[1] Gerhard L C, Harrison W E. Distribution of oceans and continents: A geological constraint on global climate variability[M]//Gerhard L C, Harrison W E, Hanson B M. Geological perspectives of global climate change. American: American Association of Petroleum Geologists, 2001: 35-49.
[2] Raup D M, Sepkoski J J. Mass extinctions in the marine fossil record[J]. Science, 1982, 215(4539): 1501-1503.
[3] Sepkoski J J. Stratigraphic biases in the analysis of taxonomic survivorship[J]. Paleobiology, 1975, 1(4): 343-355.
[4] Bambach R K, Knoll A H, Wang S C. Origination, extinction, and mass depletions of marine diversity[J]. Paleobiology, 2004, 30(4): 522-542.
[5] Barnes C R. Ordovician oceans and climate[M]//Webby B D, Paris F, Droser M L, et al. The great Ordovician biodiversification event (The critical moments and perspectives in earth history and paleobiology). Columbia: Columbia University Press, 2004: 72-76.
[6] Stanley S M. Estimates of the magnitudes of major marine mass extinctions in earth history[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(42): E6325-E6334.
[7] Banner J L. Radiogenic isotopes: Systematics and applications to Earth surface processes and chemical stratigraphy[J]. Earth-Science Reviews, 2004, 65(3/4): 141-194.
[8] Wang K, Chatterton B D E, Wang Y. An organic carbon isotope record of Late Ordovician to Early Silurian marine sedimentary rocks, Yangtze Sea, South China: Implications for CO2 changes during the Hirnantian glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132(1/2/3/4): 147-158.
[9] Kump L R. Interpreting carbon-isotope excursions: Strangelove oceans[J]. Geology, 1991, 19(4): 299-302
[10] Chen X, Rong J Y, Fan J X, et al. The Global Boundary Stratotype Section and Point (GSSP) for the base of the Hirnantian stage (the uppermost of the Ordovician System)[J]. Episodes, 2006, 29(3): 183-196.
[11] Melchin M J, Holmden C. Carbon isotope chemostratigraphy in Arctic Canada: Sea-level forcing of carbonate platform weathering and implications for Hirnantian global correlation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 234(2/3/4): 186-200.
[12] Yan D T, Chen D Z, Wang Q C, et al. Carbon and sulfur isotopic anomalies across the Ordovician-Silurian boundary on the Yangtze Platform, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 274(1/2): 32-39.
[13] Fan J X, Peng P A, Melchin M J. Carbon isotopes and event stratigraphy near the Ordovician-Silurian boundary, Yichang, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 276(1/2/3/4): 160-169.
[14] Chen C, Wang J S, Algeo T J, et al. Negative δ13Ccarb shifts in Upper Ordovician (Hirnantian) Guanyinqiao bed of South China linked to diagenetic carbon fluxes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 487: 430-446.
[15] Le Heron D P, Craig J, Etienne J L. Ancient glaciations and hydrocarbon accumulations in North Africa and the Middle East[J]. Earth-Science Reviews, 2009, 93(3/4): 47-76.
[16] Melchin M J, Mitchell C E, Holmden C, et al. Environmental changes in the Late Ordovician–early Silurian: Review and new insights from black shales and nitrogen isotopes[J]. GSA Bulletin, 2013, 125(11/12): 1635-1670.
[17] 尹福光,许效松,万方,等. 华南地区加里东期前陆盆地演化过程中的沉积响应[J]. 地球学报,2001,22(5):425-428.

Yin Fuguang, Xu Xiaosong, Wan Fang, et al. The sedimentary response to the evolutionary process of Caledonian Foreland Basin system in South China[J]. Acta Geoscientia Sinica, 2001, 22(5): 425-428.
[18] 万方,许效松. 川滇黔桂地区志留纪构造岩相古地理[J]. 古地理学报,2003,5(2):180-186.

Wan Fang, Xu Xiaosong. Tectonic- lithofacies palaeogeography of the Silurian in Sichuan-Yunnan-Guizhou-Guangxi region[J]. Journal of Palaeogeography, 2003, 5(2): 180-186.
[19] 郭英海,李壮福,李大华,等. 四川地区早志留世岩相古地理[J]. 古地理学报,2004,6(1):20-29.

Guo Yinghai, Li Zhuangfu, Li Dahua, et al. Lithofacies palaeogeography of the Early Silurian in Sichuan area[J].Journal of Palaeogeography, 2004, 6(1): 20-29.
[20] 戎嘉余,陈旭,王怿,等. 奥陶—志留纪之交黔中古陆的变迁:证据与启示[J]. 中国科学(D辑):地球科学,2011,41(10):1407-1415.

Rong Jiayu, Chen Xu, Wang Yi, et al. Northward expansion of Central Guizhou Oldland through the Ordovician and Silurian transition: Evidence and implications[J]. Science China (Seri. D): Earth Sciences, 2011, 41(10): 1407-1415.
[21] 冯增昭,彭勇民,金振奎,等. 中国南方中及晚奥陶世岩相古地理[J]. 古地理学报,2001,3(4):10-24.

Feng Zengzhao, Peng Yongmin, Jin Zhenkui, et al. Lithofacies palaeogeography of the Middle and Late Ordovician in South China[J]. Journal of Palaeogeography, 2001, 3(4): 10-24.
[22] 苏文博,李志明, Ettensohn F R,等. 华南五峰组—龙马溪组黑色岩系时空展布的主控因素及其启示[J]. 地球科学:中国地质大学学报,2007,32(6):819-827.

Su Wenbo, Li Zhiming, Ettensohn F R, et al. Distribution of black shale in the Wufeng–Longmaxi Formations (Ordovician–Silurian), South China: Major controlling factors and implications[J]. Earth Science: Journal of China University of Geosciences, 2007, 32(6): 819-827.
[23] 牟传龙,周恳恳,梁薇,等. 中上扬子地区早古生代烃源岩沉积环境与油气勘探[J]. 地质学报,2011,85(4):526-532.

Mu Chuanlong, Zhou Kenken, Liang Wei, et al. Early Paleozoic sedimentary environment of hydrocarbon source rocks in the Middle-Upper Yangtze region and petroleum and gas exploration[J]. Acta Geologica Sinica, 2011, 85(4): 526-532.
[24] Chen X, Rong J Y, Li Y, et al. Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 204(3/4): 353-372.
[25] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
[26] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
[27] McLennan S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2): 295-303.
[28] Dymond J, Suess E, Lyle M. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity[J]. Paleoceanography, 1992, 7(2): 163-181.
[29] Böning P, Shaw T, Pahnke K, et al. Nickel as indicator of fresh organic matter in upwelling sediments[J]. Geochimica et Cosmochimica Acta, 2015, 162: 99-108.
[30] Sepkoski J J. The Ordovician radiations: Diversification and extinction shown by global genus-level taxonomic data[M]//Cooper J D, Droser M L, Finney S C. Ordovician odyssey: Short papers for the Seventh International Symposium on the Ordovician System. Las Vegas, Nevada, USA: Pacific Section Society for Sedimentary Geology (SEPM), 1995: 393-396.
[31] Sepkoski J J. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions[J]. Paleobiology, 1984, 10(2): 246-267.
[32] Copper P. Frasnian/Famennian mass extinction and cold-water oceans[J]. Geology, 1986, 14(10): 835-839.
[33] McGhee G R. The Frasnian–Famennian event[M]//Donovan S K. Mass extinction: Processes and evidences. California: The University of California, 1989: 266.
[34] McGhee G R. The Late Devonian mass extinction: The Frasnian/Famennian crisis[M]. New York: Columbia University Press, 1996: 378.
[35] Hallam A, Wignall P B. Mass extinctions and sea-level changes[J]. Earth-Science Reviews, 1999, 48(4): 217-250.
[36] House M R. Strength, timing, setting and cause of mid-Palaeozoic extinctions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 181(1/2/3): 5-25.
[37] Brenchley P J, Cullen B. The environmental distribution of associations belonging to the Hirnantia fauna–evidence from North Wales and Norway[M]//Bruton D L. Aspeels of the Ordovician system. Oslo: Paleontological Contributions University Oslo, 1984: 113-125.
[38] Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.[J]. Chemical Geology, 1992, 99(1/2/3): 65-82.
[39] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129.
[40] Klinkhammer G P, Palmer M R. Uranium in the oceans: Where it goes and why[J]. Geochimica et Cosmochimica Acta, 1991, 55(7): 1799-1806.
[41] Crusius J, Calvert S, Pedersen T, et al. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition[J]. Earth and Planetary Science Letters, 1996, 145(1/2/3/4): 65-78.
[42] Calvert S E, Pedersen T F. Chapter fourteen elemental proxies for Palaeoclimatic and Palaeoceanographic variability in marine sediments: Interpretation and application[J]. Developments in Marine Geology, 2007, 1: 567-644.
[43] Taylor S R, McLennan S M. The continental Crust: Its composition and evolution[M]. Oxford: Blackwell Scientific Publications, 1985: 12-13.
[44] Rowe H D, Loucks R G, Ruppel S C, et al. Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk geochemical inferences and Mo-TOC constraints on the severity of hydrographic restriction[J]. Chemical Geology, 2008, 257(1/2): 16-25.
[45] Marynowski L, Zatoń M, Rakociński M, et al. Deciphering the Upper Famennian Hangenberg Black Shale depositional environments based on multi-proxy record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 346-347: 66-86.
[46] Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3/4): 211-225.
[47] Algeo T J, Lyons T W. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography, 2006, 21(1): PA1016.
[48] Ross D J K, Bustin R M. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: Examples from the Devonian-Mississippian shales, western Canadian Sedimentary Basin[J]. Chemical Geology, 2009, 260(1/2): 1-19.
[49] Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924.
[50] 张喜,张廷山,赵晓明,等. 天文轨道周期及火山活动对中上扬子区晚奥陶世—早志留世有机碳聚集的影响[J]. 石油勘探与开发,2021,48(4):732-744.

Zhang Xi, Zhang Tingshan, Zhao Xiaoming, et al. Effects of astronomical orbital cycle and volcanic activity on organic carbon accumulation during Late Ordovician-Early Silurian in the Upper Yangtze area, South China[J]. Petroleum Exploration and Development, 2021, 48(4): 732-744.
[51] 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.

Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29.
[52] Ripperdan R L, Magaritz M, Kirschvink J L. Carbon isotope and magnetic polarity evidence for non-depositional events within the Cambrian- Ordovician boundary section near Dayangcha, Jilin province, China[J]. Geological Magazine, 1993, 130(4): 443-452.
[53] Ripperdan R L, Magaritz M, Nicoll R S, et al. Simultaneous changes in carbon isotopes, sea level, and conodont biozones within the Cambrian-Ordovician boundary interval at Black Mountain, Australia[J]. Geology, 1992, 20(11): 1039-1042.
[54] Underwood C J, Deynoux M, Ghienne J F. High palaeolatitude (Hodh, Mauritania) recovery of graptolite faunas after the Hirnantian (end Ordovician) extinction event[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 142(3/4): 91-105.
[55] LaPorte D F, Holmden C, Patterson W P, et al. Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 276(1/2/3/4): 182-195.
[56] Munnecke A, Zhang Y D, Liu X, et al. Stable carbon isotope stratigraphy in the Ordovician of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 307(1/2/3/4): 17-43.
[57] Bergström S M, Lehnert O, Calner M, et al. A new Upper Middle Ordovician–Lower Silurian drillcore standard succession from Borenshult in Östergötland, southern Sweden: 2. Significance of δ13C chemostratigraphy[J]. GFF, 2012, 134(1): 39-63.
[58] Harper D A T, Hammarlund E U, Rasmussen C M Ø. End Ordovician extinctions: A coincidence of causes[J]. Gondwana Research, 2014, 25(4): 1294-1307.
[59] Harper D A T, Hints L. Hirnantian (Late Ordovician) brachiopod faunas across Baltoscandia: A global and regional context[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 444: 71-83.
[60] Boucot A J, Rong J Y, Chen X, et al. Pre-Hirnantian Ashgill climatically warm event in the Mediterranean Region[J]. Lethaia, 2002, 36(2): 119-131.
[61] Fortey R A, Cocks L R M. Late Ordovician global warming-the Boda event[J]. Geology, 2005, 33(5): 405-408.
[62] Finnegan S, Heim N A, Peters S E, et al. Climate change and the selective signature of the Late Ordovician mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(18): 6829-6834.
[63] Gorjan P, Kaiho K, Fike D A, et al. Carbon- and sulfur-isotope geochemistry of the Hirnantian (Late Ordovician) Wangjiawan (Riverside) section, South China: Global correlation and environmental event interpretation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 337-338: 14-22.
[64] Trotter J A, Williams I S, Barnes C R, et al. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry[J]. Science, 2008, 321(5888): 550-554.
[65] Jeppsson L. Lithological and conodont distributional evidence for episodes and anomalous oceanic conditions during the Silurian[M]//Aldridge R J. Palaeobiology of conodonts. Chichester: Ellis Horwood, 1987: 129-145.
[66] Bickert T, Pätzold J, Samtleben C, et al. Paleoenvironmental changes in the Silurian indicated by stable isotopes in brachiopod shells from Gotland, Sweden[J]. Geochimica et Cosmochimica Acta, 1997, 61(13): 2717-2730.
[67] Brenchley P J, Carden G A, Hints L, et al. High-resolution stable isotope stratigraphy of Upper Ordovician sequences: Constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation[J]. GSA Bulletin, 2003, 115(1): 89-104.
[68] Brenchley P J, Marshall J D, Carden G A F, et al. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse Period[J]. Geology, 1994, 22(4), 295-298.
[69] Kump L R, Arthur M A, Patzkowsky M E, et al. A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 152(1/2): 173-187.
[70] Armstrong H A, Coe A L. Deep-sea sediments record the geophysiology of the Late Ordovician glaciation[J]. Journal of the Geological Society, 1997, 154(6): 929-934.
[71] 贵州省地质矿产局 .贵州省区域地质志[M].北京: 地质出版社, 1987: 97-137.

Bureau of Geology and Mineral Resources of Guizhou Province. Regional geology of Guizhou province[M]. Beijing: Geology Publishing House, 1987: 97-137.
[72] Wilde P, Berry W B N. Destabilization of the oceanic density structure and its significance to marine “extinction” events[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1984, 48(2/3/4): 143-162.
[73] Hammarlund E U, Dahl T W, Harper D A T, et al. A sulfidic driver for the end-Ordovician mass extinction[J]. Earth and Planetary Science Letters, 2012, 331-332: 128-139.
[74] Pope K. Impact dust not the cause of the Cretaceous-Tertiary mass extinction[J]. Geology, 2002, 30(2): 99-102.
[75] Harper D A T, Rong J Y. Patterns of change in the brachiopod faunas through the Ordovician-Silurian interface[J]. Modern Geology, 1995, 20(1): 83-100.
[76] Sheehan P M. The Late Ordovician mass extinction[J]. Annual Review of Earth and Planetary Sciences, 2001, 29(1): 331-364.
[77] Rasmussen C M Ø, Harper D A T. Interrogation of distributional data for the End Ordovician crisis interval: Where did disaster strike?[J]. Geological Journal, 2011, 46(5): 478-500.
[78] Yan D T, Chen D Z, Wang Q C, et al. Carbon and sulfur isotopic anomalies across the Ordovician–Silurian boundary on the Yangtze Platform, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 274, 32-39.
[79] Zhang T G, Shen Y N, Zhan R B, et al. Large perturbations of the carbon and sulfur cycle associated with the Late Ordovician mass extinction in South China[J]. Geology, 2009, 37(4): 299-302.
[80] Bergström S M, Eriksson M E, Young S A, et al. Hirnantian (latest Ordovician) δ13C chemostratigraphy in southern Sweden and globally: A refined integration with the graptolite and conodont zone successions[J]. GFF, 2014, 136(2): 355-386.
[81] Barnes C R. Ordovician oceans and climate[M]//Webby B D, Paris F, Droser M L, et al. The great Ordovician biodiversification event (The critical moments and perspectives in earth history and paleobiology). Columbia: Columbia University Press, 2004: 72-76.
[82] Frakes L A, Francis J E, Syktus J I. Climate modes of the Phanerozoic[M]. Cambridge: Cambridge University Press, 1992: 15-25.
[83] Hallam A. Phanerozoic sea-level changes[M]. New York: Columbia University Press, 1992.
[84] Berner R A. Palaeo-CO2 and climate[J]. Nature, 1992, 358(6382): 114.
[85] Berner R A. GEOCARB II; a revised model of atmospheric CO2 over Phanerozoic time[J]. American Journal of Science, 1994, 294(1): 56-91.
[86] Yapp C J, Poths H. Ancient atmospheric CO2 pressures inferred from natural goethites[J]. Nature, 1992, 355(6358): 342-344.
[87] Berner R A, Kothavala Z. Geocarb III; a revised model of atmospheric CO2 over Phanerozoic time[J]. American Journal of Science, 2001, 301(2): 182-204.
[88] Tabor N J, Poulsen C J. Palaeoclimate across the Late Pennsylvanian–Early Permian tropical palaeolatitudes: A review of climate indicators, their distribution, and relation to palaeophysiographic climate factors[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 268(3/4): 293-310.
[89] Parrish J T. Upwelling and petroleum source beds, with reference to Paleozoic[J]. AAPG Bulletin, 1982, 66(6): 750-774.
[90] Pohl A, Nardin E, Vandenbroucke T R A, et al. High dependence of Ordovician ocean surface circulation on atmospheric CO2 levels[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 458: 39-51.
[91] Boucot A J, Xu C, Scotese C R, et al. Phanerozoic Paleoclimate: An atlas of Lithologic indicators of climate[M]. Tulsa, Oklahoma: SEPM Society for Sedimentary Geology, 2013: 38-47.
[92] Gerhard L C, Harrison W E, “Bruno” Hanson B M. Introduction and Overview[M]//Gerhard L C, Harrison W E, Hanson B M. Geological perspectives of global climate change. American: American Association of Petroleum Geologists. 2001: 35-49.
[93] Pope M, Read J F. Ordovician metre-scale cycles: Implications for climate and eustatic fluctuations in the central Appalachians during a global greenhouse, non-glacial to glacial transition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 138(1/2/3/4): 27-42.
[94] Bigg G R. The Oceans and climate[M]. Cambridge: Cambridge University Press, 1996: 266.