lithologic Reservoirs, 2022, 34(2): 75-85.
[66] 方锐,代宗仰,谌治君,等. 不同赋存状态方沸石的特征与成因:以辽河西部凹陷雷家地区古近系沙四段为例[J]. 矿物学报,2020,40(6):734-746.

Fang Rui, Dai Zongyang, Chen Zhijun, et al. Characteristics and genesis of analcites in different occurrence states: A case study of the Fourth member of Shahejie Formation in the Leijia area of the western Liaohe Depression[J]. Acta Mineralogica Sinica, 2020, 40(6): 734-746.
[67] 谌治君. 辽河西部凹陷沙四段含方沸石岩类特征及其成因分析[D]. 成都:西南石油大学,2018.

Chen Zhijun. Characteristics and origin analysis of analcite-bearing rocks in the Fourth member of Shahejie Formation in the western Liaohe Depression [D]. Chengdu: Southwest Petroleum University, 2018.
[68] 刘晓丽. 辽河西部凹陷雷家地区湖相碳酸盐岩流体充注期次[J]. 断块油气田,2020,27(4):432-437.

Liu Xiaoli. Fluid charging periods of lacustrine carbonate rock for the Leijia area in Liaohe Western Depression[J]. Fault-Block Oil & Gas Field, 2020, 27(4): 432-437.
[69] 毛俊莉. 辽河西部凹陷页岩油气成藏机理与富集模式[D]. 北京:中国地质大学(北京),2020.

Mao Junli. Reservoir formation mechanism and enrichment modes of shale oil and gas in the western Liaohe Depression[D]. Beijing: China University of Geosciences (Beijing), 2020.
[70] 单衍胜,张金川,李晓光,等. 渤海湾盆地辽河西部凹陷陆相页岩油气富集条件与分布模式[J]. 石油实验地质,2016,38(4):496-501.

Shan Yansheng, Zhang Jinchuan, Li Xiaoguang, et al. Hydrocarbon enrichment conditions and distribution in continental shale, west Liaohe Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2016, 38(4): 496-501.
[71] 吴怀春,房强. 旋回地层学和天文时间带[J]. 地层学杂志,2020,44(3):227-238.

Wu Huaichun, Fang Qiang. Cyclostratigraphy and astrochronozones[J]. Journal of Stratigraphy, 2020, 44(3): 227-238.
[72] 辽河油气区编纂委员会. 中国石油地质志(卷四):辽河油气区[M]. 2版. 北京:石油工业出版社,2022.

The Liaohe Oil and Gas Province Compilation Committee. Petroleum geology of China vol. 4[M]. 2nd ed. Beijing: Petroleum Industry Press, 2022.
[73] 姚益民,梁鸿德,蔡治国,等. 中国油气区第三系(Ⅳ)渤海湾盆地油气区分册[M]. 北京:石油工业出版社,1994.

Yao Yimin, Liang Hongde, Cai Zhiguo, et al. The Bohai Bay Basin, Vol. 4, Tertiary in petroliferous regions of China[M]. Beijing: Petroleum Industry Press, 1994.
[74] 梁鸿德,申绍文,刘香婷,等. 辽河断陷火山岩地质年龄及地层时代[J]. 石油学报,1992,13(2):35-41.

Liang Hongde, Shen Shaowen, Liu Xiangting, et al. The age of the vocanic rocks and their geological time in Liaohe Depression[J]. Acta Petrolei Sinica, 1992, 13(2): 35-41.
[75] Mann M E, Lees J M. Robust estimation of background noise and signal detection in climatic time series[J]. Climatic Change, 1996, 33(3): 409-445.
[76] Kodama K P, Hinnov L A. Rock magnetic cyclostratigraphy[M]. Chichester: John Wiley & Sons, 2014.
[77] 王浩. 小波变换在测井曲线地层划分对比中的应用[D]. 北京:中国石油大学(北京),2020.

Wang Hao. Application of wavelet transform in the stratigraphic division and comparison of well logs[D]. Beijing: China University of Petroleum (Beijing), 2020.
[78] 王凡. 元素测录井在碳酸盐岩沉积相与层序地层研究中的应用[D]. 北京:中国石油大学(北京),2019.

Wang Fan. Application of element logging in the study of sedimentary facies and sequence stratigraphy of carbonate rocks[D]. Beijing: China University of Petroleum (Beijing), 2019.
[79] 吴淑玉,刘俊. 基于时频分析的高分辨率层序地层[J]. 海洋地质与第四纪地质,2015,35(4):197-207.

Wu Shuyu, Liu Jun. High resolution sequence stratigraphic study basic on time-frequency analysis[J]. Marine Geology & Quaternary Geology, 2015, 35(4): 197-207.
[80] Torrence C, Compo G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1): 61-78.
[81] Meyers S R, Sageman B B. Quantification of deep-time orbital forcing by average spectral misfit[J]. American Journal of Science, 2007, 307(5): 773-792.
[82] Meyers S R. The evaluation of eccentricity‐related amplitude modulation and bundling in paleoclimate data: An inverse approach for astrochronologic testing and time scale optimization[J]. Paleoceanography, 2015, 30(12): 1625-1640.
[83] 王浡,石巨业,朱如凯,等. 天文周期驱动下湖相细粒沉积岩有机质富集模式:以东营凹陷LY1井沙三下—沙四上亚段为例[J]. 沉积学报,2025,43(2):750-768.

Wang Bo, Shi Juye, Zhu Rukai, et al. Organic matter enrichment model of lacustrine fine-grained sedimentary rocks driven by astronomical cycles: A case study of the lower Es3 and upper Es4 sub-member in well LY1, Dongying Sag[J]. Acta Sedimentologica Sinica, 2025, 43(2): 750-768.
[84] 石巨业,金之钧,刘全有,等. 基于米兰科维奇理论的湖相细粒沉积岩高频层序定量划分[J]. 石油与天然气地质,2019,40(6):1205-1214.

Shi Juye, Jin Zhijun, Liu Quanyou, et al. Ouantitative classification of high-frequency sequences in fine-grained lacustrine sedimentary rocks based on Milankovitch theory[J]. Oil & Gas Geology, 2019, 40(6): 1205-1214.
[85] 金忠慧,姜在兴,张建国,等. 东营凹陷沙四上亚段旋回地层学研究:以樊页1井为例[J]. 科学技术与工程,2017,17(1):21-28.

Jin Zhonghui, Jiang Zaixing, Zhang Jianguo, et al. Cyclostratigraphy research on the upper of 4th member of the Shahejie Formation in Dongying Sag: A case study of FY1[J]. Science Technology and Engineering, 2017, 17(1): 21-28.
[86] 彭军,于乐丹,许天宇,等. 湖相泥页岩地层米氏旋回测井识别及环境响应特征:以渤海湾盆地济阳坳陷东营凹陷樊页1井Es 4scs为例[J]. 石油与天然气地质,2022,43(4):957-969.

Peng Jun, Yu Ledan, Xu Tianyu, et al. Logging identification of Milankovitch cycle and environmental response characteristics of lacustrine shale: A case study on Es 4scs in well Fanye 1, Dongying Sag, Jiyang Depression, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(4): 957-969.
[87] 田军,吴怀春,黄春菊,等. 从40万年长偏心率周期看米兰科维奇理论[J]. 地球科学,2022,47(10):3543-3568.

Tian Jun, Wu Huaichun, Huang Chunju, et al. Revisiting the Milankovitch theory from the perspective of the 405 ka long eccentricity cycle[J]. Earth Science, 2022, 47(10): 3543-3568.