[1] Laity J. Deserts and desert environments[M]. Hoboken: Wiley, 2008.
[2] 刘东生. 黄土与环境[M]. 北京:科学出版社,1985.

Liu Tungsheng. Loess and environments[M]. Beijing: Science Press, 1985.
[3] Wang X M, Geng X, Liu B, et al. Desert ecosystems in China: Past, present, and future[J]. Earth-Science Reviews, 2022, 234: 104206.
[4] Zhao S, Xia D S, Jin H L, et al. A multi-proxy Late Holocene climate record from aeolian deposits of the Horqin sandy land, Northeast China and its societal implications[J]. Aeolian Research, 2018, 35: 29-38.
[5] Zhang X Y, Arimoto R, An Z S. Dust emission from Chinese desert sources linked to variations in atmospheric circulation[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D23): 28041-28047.
[6] 陈骏,刘连文,季峻峰,等. 最近2.5 Ma以来黄土高原风尘化学组成的变化与亚洲内陆的化学风化[J]. 中国科学:地球科学,2001,31(2):136-145.

Chen Jun, Liu Lianwen, Ji Junfeng, et al. Changes in the chemical composition of wind and dust on the Loess Plateau and chemical weathering in inland Asia since the last 2.5 Ma[J]. Science China Earth Sciences, 2001, 31(2): 136-145.
[7] Maher B A. The magnetic properties of Quaternary aeolian dusts and sediments, and their palaeoclimatic significance[J]. Aeolian Research, 2011, 3(2): 87-144.
[8] Walker J C G, Hays P B, Kasting J F. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature[J]. Journal of Geophysical Research: Oceans, 1981, 86(C10): 9776-9782.
[9] Mei H W, Jian X, Zhang W, et al. Behavioral differences between weathering and pedogenesis in a subtropical humid granitic terrain: Implications for chemical weathering intensity evaluation[J]. Catena, 2021, 203: 105368.
[10] Qiu S F, Zhu Z Y, Yang T, et al. Chemical weathering of monsoonal eastern China: Implications from major elements of topsoil[J]. Journal of Asian Earth Sciences, 2014, 81: 77-90.
[11] Brady P V, Carroll S A. Direct effects of CO2 and temperature on silicate weathering: Possible implications for climate control[J]. Geochimica et Cosmochimica Acta, 1994, 58(7): 1853-1856.
[12] Dessert C, Dupré B, Gaillardet J, et al. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle[J]. Chemical Geology, 2003, 202(3/4): 257-273.
[13] Adams J S, Kraus M J, Wing S L. Evaluating the use of weathering indices for determining mean annual precipitation in the ancient stratigraphic record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309(3/4): 358-366.
[14] Wang T H, Wang Q B, Han C L, et al. Development and application of new transfer functions between climate and soil weathering indices for paleoclimatic reconstructions from Chinese loess-paleosol sections[J]. Catena, 2023, 224: 106974.
[15] Yang S Y, Li C X, Cai J G. Geochemical compositions of core sediments in eastern China: Implication for Late Cenozoic palaeoenvironmental changes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 229(4): 287-302.
[16] Fu H J, Jian X, Liang H H, et al. Tectonic and climatic forcing of chemical weathering intensity in the northeastern Tibetan Plateau since the Middle Miocene[J]. Catena, 2022, 208: 105785.
[17] Zhang W X, Zhang H C, Niu J, et al. Geochemical record of rapid climate change and chemical weathering in a semi-arid area, northeastern Tibetan Plateau[J]. Geosciences Journal, 2020, 24(6): 723-732.
[18] Zhu B Q, Yang X P. Chemical weathering of detrital sediments in the Taklamakan Desert, northwestern China[J]. Geographical Research, 2009, 47(1): 57-70.
[19] Bao J, Song C H, Yang Y B, et al. Reduced chemical weathering intensity in the Qaidam Basin (NE Tibetan Plateau) during the Late Cenozoic[J]. Journal of Asian Earth Sciences, 2009, 170: 155-165.
[20] Xu Z W, Lu H Y, Zhao C F, et al. Composition, origin and weathering process of surface sediment in Kumtagh Desert, Northwest China[J]. Journal of Geographical Sciences, 2011, 21(6): 1062-1076.
[21] Li B F, Feng Q, Li Z J, et al. Geochemical characteristics of surface aeolian sand in the Badain Jaran Desert, northwestern China: Implications for weathering, sedimentary processes and provenance[J]. Catena, 2022, 219: 106640.
[22] Feng M Y, Lü T Y, Sun J M, et al. Optically stimulated luminescence dating and paleoclimatic implications of the Holocene dune sands in the Hunshandake sandy land, Northeast China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 615: 111469.
[23] Chen B, Yang X P, Jiang Q D, et al. Geochemistry of aeolian sand in the Taklamakan Desert and Horqin sandy land, northern China: Implications for weathering, recycling, and provenance[J]. Catena, 2022, 208: 105769.
[24] Wang J Y, Gao G Z, Jie D M, et al. Aeolian soils on the eastern side of the Horqin sandy land, China: A provenance and sedimentary environment reconstruction perspective[J]. Catena, 2022, 210: 105945.
[25] Lv C J, Li X S, Han Z Y, et al. Fluvial response to precipitation variations since 36 ka in the Hunshandake sandy land in North China[J]. Geomorphology, 2018, 317: 128-138.
[26] 赵延卓,谢远云,康春国,等. 呼伦贝尔沙地风成砂—古土壤剖面记录的全新世气候变化[J]. 中国沙漠,2023,43(5):85-96.

Zhao Yanzhuo, Xie Yuanyun, Kang Chunguo, et al. Holocene climate change recorded by paleosoil profile in Hulun Buir sandy land[J]. Journal of Desert Research, 2023, 43(5): 85-96.
[27] Xie Y Y, Liu L, Kang C G, et al. Sr-Nd isotopic characteristics of the Northeast sandy land, China and their implications for tracing sources of regional dust[J]. Catena, 2020, 184: 104303.
[28] Xie Y Y, Yuan F, Zhan T, et al. Geochemical and isotopic characteristics of sediments for the Hulun Buir sandy land, Northeast China: Implication for weathering, recycling and dust provenance[J]. Catena, 2018, 160: 170-184.
[29] 刘璐,谢远云,迟云平,等. 地球化学组成对浑善达克沙地与科尔沁沙地风化和沉积循环特征及其物源的指示[J]. 海洋地质与第四纪地质,2021,41(4):192-206.

Liu Lu, Xie Yuanyun, Chi Yunping, et al. Geochemical compositions of the Onqin Daga sand land and Horqin sand land and their implications for weathering, sedimentation and provenance[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 192-206.
[30] Liu Z T, Yang X P. Geochemical-geomorphological evidence for the provenance of aeolian sands and sedimentary environments in the Hunshandake sandy land, eastern Inner Mongolia, China[J]. Acta Geologica Sinica (English Edition), 2013, 87(3): 871-884.
[31] Wu P, Xie Y Y, Kang C G, et al. Quantitative reconstruction of competing sources reveals spatial heterogeneity and complex aeolian–fluvial interactions in the Horqin sandy land, NE China[J]. Earth Surface Processes and Landforms, 2023, 48(14): 2772-2787.
[32] 谢远云,孙磊,康春国,等. 松嫩沙地Sr-Nd同位素组成特征[J]. 沉积学报,2020,38(4):771-780.

Xie Yuanyun, Sun Lei, Kang Chunguo, et al. Sr-Nd isotopic partition characteristics of the Songnen sandy land[J]. Acta Sedimentologica Sinica, 2020, 38(4): 771-780.
[33] 赵倩,谢远云,郝冬梅,等. 松嫩平原中更新世以来气候干旱化:来自哈尔滨黄土记录[J]. 沉积学报,2022,40(6):1702-1717.

Zhao Qian, Xie Yuanyun, Hao Dongmei, et al. Climatic aridification in Songnen Plain since the Middle Pleistocene from Harbin loess records[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1702-1717.
[34] 袁方,谢远云,詹涛,等. 地球化学组成揭示的杜蒙沙地化学风化和沉积再循环特征及其对风尘物质贡献的指示[J]. 地理科学,2017,37(12):1885-1893.

Yuan Fang, Xie Yuanyun, Zhan Tao, et al. Source-area weathering and recycled sediment for Dumeng sandy land inferred from geochemistry compositions: Implication for contribution to aeolian dust[J]. Scientia Geographica Sinica, 2017, 37(12): 1885-1893.
[35] 冯连君,储雪蕾,张启锐,等. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘,2003,10(4):539-544.

Feng Lianjun, Chu Xuelei, Zhang Qirui, et al. CIA (chemical index of alteration) and its applications in the Neoproterozoic clastic rocks[J]. Earth Science Frontiers, 2003, 10(4): 539-544.
[36] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
[37] An Z S, Clemens S C, Shen J, et al. Glacial-interglacial Indian summer monsoon dynamics[J]. Science, 2011, 333(6043): 719-723.
[38] Buggle B, Glaser B, Hambach U, et al. An evaluation of geochemical weathering indices in loess-paleosol studies[J]. Quaternary International, 2011, 240(1/2): 12-21.
[39] Garzanti E, Vermeesch P, Andò S, et al. Provenance and recycling of Arabian desert sand[J]. Earth-Science Reviews, 2013, 120: 1-19.
[40] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. London: Blackwell, 1985: 312.
[41] 江文剑,秦明宽,范洪海,等. 松辽盆地西南部含铀岩系沉积时的古气候演变及其与铀成矿关系[J]. 地球科学,2023,48(3):1232-1245.

Jiang Wenjian, Qin Mingkuan, Fan Honghai, et al. Paleoclimate evolution and uranium mineralization during the deposition of uranium-bearing rocks in the southwest of Songliao Basin[J]. Earth Science, 2023, 48(3): 1232-1245.
[42] Jin H L, Wan S M, Liu C, et al. Evolution of silicate weathering in South China since 30 Ma: Controlling factors and global implications[J]. Global and Planetary Change, 2023, 223: 104095.
[43] 孙天琪,徐兆凯,常凤鸣,等. 中新世澳大利亚西南部气候演化过程及其主要控制因素[J]. 中国科学:地球科学,2022,52(8):1577-1590.

Sun Tianqi, Xu Zhaokai, Chang Fengming, et al. Climate evolution of southwest Australia in the Miocene and its main controlling factors[J]. Science China Earth Sciences, 2022, 52(8): 1577-1590.
[44] Li G J, Ji J F, Zhao L, et al. Response of silicate weathering to monsoon changes on the Chinese Loess Plateau[J]. Catena, 2008, 72(3): 405-412.
[45] 谢静,吴福元,丁仲礼. 浑善达克沙地的碎屑锆石U-Pb年龄和Hf同位素组成及其源区意义[J]. 岩石学报,2007,23(2):523-528.

Xie Jing, Wu Fuyuan, Ding Zhongli. Detrital zircon composition of U-Pb ages and Hf isotope of the Hunshandake sandland and implications for its provenance[J]. Acta Petrologica Sinica, 2007, 23(2): 523-528.
[46] 白美兰,郝润全. 气候变化对浑善达克沙地生态环境演变的影响[J]. 中国沙漠,2006,26(3):484-488.

Bai Meilan, Hao Runquan. Impact of climatic variation on ecological environmental evolution in hunshandake sandland[J]. Journal of Desert Research, 2006, 26(3): 484-488.
[47] 亓玉昆.加强生态保护 推动绿色转型[N]. 人民日报,2023-10-12(18).

Qi Yukun. Strengthening ecological protection and promoting green transformation[N]. People's Daily, 2023-10-12(18).
[48] 朱迎新. 章古台沙地樟子松人工林固沙效果探究[J]. 理论界,2014(5):62-64.

Zhu Yingxin. Study on the effect of sand fixation in Pinus sylvestris var, sylvestris var. mongolica plantation in Zhanggutai sandy land[J]. Theory Horizon, 2014(5): 62-64.
[49] 杨晓君,刘廷玺,王冠丽,等. 科尔沁沙地流动沙丘不同时空尺度水热变化及CO2交换特征[J]. 应用生态学报,2020,31(6):1989-1998.

Yang Xiaojun, Liu Tingxi, Wang Guanli, et al. Characteristics of humidity and temperature variations and CO2 exchange of mobile dunes at different space-time scales in Horqin sandy land, China[J]. Chinese Journal of Applied Ecology, 2020, 31(6): 1989-1998.
[50] White A F, Blum A E, Bullen T D, et al. The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks[J]. Geochimica et Cosmochimica Acta, 1999, 63(19/20): 3277-3291.
[51] 马永法,詹涛,杨业,等. 东北平原东部天恒山钻孔色度变化特征与古气候意义及对松嫩古湖演化的指示[J]. 地质学报,2021,95(11):3519-3531.

Ma Yongfa, Zhan Tao, Yang Ye, et al. The indication of chroma characteristics and its palaeoclimatic significance in the Tianhengshan(THS)core from the eastern part of the Northeast China Plain to the evolution of Songnen paleo-lake[J]. Acta Geologica Sinica, 2021, 95(11): 3519-3531.
[52] Mariotti A, Zeng N, Yoon J H, et al. Mediterranean water cycle changes: Transition to drier 21st century conditions in observations and CMIP3 simulations[J]. Environmental Research Letters, 2008, 3(4): 044001.
[53] Wang Y B, Liu X Q, Herzschuh U. Asynchronous evolution of the Indian and East Asian summer monsoon indicated by Holocene moisture patterns in monsoonal Central Asia[J]. Earth-Science Reviews, 2010, 103(3/4): 135-153.
[54] Yang B, Kang S Y, Ljungqvist F C, et al. Drought variability at the northern fringe of the Asian summer monsoon region over the past millennia[J]. Climate Dynamics, 2014, 43(3/4): 845-859.
[55] Dong Z B, Wang X M, Liu L Y. Wind erosion in arid and semiarid China: An overview[J]. Journal of Soil and Water Conservation, 2000, 55(4): 439-439..