-
前人研究认为研究区侏罗系沙溪庙组主要发育曲流河沉积环境[42]。由研究区野外剖面可见典型的河流相“二元结构”,研究区砂泥比值较小,泥岩厚度大[42]。此外,由研究区岩性剖面垂向上呈典型的“泥包砂”正旋回沉积特征(图2)。在此基础上,利用取心井及岩心化验分析资料开展颜色特征、岩石学特征、粒度特征、沉积构造特征、测井响应特征等研究,进一步明确了研究区曲流河沉积环境,并精细划分了研究区目的层曲流河沉积的微相类型。曲流河沉积亚相划分为河床亚相、堤岸亚相、河漫亚相和废弃河道亚相[43⁃45]。结合研究区的沉积相标志,研究区河床亚相可识别出边滩沉积微相和河道充填沉积微相,堤岸亚相可识别出天然堤沉积微相和决口扇沉积微相,河漫亚相可识别出洪泛平原沉积微相,此外,研究区还可识别出废弃河道。这为开展砂体构型研究奠定了基础。
-
按照Miall[46]提出的界面级次划分方案,基于岩心和野外剖面,研究区目的层可划出0~5级构型界面。其中,通过岩心观察可见0~2级构型界面,通过野外剖面观察可见3~5级构型界面。由于沉积和成岩作用差异,会形成不同类型的构型界面[47⁃48]。不同级次的构型界面对流体的遮挡能力不同,但其岩性具有较大的相似性[48]。基于岩心和测井等资料,结合前人研究成果,分析认为研究区目的层主要发育物性界面和泥质界面两类,其次局部发育钙质界面。本文研究区泥质界面主要形成于3级及以上级次,偶尔可见泥砾[48]。物性界面主要形成于3级,该类界面在测井曲线上表现为稍有回返的特征,在岩心上可以观察到粒度突变现象[48]。基于取心井典型标志面(即洪泛面、冲刷面以及岩相转变面等)的识别与划分,结合岩心物性数据,采用高分辨率层序地层学方法,在单井剖面上划分出3级物性界面、3级泥质界面、4级泥质界面和5级洪泛泥岩界面(图3)。选取典型测井响应参数建立了3级物性界面、3级泥质界面和4级泥质界面的测井识别标准(表1)。结合上述标准,对研究区其他单井的构型界面类型识别结果如图4所示。
图 3 研究区典型井不同级次构型界面类型划分剖面图
Figure 3. Different levels of architecture boundaries from the individual wells
表 1 研究区不同类型的3级和4级构型界面的测井识别标准
Table 1. Logging identification standard of 3’ and 4’level architecture boundaries in the study area
不同级次构型界面类型 GR/API AC/(μs/m) CNL/% DEN/(g/cm3) RD/(Ω·m) 3级物性界面 45.38~57.14 66.51~71.88 6.07~9.64 2.34~2.40 23.04~45.86 3级泥质界面 60.88~72.72 62.66~66.70 6.00~10.15 2.44~2.47 25.55~41.32 4级泥质界面 66.92~98.45 62.16~65.93 7.92~10.82 2.43~2.48 22.02~35.24 -
结合前期已有研究成果[35⁃36],基于研究区17口取心井的岩心观察及描述可知研究区目的层主要发育中—细砂岩、粉砂岩和泥岩等岩性,发育块状层理、大型板状交错层理、小型板状交错层理、平行层理、水平层理5类层理。在前期研究基础上[35⁃36],结合岩心素描图(图5)详细梳理了研究区发育的岩相基本类型,归纳为3大类,11小类(图5)。在本次砂体构型研究中,泥岩相不是主要研究对象,故未详细分析。仅对砂岩相和粉砂岩相的物性(即孔隙度和渗透率)进行了统计对比分析,可见块状层理中砂岩和板状交错层理中砂岩的物性最好[35]。研究区单砂体在垂向上发育多种岩相类型,基于单砂体中上述9类单一岩相在垂向上的变化(图6),进一步将岩相组合归纳为块状层理砂岩+平行层理砂岩岩相组合、块状层理砂岩+板状交错层理砂岩岩相组合、板状交错层理砂岩+平行层理砂岩岩相组合、含水平层理泥质粉砂岩岩相组合4大类(图7,8),其中发育块状层理砂岩+板状交错层理砂岩岩相组合的砂岩物性最好[35⁃36]。
统计分析了研究区边滩沉积、河道充填沉积、天然堤沉积、决口扇沉积、洪泛平原沉积和废弃河道沉积等沉积微相中发育的岩相及其组合类型及特征,表明边滩沉积微相主要发育块状层理砂岩+板状交错层理砂岩岩相组合,其次是板状交错层理砂岩+平行层理砂岩岩相组合,泥质含量低,块状砂岩发育且粒度粗;河道充填沉积微相主要发育板状交错层理砂岩+平行层理砂岩岩相组合,其次是块状层理砂岩+平行层理砂岩岩相组合,泥质含量较低,厚层砂岩发育,中细粒砂岩交互变化;决口扇沉积微相可见水平层理泥质粉砂岩岩相和板状交错层理细砂岩岩相,薄层细粉砂岩发育,泥质含量较高;天然堤沉积微相可见水平层理泥质粉砂岩岩相和板状交错层理细砂岩岩相,该类沉积微相中薄粉砂岩夹泥岩发育,泥质含量高;废弃河道沉积微相可见水平层理泥质粉砂岩岩相,偶见板状交错层理细砂岩岩相,泥质含量高;洪泛平原沉积微相可见水平层理泥质粉砂岩岩相,水平层理泥岩岩相和块状层理泥岩岩相,洪泛泥岩发育。
-
在构型界面级次约束下,结合沉积微相单元发育的岩性和岩相及其组合类型,将研究区构型单元划分为:边滩构型单元(HPB)、河道充填沉积构型单元(HCH)、决口扇构型单元(MCS)、天然堤构型单元(MCL)、废弃河道构型单元(MCA)和洪泛平原构型单元(MFM)。基于构型单元垂向叠置样式,将研究区发育的主要构型单元组合划分为6类(图9)。基于上述构型单元组合垂向序列沉积特征,可以将HPB+HPB归纳为均一型组合(Type I);将HPB+HCH、HPB+HCH+MCS、HPB+HCH+MCL和HPB+HCH+MCS+MCA归纳为均一+复合型组合(Type II);将HPB+MFM归纳为复合型组合(Type III)。发育Type I的砂岩厚度大,粒度粗,发育块状层理砂岩+板状交错层理砂岩岩相组合,块状层理砂岩+平行层理砂岩岩相组合次之,砂岩孔渗高;发育Type II的砂岩厚度较大,粒度呈中—细粒,发育板状交错层理砂岩+平行层理砂岩岩相组合;发育Type III的砂岩厚度小,泥岩厚度大,可见含水平泥质粉砂岩岩相组合,砂岩孔渗低(图9)。由图10可见中江—回龙地区整体Type I型组合相对最发育。此外通过纵向对比可见沙三段整体上Type I和Type II相对最为发育(图11)。
图 9 研究区不同构型单元组合类型单井剖面图
Figure 9. Individual well profiles of different architecture⁃element assemblies in the study area
Controls of Architecture Under the Constraints of a Multi- level Interface on Physical Property Heterogeneities from the Meandering River of the Shaximiao Formation in Western Sichuan
-
摘要: 目的 川西坳陷侏罗系沙溪庙组油气资源潜力大,单砂体内部结构制约了优质储层预测,进而影响了该区天然气富集规律评价。研究区内河道砂体构型界面级次、构型单元及其组合尚不明确,不同级次构型界面约束下的构型单元及其组合如何控制储层非均质性尚缺乏相关认识。 方法 基于野外露头、岩心、测井以及分析测试等资料,在沉积相研究基础上,详细开展了川西沙溪庙组曲流河砂体构型类型及特征研究,探讨了多级界面约束下构型对储层非均质性控制作用。 结果与结论 研究区构型单元划分为边滩构型单元(HPB)、河道充填沉积构型单元(HCH)、决口扇构型单元(MCS)、天然堤构型单元(MCL)、废弃河道构型单元(MCA)和洪泛平原构型单元(MFM)6类,基于构型单元垂向叠置样式,结合垂向序列沉积特征,将构型单元组合划分为均一型组合(Type I)、均一+复合型组合(Type II)、复合型组合(Type III)3大类。研究区中江—回龙地区整体Type I型组合相对最发育,且沙三段整体上Type I型组合和Type II型组合相对最发育,其储层非均质性相对较弱。基于上述砂体构型类型及特征研究、不同级次构型界面控制下的储层非均质性特征分析以及不同级次构型界面下构型对储层非均质性控制因素探讨,总结了3~5级界面约束下构型对储层非均质性的控制模式。其中5级构型界面控制下的储层平面非均质性受控于基准面上升和构造沉降;4级构型界面控制下的储层层间非均质性受控于地形坡度和侵蚀作用;3级构型界面控制下的储层层内非均质性受控于水动力条件、河道弯度、河道迁移程度、沉积载荷、流量及成岩作用。Abstract: Objective There is large potential of oil and gas resource from the Jurassic Shaximiao Formation of the eastern slope in the Western Sichuan Depression, and the internal structure of the single sandbodies restrict the prediction of high-quality reservoirs, and consequently affects the evaluation of the natural gas enrichment characteristics in this area. The order of the architecture boundary, architecture-element, and architecture-element assemblies in the study area are not yet clear. There is a lack of relevant understanding of how the architecture-elements and their assemblies control the reservoir heterogeneity from the different architecture boundary levels. Methods In this study, the types of sedimentary facies were determined to provide the foundation for the study of the sandbody architecture. Based on the data of field outcrops, cores, logs, and experimental measured analysis, detailed research on the type and characteristics of the sandbody architecture of the meandering river from the Shaximiao Formation of Western Sichuan Depression was carried out, and the effect of sandbody architecture on the reservoir heterogeneity under the constraints of multilevel architecture boundary was discussed. [Results and Conclusions] The architecture-elements in the study area were divided into HPB, HCH, MCS, MCL, MCA, and MFM. Based on the vertical stacking pattern of architecture units and the sedimentary characteristics of vertical sequence, the architecture-element assemblies are divided into three types, including homogeneous assemblage (Type I), homogeneous+ compound (Type II), and compound assemblage (Type III). Type I assemblage mainly occurs in the Zhongjiang-Huilong area of the study area, and the Type I assemblage and Type II assemblage mainly occur in the Third member of Shaximiao Formation, and the reservoir heterogeneity is relatively weak. Based on the above research on the types and characteristics of sandbody architecture, the analysis on the characteristics of reservoir heterogeneity under the control of different levels of architecture boundary, and the discussion of the controlling factors that sandbody architecture impact on the reservoir heterogeneity under different levels of architecture boundaries, the model of controlling the reservoir heterogeneity under the architecture boundary constraints of 3~5 levels of architecture is established. The reservoir plane heterogeneity is controlled by the 5 level' architecture boundary, and the reservoir heterogeneity under the 5 level' architecture boundary is controlled by the rising of based-level and structure subsidence. The reservoir inter-layer heterogeneity is controlled by the 4 level' architecture boundary, and the reservoir heterogeneity under the 4 level' architecture boundary is controlled by the slope and erosion. The reservoir intra-layer heterogeneity is controlled by the 3 level' architecture boundary, and the reservoir heterogeneity under the 3 level' architecture boundary is controlled by the hydrodynamic condition, channel sinuosity, degree of channel migration, deposited load, discharge, and diagenesis.
-
表 1 研究区不同类型的3级和4级构型界面的测井识别标准
Table 1. Logging identification standard of 3’ and 4’level architecture boundaries in the study area
不同级次构型界面类型 GR/API AC/(μs/m) CNL/% DEN/(g/cm3) RD/(Ω·m) 3级物性界面 45.38~57.14 66.51~71.88 6.07~9.64 2.34~2.40 23.04~45.86 3级泥质界面 60.88~72.72 62.66~66.70 6.00~10.15 2.44~2.47 25.55~41.32 4级泥质界面 66.92~98.45 62.16~65.93 7.92~10.82 2.43~2.48 22.02~35.24 -
[1] 王志章,石占忠. 现代油藏描述技术[M]. 北京:石油工业出版社,1999:282-285. Wang Zhizhang, Shi Zhanzhong. Advanced reservoir characterization technology[M]. Beijing: Petroleum Industry Press, 1999: 282-285. [2] 魏忠元,单华生. 国内外河流相储集砂体非均质性研究进展[J]. 内江科技,2005(1):27,38. Wei Zhongyuan, Shan Huasheng. Research progress on heterogeneity of fluvial facies reservoir sandbodies at home and abroad[J]. Neijiang Technology, 2005(1): 27, 38. [3] 于翠玲,林承焰. 储层非均质性研究进展[J]. 油气地质与采收率,2007,14(4):15-18,22. Yu Cuiling, Lin Chengyan. Advancement of reservoir heterogeneity research[J]. Petroleum Geology and Recovery Efficiency, 2007, 14(4): 15-18, 22. [4] 李茂. 涠洲11-4N油田流一段强非均质储层评价及开发策略[D]. 青岛:中国石油大学(华东). 2010. Li Mao. Evaluation and development tactics of strong heterogeneity reservoir in L1 segment of Weizhou 11-4N oil field[D]. Qingdao: China University of Petroleum (East China), 2010. [5] 何自新. 鄂尔多斯盆地演化与油气[M]. 北京:石油工业出版社,2003:88-90. He Zixin. Evolution and oil and gas in the Ordos Basin[M]. Beijing: Petroleum Industry Press, 2003: 88-90. [6] 李源流,郭彬程,杨兆平,等. 横山地区三叠系延长组长61沉积微相特征及其对储层非均质性的影响[J]. 西北大学学报(自然科学版),2020,50(5):840-850. Li Yuanliu, Guo Bincheng, Yang Zhaoping, et al. Characteristics of sedimentary microfacies of Triassic Yanchang Formation Chang 61 in Hengshan area and its effect on reservoir heterogeneity[J]. Journal of Northwest University (Natural Science Edition), 2020, 50(5): 840-850. [7] 陈朝兵,陈新晶,王超,等. 致密砂岩储层非均质性影响因素分析[J]. 地下水,2020,42(5):152-154. Chen Zhaobing, Chen Xinjing, Wang Chao, et al. Analysis of factors affecting heterogeneity of tight sandstone reservoirs[J]. Underground Water, 2020, 42(5): 152-154. [8] 李旭,李碧龙. 郝家坪地区长2储层非均质性及其控制因素分析[J]. 重庆科技学院学报(自然科学版),2016,18(2):36-39,43. Li Xu, Li Bilong. Research on reservoir heterogeneity of Chang 2 in Haojiaping area of Ordos Basin[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2016, 18(2): 36-39, 43. [9] 程俊,李红,雷川. 鄂尔多斯盆地姬塬地区长6储层成岩作用研究[J]. 岩性油气藏,2013,25(1):69-74. Cheng Jun, Li Hong, Lei Chuan. Diagenesis of Chang 6 reservoir of Upper Triassic in Jiyuan area, Ordos Basin[J]. Lithologic Reservoirs, 2013, 25(1): 69-74. [10] 曹江骏,陈朝兵,罗静兰,等. 自生黏土矿物对深水致密砂岩储层微观非均质性的影响:以鄂尔多斯盆地西南部合水地区长6油层组为例[J]. 岩性油气藏,2020,32(6):36-49. Cao Jiangjun, Chen Zhaobing, Luo Jinglan, et al. Impact of authigenic clay minerals on micro-heterogeneity of deep water tight sandstone reservoirs: A case study of Triassic Chang 6 oil reservoir in Heshui area, southwestern Ordos Basin[J]. Lithologic Reservoirs, 2020, 32(6): 36-49. [11] 徐大光. 致密砂岩储层非均质性影响因素研究[J]. 科学与信息化,2021(2):75. Xu Daguang. Study on influence factors of tight sandstone reservoir heterogeneity[J]. Science and Informatization, 2021(2): 75. [12] 吴胜和,岳大力,刘建民,等. 地下古河道储层构型的层次建模研究[J]. 中国科学(D辑):地球科学,2008,38(增刊I):111-121. Wu Shenghe, Yue Dali, Liu Jianmin, et al. Hierarchy modeling of subsurface palaeochannel reservoir architecture[J]. Science China (Seri. D): Earth Sciences, 2008, 38(Suppl.I): 111-121. [13] Miall A D. Architectural-element analysis: A new method of facies analysis applied to fluvial deposits[J]. Earth-Science Reviews, 1985, 22(4): 261-308. [14] 柯保嘉. 一种新的河流沉积分析法:结构要素分析法[J]. 国外地质,1986(3):1-6. Ke Baojia. A new analysis method of river sediment:Structural element analysis[J]. Foreign Geology, 1986(3): 1-6. [15] Baker P L. Fluid, lithology, geometry, and permeability information from ground-penetrating radar for some petroleum industry applications[C]//Proceedings of SPE Asia-Pacific conference. Perth: SPE, 1991. [16] 张昌民. 储层研究中的层次分析法[J]. 石油与天然气地质,1992,13(3):344-350. Zhang Changmin. Hierarchy analysis in reservoir researches[J]. Oil & Gas Geology, 1992, 13(3): 344-350. [17] 赵翰卿,付志国. 应用密井网测井曲线精细研制河流相储层沉积模型[C]//第五次国际石油工程会议论文集. 北京:中国石油学会,1995. Zhao Hanqing, Fu Zhiguo. Precise development of fluvial reservoir sedimentary model using dense well pattern logging curves[C]//International petroleum engineering conference. Beijing: Chinese Petroleum Society, 1995. [18] Miall A D. The geology of fluvial deposits: Sedimentary facies, basin analysis, and petroleum geology[M]. Berlin: Springer, 1996: 75-178. [19] Posamentier H W, Laurin P, Warmath A. Cenozoic carbonates systems of central Australasia[M]. SEPM Special Publication, 2000: 104-121. [20] Szerbiak R B. 3D description of clastic reservoirs: From 3D GPR data to 3D fluid permeability model[J]. Progress in Exploration Geophysics, 2002, 25(2): 64-73. [21] Baas J H. Conditions for formation of massive turbiditic sandstones by primary depositional processes[J]. Sedimentary Geology, 2004, 166(3/4): 293-310. [22] Weber J, Ricken W. Quartz cementation and related sedimentary architecture of the Triassic Solling Formation, Reinhardswald Basin, Germany[J]. Sedimentary Geology, 2005, 175(1/2/3/4): 459-477. [23] Backert N, Ford M, Malartre F. Architecture and sedimentology of the Kerinitis Gilbert-type fan delta, Corinth Rift, Greece[J]. Sedimentology, 2010, 57(2): 543-586. [24] 吴胜和,季友亮,岳大力,等. 碎屑沉积地质体构型分级方案探讨[J]. 高校地质学报,2013,19(1):12-22. Wu Shenghe, Ji Youliang, Yue Dali, et al. Discussion on hierarchical scheme of architectural units in clastic deposits[J]. Geological Journal of China Universities, 2013, 19(1): 12-22. [25] 胡光义,陈飞,范廷恩,等. 渤海海域S油田新近系明化镇组河流相复合砂体叠置样式分析[J]. 沉积学报,2014,32(3):586-592. Hu Guangyi, Chen Fei, Fan Tingen, et al. Analysis of fluvial facies compound sandbody architecture of the Neogene Minghuazhen Formation of S oilfield in the Bohai Bay[J]. Acta Sedimentologica Sinica, 2014, 32(3): 586-592. [26] Colombera L, Mountney N P, McCaffrey W D. A meta-study of relationships between fluvial channel-body stacking pattern and aggradation rate: Implications for sequence stratigraphy[J]. Geology, 2015, 43(4): 283-286. [27] Shi C X, Zhou Y Y, Liu X F, et al. River base level change in mouth channel evolution: The case of the Yellow River delta, China[J]. CATENA, 2019, 183: 104193. [28] 童强,余建国,田云吉,等. 演武油田Y116井区延8段构型界面约束下的单河道砂体构型[J]. 岩性油气藏,2020,32(3):144-158. Tong Qiang, Yu Jianguo, Tian Yunji, et al. Architecture characterization of single distributary channel sand bodies restricted by architecture interface of Yan 8 member in Y116 well area, Yanwu oilfield[J]. Lithologic Reservoirs, 2020, 32(3): 144-158. [29] 胡光义,王海峰,范廷恩,等. 海上油田河流相复合砂体构型级次解析[J]. 古地理学报,2021,23(4):810-823. Hu Guangyi, Wang Haifeng, Fan Tingen, et al. Analysis of fluvial compound sand-body architecture hierarchy in offshore oil field[J]. Journal of Palaeogeography, 2021, 23(4): 810-823. [30] 王大成,刘义坤,白军辉,等. 曲流河复合点坝砂体构型表征及流体运移机理[J]. 西南石油大学学报(自然科学版),2021,43(3):25-36. Wang Dacheng, Liu Yikun, Bai Junhui, et al. Architecture characterization and fluid migration mechanism of composite point dam in meandering river[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(3): 25-36. [31] 吴胜和,岳大力,冯文杰,等. 碎屑岩沉积构型研究若干进展[J]. 古地理学报,2021,23(2):245-262. Wu Shenghe, Yue Dali, Feng Wenjie, et al. Research progress of depositional architecture of clastic systems[J]. Journal of Palaeogeography, 2021, 23(2): 245-262. [32] 卜淘. 川西坳陷东坡侏罗系沙溪庙组三角洲河道砂体构型[J]. 断块油气田,2018,25(5):564-567,578. Bu Tao. Sand body configuration of delta channel of Jurassic Shaximiao Group in east slope of West Sichuan Depression[J]. Fault-Block Oil and Gas Field, 2018, 25(5): 564-567, 578. [33] 武恒志,叶泰然,王志章,等. 复杂致密河道砂岩气藏开发精细描述技术[M]. 北京:中国石化出版社,2018:243-247. Wu Hengzhi, Ye Tairan, Wang Zhizhang, et al. Fine description technology for complex tight channel sandstone gas reservoir development[M]. Beijing: China Petrochemical Press, 2018: 243-247. [34] 衡勇,段新国,王勇飞,等. 浅水三角洲分流河道砂体内部结构及其对气水分布的影响:以四川盆地中江气田沙溪庙组为例[J]. 成都理工大学学报(自然科学版),2022,49(1):1-11. Heng Yong, Duan Xinguo, Wang Yongfei, et al. Internal structure of distributary channel sand body and its effect on gas-water distribution in shallow-water delta: A case study of Shaximiao Formation in Zhongjiang gas field, Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 49(1): 1-11. [35] Zhang X J, Fu M Y, Deng H C, et al. The differential diagenesis controls on the physical properties of lithofacies in sandstone reservoirs from the Jurassic Shaximiao Formation, Western Sichuan Depression, China[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107413. [36] Zhang X J, Fu M Y, Deng H C, et al. River channel pattern controls on the quality of sandstone reservoirs: A case study from the Jurassic Shaximiao Formation of western Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108925. [37] 朱宏权. 川西坳陷中段沙溪庙组沉积相与储层评价研究[D]. 成都:成都理工大学,2009. Zhu Hongquan. Depositional facies and reservoir characteristics research and evaluation of Shaximiao Formation, middle arae of Western Sichuan Depression[D]. Chengdu: Chengdu University of Technology, 2009. [38] 李国新,徐胜林,陈洪德,等. 川西坳陷中段中侏罗统上沙溪庙组层序岩相古地理及砂体展布特征[J]. 中国地质,2012,39(1):96-105. Li Guoxin, Xu Shenglin, Chen Hongde, et al. Sedimentary facies and sand body distribution of the Middle Jurassic Upper Shaximiao Formation in the middle segment of Western Sichuan Depression[J]. Geology in China, 2012, 39(1): 96-105. [39] 杨克明,朱宏权,叶军,等. 川西致密砂岩气藏地质特征[M]. 北京:科学出版社,2012:3-97. Yang Keming, Zhu Hongquan, Ye Jun, et al. Geological characteristics of tight sandstone gas reservoirs in west Sichuan Basin[M]. Beijing: Science Press, 2012: 3-97. [40] 姜镭,许多,肖维德,等. 利用弹性参数叠合相控边界识别气水分布:以中江气田沙溪庙组气藏为例[J]. 工程地球物理学报,2017,14(4):379-385. Jiang Lei, Xu Duo, Xiao Weide, et al. Using elastic parameters superposition facies-constrained boundaries to identify gas-water distribution: A case in Shaximiao reservoir of Zhongjiang gas field[J]. Chinese Journal of Engineering Geophysics, 2017, 14(4): 379-385. [41] 李夏. 川西坳陷侏罗系沉积相研究[D]. 荆州:长江大学,2014. Li Xia. A sedimentary facies study of Jurassic in western Sichuan sedimentary depression[D]. Jingzhou: Yangtze University, 2014. [42] 王志章,曹思远,王国壮,等. 复杂致密砂岩气藏开发地质理论及关键技术[Z]. 北京:中国石油大学(北京),2015. Wang Zhizhang, Cao Siyuan, Wang Guozhuang, et al. Development geological theory and key technologies of complex tight sandstone gas reservoirs[Z]. Beijing: China University of Petroleum, 2015. [43] 卢松,潘和平,彭曙光,等. 沉积微相和测井相研究及自动识别系统:以曲流河环境沉积为例[J]. 工程地球物理学报,2009,6(3):332-337. Lu Song, Pan Heping, Peng Shuguang, et al. Auto-identified system and study of sedimentary microfacies and elextrofacies: Taking snaking stream deposition as an example[J]. Chinese Journal of Engineering Geophysics, 2009, 6(3): 332-337. [44] 王良忱,张金亮. 沉积环境和沉积相[M]. 北京:石油工业出版社,1996. Wang Liangchen, Zhang Jinliang. Sedimentary environment and sedimentary facies[M]. Beijing: Petroleum Industry Press, 1996. [45] 朱筱敏. 沉积岩石学[M]. 4版. 北京:石油工业出版社,2008. Zhu Xiaomin. Sedimentary petrology[M]. 4th ed. Beijing: Petroleum Industry Press, 2008. [46] Miall A D. Reconstructing the architecture and sequence stratigraphy of the preserved fluvial record as a tool for reservoir development: A reality check[J]. AAPG Bulletin, 2006, 90(7): 989-1002. [47] 宋璠,杨少春,苏妮娜,等. 扇三角洲前缘储层构型界面划分与识别:以辽河盆地欢喜岭油田锦99区块杜家台油层为例[J]. 西安石油大学学报(自然科学版),2015,30(1):7-13. Song Fan, Yang Shaochun, Su Nina, et al. Division and recognition of architecture interfaces of fan-delta front reservoir: Taking Dujiatai reservoir of Jin-99 block in Huanxiling oilfield, Liaohe Basin as an example[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2015, 30(1): 7-13. [48] 张瑞香,王杰,孔雪. 扇三角洲前缘储层构型剖析:以辽河欢喜岭油田锦99块沙四上亚段为例[J]. 中国科技论文,2019,14(5):497-505. Zhang Ruixiang, Wang Jie, Kong Xue. Analysis of the reservoir architecture of fan-delta front: A case study on the upper Es4 formation in Jin-99 block, Huanxiling oilfield, Liaohe Basin[J]. China Sciencepaper, 2019, 14(5): 497-505. [49] Mishra J, Inoue T, Shimizu Y, et al. Consequences of abrading bed load on vertical and lateral bedrock erosion in a curved experimental channel[J]. Journal of Geophysical Research, 2018, 123(12): 3147-3161.