[1] Nelsen M P, Dimichele W A, Peters S E, et al. Delayed fungal evolution did not cause the Paleozoic peak in coal production[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(9): 2442-2447.
[2] Lü D W, Chen J T. Depositional environments and sequence stratigraphy of the Late Carboniferous-Early Permian coal-bearing successions (Shandong province, China): Sequence development in an epicontinental basin[J]. Journal of Asian Earth Sciences, 2014, 79: 16-30.
[3] 杨晓萍,顾家裕. 煤系地层中储层基本特征与优质储层的形成与分布[J]. 沉积学报,2007,25(6):891-895.

Yang Xiaoping, Gu Jiayu. General feature of reservoir in coal-bearing formation and distribution of the favorable reservoir[J]. Acta Sedimentologica Sinica, 2007, 25(6): 891-895.
[4] 郑浚茂,应凤祥. 煤系地层(酸性水介质)的砂岩储层特征及成岩模式[J]. 石油学报,1997,18(4):19-24.

Zheng Junmao, Ying Fengxiang. Reservoir characteristics and diagenetic model of sandstone intercalated in coal-bearing strata (acid water medium)[J]. Acta Petrolei Sinica, 1997, 18(4): 19-24.
[5] 朱国华,章卫平. 煤系地层砂岩成岩作用和孔隙演化研究:以长广地区龙潭组为例[J]. 石油勘探与开发,1993,20(1):39-47.

Zhu Guohua, Zhang Weiping. A study of digenesis and the evolution of porosity of the sandstones in coaliferous formations: Taking Longtan Group in Changguang region as an example[J]. Petroleum Exploration and Development, 1993, 20(1): 39-47.
[6] 陈世悦,马帅,贾贝贝,等. 渤海湾盆地石炭—二叠系含煤岩系沉积环境及其展布规律[J]. 煤炭学报,2018,43(S2):513-523.

Chen Shiyue, Ma Shuai, Jia Beibei, et al. Sedimentary environment and distribution law of Carboniferous-Permian coal-bearing series in Bohai Bay Basin[J]. Journal of China Coal Society, 2018, 43(S2): 513-523.
[7] 王惠勇,陈世悦,李红梅,等. 济阳坳陷石炭—二叠系煤系页岩气生烃潜力评价[J]. 煤田地质与勘探,2015,43(3):38-44.

Wang Huiyong, Chen Shiyue, Li Hongmei, et al. Hydrocarbon generation potential evaluation of shale gas of Permo-Carboniferous coal bearing measures in Jiyang Deprssion[J]. Coal Geology & Exploration, 2015, 43(3): 38-44.
[8] 徐进军,金强,程付启,等. 渤海湾盆地石炭系—二叠系煤系烃源岩二次生烃研究进展与关键问题[J]. 油气地质与采收率,2017,24(1):43-49,91.

Xu Jinjun, Jin Qiang, Cheng Fuqi, et al. Advances and crucial issues on secondary hydrocarbon generation of the Carboniferous-Permian coal-measure source rocks in Bohai Bay Basin[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(1): 43-49, 91.
[9] 张关龙,陈世悦,王海方,等. 济阳坳陷石炭—二叠系沉积特征及岩相古地理演化[J]. 中国石油大学学报(自然科学版),2009,33(3):11-17.

Zhang Guanlong, Chen Shiyue, Wang Haifang, et al. Sedimentary characteristics and lithofacies paleogeography evolution of Pero-Carboniferous system in Jiyang Depression[J]. Journal of China University of Petroleum (Edition of Natural Science), 2009, 33(3): 11-17.
[10] 李政. 济阳坳陷石炭系—二叠系烃源岩的生烃演化[J]. 石油学报,2006,27(4):29-35.

Li Zheng. Hydrocarbon-generation evolution of Permian-Carboniferous source rock in Jiyang Depression[J]. Acta Petrolei Sinica, 2006, 27(4): 29-35.
[11] 李丕龙,金之钧,张善文,等. 济阳坳陷油气勘探现状及主要研究进展[J]. 石油勘探与开发,2003,30(3):1-4.

Li Pilong, Jin Zhijun, Zhang Shanwen, et al. The present research status and progress of petroleum exploration in the Jiyang Depression[J]. Petroleum Exploration and Development, 2003, 30(3): 1-4.
[12] 王永诗,鲜本忠. 车镇凹陷北部陡坡带断裂结构及其对沉积和成藏的控制[J]. 油气地质与采收率,2006,13(6):5-8.

Wang Yongshi, Xian Benzhong. Fault structures of northern steep slope belts and their influences on sedimentation and reservoir formation in Chezhen Sag[J]. Petroleum Geology and Recovery Efficiency, 2006, 13(6): 5-8.
[13] 刘鹏,王永诗,宋明水,等. 碳酸盐岩断裂带断层岩特征及演化:以渤海湾盆地济阳坳陷车镇凹陷下古生界为例[J]. 石油学报,2021,42(5):588-597.

Liu Peng, Wang Yongshi, Song Mingshui, et al. Characteristics and evolution of fault rocks in carbonate fault zone: A case study of the Lower Paleozoic in Chezhen Sag of Jiyang Depression, Bohai Bay Basin[J]. Acta Petrolei Sinica, 2021, 42(5): 588-597.
[14] 侯中帅,陈世悦,桑树勋,等. 渤海湾盆地上古生界泥岩地球化学特征[J]. 煤炭学报,2020,45(4):1457-1472.

Hou Zhongshuai, Chen Shiyue, Sang Shuxun, et al. Geochemical characteristics of Upper Paleozoic mudstone in Bohai Bay Basin[J]. Journal of China Coal Society, 2020, 45(4): 1457-1472.
[15] 金强,宋国奇,王力. 胜利油田石炭—二叠系煤成气生成模式[J]. 石油勘探与开发,2009,36(3):358-364.

Jin Qiang, Song Guoqi, Wang Li. Generation models of Carboniferous-Permian coal-derived gas in Shengli oilfield[J]. Petroleum Exploration and Developmen, 2009, 36(3): 358-364.
[16] Goldstein R H. Reynolds T J. Systematics of fluid inclusions in diagenetic minerals[M]. Tulsa: SEPM, 1994.
[17] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
[18] McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4): 2000GC 000109.
[19] Gromet L P, Haskin L A, Korotev R L, et al. The “North American Shale Composite”: Its compilation, major and trace element characteristics[J]. Geochimica et Cosmochimica Acta, 1984, 48(12): 2469-2482.
[20] Bodnar R J. Revised equation and table for determining the freezing point depression of H2O-Nacl solutions[J]. Geochimica et Cosmochimica Acta, 1993, 57(3): 683-684.
[21] 张勐,吴智平,王永诗,等. 渤海湾盆地济阳坳陷潜山发育规律及成因类型划分[J]. 地球科学,2023,48(2):488-502.

Zhang Meng, Wu Zhiping, Wang Yongshi, et al. Development law and genetic types of buried-hills in the Jiyang Depression, Bohai Bay Basin[J]. Earth Science, 2023, 48(2): 488-502.
[22] 张关龙,陈世悦,王海方,等. 济阳坳陷石炭—二叠系沉积特征及岩相古地理演化[J]. 中国石油大学学报(自然科学版),2009,33(3):11-17.

Zhang Guanlong, Chen Shiyue, Wang Haifang, et al. Sedimentary characteristics and lithofacies paleo-geography evolution of Pero-Carboniferous system in Jiyang Depression[J]. Journal of China University of Petroleum (Edition of Natural Science), 2009, 33(3): 11-17.
[23] 杨仁超,李阳,汪勇,等. 渤海湾盆地济阳坳陷北部石炭系—二叠系残留地层沉积相[J]. 古地理学报,2021,23(3):525-538.

Yang Renchao, Li Yang, Wang Yong, et al. Sedimentary facies of the Carboniferous-Permian residual strata in northern Jiyang Depression, Bohai Bay Basin[J]. Journal of Palaeogeography, 2021, 23(3): 525-538.
[24] 朱伟鹏,田伟,魏春景. 阴山东部固阳地区晚石炭世碱性火山岩的发现及其地质意义[J]. 岩石学报,2023,39(3):670-688.

Zhu Weipeng, Tian Wei, Wei Chunjing. Discovery of the Late Carboniferous alkaline volcanic rocks in the Guyang area, eastern Yinshan Block, and its geological implications[J]. Acta Petrologica Sinica, 2023, 39(3): 670-688.
[25] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129.
[26] Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (missourian) Stark shale member of the dennis limestone, wabaunsee county, Kansas, U.S.A.[J]. Chemical Geology, 1992, 99(1/2/3): 65-82.
[27] 任影,钟大康,柳慧琳,等. 渝东地区寒武系第四阶龙王庙组古环境演化的稳定同位素与主、微量元素证据[J]. 地球科学,2018,43(11):4066-4095.

Ren Ying, Zhong Dakang, Liu Huilin, et al. Isotopic and elemental evidence for paleoenvironmental evolution of Cambrian stage 4 Longwangmiao Formation, east Chongqing, China[J]. Earth Science, 2018, 43(11): 4066-4095.
[28] de Baar H J W, Bacon M P, Brewer P G, et al. Rare earth elements in the Pacific and Atlantic Oceans[J]. Geochimica et Cosmochimica Acta, 1985, 49(9): 1943-1959.
[29] Bodnar R J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. Geochimica et Cosmochimica Acta, 1993, 57(3): 683-684.
[30] Irwin H, Curtis C, Coleman M. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments[J]. Nature, 1977, 269(5625): 209-213.
[31] 吴仕玖,范彩伟,招湛杰,等. 莺歌海盆地乐东区碳酸盐胶结物成因及地质意义[J]. 地球科学,2019,44(8):2686-2694.

Wu Shijiu, Fan Caiwei, Zhao Zhanjie, et al. Origin of carbonate cement in reservoirs of Ledong area, Yinggehai Basin and its geological significance[J]. Earth Science, 2019, 44(8): 2686-2694.
[32] 郭宏莉,王大锐. 塔里木油气区砂岩储集层碳酸盐胶结物的同位素组成与成因分析[J]. 石油勘探与开发,1999,26(3):31-32.

Guo Hongli, Wang Darui. Stable isotopic composition and origin analysis of the carbonate cements within sandstone reservoirs of Tarim oil-gas bearing area[J]. Petroleum Exploration and Development, 1999, 26(3): 31-32.
[33] 尤丽,李才,张迎朝,等. 珠江口盆地文昌A凹陷珠海组储层碳酸盐胶结物分布规律及成因机制[J]. 石油与天然气地质,2012,33(6):883-889,899.

You Li, Li Cai, Zhang Yingzhao, et al. Distribution and genetic mechanism of carbonate cements in the Zhuhai Formation reservoirs in Wenchang-A Sag, Pear River Mouth Basin[J]. Oil & Gas Geology, 2012, 33(6): 883-889, 899.
[34] 张庄,庞江,杨映涛,等. 川西坳陷中段须家河组四段砂岩中碳酸盐胶结物碳、氧同位素特征及成因探讨[J]. 地质学报,2022,96(6):2094-2106.

Zhang Zhuang, Pang Jiang, Yang Yingtao, et al. Carbon and oxygen isotope characteristics and genesis of carbonate cements in sandstone of the 4th member of the Xujiahe Formation in the central western Sichuan Depression, Sichuan Basin, China[J]. Acta Geologica Sinica, 2022, 96(6): 2094-2106.
[35] Haley B A, Klinkhammer G P, McManus J. Rare earth elements in pore waters of marine sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1265-1279.
[36] 黎彤. 海相沉积型菱铁矿矿床的成矿地球化学[J]. 地质与勘探,1979,15(1):1-8.

Li Tong. Metallogenic geochemistry of marine sedimentary siderite ore deposits[J]. Geology and Exploration, 1979, 15(1): 1-8.
[37] Bjørkum P A. How important is pressure in causing dissolution of quartz in sandstones?[J]. Journal of Sedimentary Research, 1996, 66(1): 147-154.
[38] Lécuyer C, Reynard B, Grandjean P. Rare earth element evolution of Phanerozoic seawater recorded in biogenic apatites[J]. Chemical Geology, 2004, 204(1/2): 63-102.
[39] Kim J H, Torres M E, Haley B A, et al. The effect of diagenesis and fluid migration on rare earth element distribution in pore fluids of the northern Cascadia accretionary margin[J]. Chemical Geology, 2012, 291: 152-165.
[40] Glein C R, Gould I R, Lorance E D, et al. 2020. Mechanisms of decarboxylation of phenylacetic acids and their sodium salts in water at high temperature and pressure[J]. Geochimica et Cosmochimica Acta, 2020, 269: 597-621.
[41] Deng F L, Yu I K M, Chen X, et al. Palladium hydride promotion by KHCO3 enhances the decarboxylation rate[J]. Journal of Catalysis, 2023, 427: 115086.
[42] 蔡观强,郭锋,刘显太,等. 东营凹陷沙河街组沉积岩碳氧同位素组成的古环境记录[J]. 地球与环境,2009,37(4):347-354.

Cai Guanqiang, Guo Feng, Liu Xiantai, et al. Carbon and oxygen isotope characteristics and palaeoenvironmental implications of lacustrine carbonate rocks from the Shahejie Formation in the Dongying Sag[J]. Earth and Environment, 2009, 37(4): 347-354.
[43] 郭佳,曾溅辉,宋国奇,等. 东营凹陷中央隆起带沙河街组碳酸盐胶结物发育特征及其形成机制[J]. 地球科学:中国地质大学学报,2014,39(5):565-576.

Guo Jia, Zeng Jianhui, Song Guoqi, et al. Characteristics and origin of carbonate cements of Shahejie Formation of central uplift belt in Dongying Depression[J]. Earth Science: Journal of China University of Geosciences, 2014, 39(5): 565-576.
[44] Bojanowski M J. Authigenic dolomites in the Eocene-Oligocene organic carbon-rich shales from the Polish Outer Carpathians: Evidence of past gas production and possible gas hydrate formation in the Silesian Basin[J]. Marine and Petroleum Geology, 2014, 51: 117-135.
[45] 周磊,王永诗,孟涛. 济阳坳陷上古生界油气成藏条件与有利区带[J]. 地质论评,2023,69(增刊1):311-312.

Zhou Lei, Wang Yongshi, Meng Tao. Hydrocarbon accumulation conditions and exploration favoring area of Upper Paleozoic in Jiyang Depression[J]. Geological Review, 2023, 69(Suppl.1): 311-312.
[46] Beard D C, Weyl P K. Influence of texture on porosity and permeability of unconsolidated sand[J]. AAPG Bulletin, 1973, 57(2): 349-369.
[47] Surdam Ronald C, Crossey L J, Hagen E S, et al. Organic-inorganic interactions and sandstone diagenesis[J]. AAPG Bulletin, 1989, 73(1): 1-23.
[48] 孙海涛,钟大康,王威,等. 四川盆地马路背地区上三叠统须家河组致密砂岩储层成因分析[J]. 沉积学报,2021,39(5):1057-1067.

Sun Haitao, Zhong Dakang, Wang Wei, et al. Origin analysis of a tight sandstone reservoir for the Xujiahe Formation of the Upper Triassic at the Malubei area in the Sichuan Basin, China[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1057-1067.