现代沼泽沉积物中五环三萜类的组成特征

段 毅 罗斌杰 惠荣耀

(中国科学院兰州地质研究所)

提要 本文所研究样品采自甘南寒冷潮湿区沼泽。对其烷烃馏分进行 GC-MS 分析后,检测出五个新的脱 A-羽扇烯和二烯,通过质谱分析,初步确定了它们的烯键位置,并探讨了脱 A-羽扇烯形成的可能途径。检测出的藿类化合物包括 C₂₁、C₃₀和 C₃₁藿烯以及 C₂₁、C₂₀-C₃₂藿烷。

根据薹类化合物的分布,提出了 C₂, 鲝烷可能主要来自陆源物,高碳数的薹类化合物可能主要来自细菌和 水生生物, 薏烷构型组成以 β 型为主; 鲝烯占较高的比例,这些都反映了早期成岩阶段的特征。有意义的是样 品中均含 D 环芳构化 8,14一断薹烷。

关键词 现代沼泽 五环三萜类 脱A-羽扇烯 沉积环境 早期成岩阶段 第一作者简介 段毅 男 36岁 助理研究员 有机地球化学

引言

五环三萜烷是比较重要的一类生物标志化合物。它普遍存在于生油岩和原油中。通过研 充生油岩和原油中这类化合物的组成特征、藿烷的异构化程度,可以解决生油岩和石油的形成 环境、母质来源、成熟度,以及石油运移和油源对比等一系列问题。

现代特殊沉积环境中五环三萜类的研究,日益受到人们重视(宋振亚等,1986; Angels Barbe et. al.1990;罗斌杰等,1989;范璞等,1991;史继扬等,1991)。这种研究旨在揭示现代不 同沉积环境中五环三萜类的组成特征及其在早期成岩阶段的演化,从而为五环三萜烷在生油

岩和原油研究中的应用提供重要的信息。本文 分析了四个甘南现代沼泽沉积柱样(样品号为 Q-1、Q-2、Q-3和Q-4),研究了五环三萜 类的组成特征及其与这种特定沉积环境的关 系。地质背景、样品性质和实验方法与笔者已发 表的文章相同(段毅等,1990)。

1 结果

1.1 脱A-羽扇烯

图 1 脱 A---羽扇烯质量色谱图 Fig. 1 Mass chromatogram of de-A-lupenes

烷,这次又在所研究的四个样品中,均检出了分

笔者在前文中(1990)已报道了脱A-羽扇

子量为 328 的 3 个脱 A-羽扇烯和分子量为 326 的 2 个脱 A-羽扇二烯新化合物(图 1)。

1.2 藿烯

这类化合物共检出了 4 个(图 2),其中 C27 藿烯 1 个, C30 藿烯 2 个, C31 藿烯 1 个,其谱图与 前人报道的相同(P.R. Philp, 1987), 未检出 C29和>C31的藿烯。

藿烷质量色谱图(a)和藿烯质谱图(b.c)

1.3 藿烷

共检出 9 个藿烷,碳数为 C₂₇,C₂₉--C₃₂,包括 αβ,βa 和 β3 构型,未检出>C₃₂的藿烷。

1.4 D 环芳构化 8,14-断藿烷

4 个样品中均检出了 C20和 C30D 环芳构化 8,14-断藿烷(图 3)。它们的质谱基峰都为m/ z365,具有 m/z159、187 特征碎片离子,与前人报道的谱图相同(Hussler,1984)。

讨论 2

2.1 脱A一羽扇烯的质谱分析

在所研究样品中均检出了五个新化合物(图1),出峰位置与史继扬(1991)报道的脱A-羽扇烯出峰位置相同。峰1、2和5化合物分子量为328(C2Ha)、峰3和4化合物分子量为326 (C24H38)。它们位于 C23长键三环萜烷之后和脱 A- 羽扇烷两侧:在质谱图上主要碎片离子与 脱 A – 羽扇烷相似,只是相差 2 个或 4 个质量数(图 4)。因此,推测这些化合物是脱 A – 羽扇 烯和脱 A-羽扇二烯。

图 3 D 环芳构化 8,14-断藿烷质谱图 (a-C₂₂,b-C₃₀) Fig. 3 Mass spectra (a-C₂₂,b-C₃₀) of the ring D monaromatic 8,14-secohopanoids

峰 1、2 和 5 质谱图都具有 m/z285 特征碎片离子(是 C_n位上异丙基断裂形成的碎片)及较 强的相同 M⁻和 M⁻-15 碎片离子。峰 1 质谱图基峰为 m/z 109,是 C-9(10)、C-8(11)键断 裂的碎片;存在很强的 m/z 123、189、205、218 碎片离子,表明烯键在 D 环上,并在 C-18(19) 位上较合理。因此,应为脱 A-羽扇-18(19)烯(图 4a)。峰 2 谱图主要碎片离子与峰 1 相似, 只是碎片离子 m/z 109≈191,191>189,191>205,考虑到它们的出峰位置,可能为一对异构 体(图 4b)。峰与质谱图的特征是,基峰为 m/z 95,与前两个化合物相比较,碎片离子 m/z 123 很强,m/z109≈m/z 123 同时具有较强的 m/z 176、217 和 204 碎片离子。由分子断裂解析可 知,为脱 A-羽扇-12(13)-烯(图 4e)。

峰 3 和 4 质诸图都存在特征碎片离子 m/z283 及较强的相同 M⁺、M⁻-15 碎片离子,与 前三个化合物相比差 2 个质量数,它们应为脱 A-羽扇二烯。峰 4 质诸图以 m/z 108 为基峰, 说明 A 环上存在烯键,并在 C-5(10)位较为合理,主要碎片离子有 m/z119、133、147、173、和 203、说明另一烯键在 C-11(12)位上。因此,该化合物应为脱 A-羽扇-5(10)、11(12)-二烯 (图 4d)。峰 3 化合物基峰为 m/z55,具有很强的 m/z 108、136、189、204 和 218 碎片离子,根据 分子断裂分析,是脱 A-羽-5(10),18(19)-二烯(图 4d)。

2.2 脱A-羽扇烯形成的可能途径及意义

脱A-羽扇烷和脱A-羽扇酸的形成机理已被前人讨论过,认为它们是羽扇-3-酮和羽 扇酸酮-3A环3,4断裂的产物(Corbet 等,1980;Schmitter 等,1981)。脱A-羽扇烯和二烯的 发现,表明它们是脱A-羽扇烷形成的中间产物。在早期成岩阶段微生物参与下,羽扇-3-酮 和羽扇酸酮-3发生A环3,4断裂时,在C-5(10)位上形成烯键。脱A-羽扇酸脱羧后,在C -18(19)位上形成烯键。由于环上甲基的质子化和去质子化作用、以及环上氢的转移,有可能 使烯键发生转移(Akporiaye等,1981)。这些可能是上述几种脱A-羽扇烯和二烯化合物形成 的途径。在成岩过程中,脱A-羽扇烯还要加氢还原成脱A-羽扇烷。因此、脱A-羽扇烯的 检出,为羽扇类化合物成岩演变和脱A-羽扇烷形成机制提供了重要的证据。所分析样品中有 机质主要来自陆源植物,其中存在丰富的脱A-羽扇烯和二烯,进一步表明这类化合物与陆源 植物输入有关,是指示陆源有机质输入的生物标志化合物。

2.3 藿类化合物的组成意义

藿烯在藿类化合物中占有较高的比例。四个样品中相对含量介于 25.3~36.6%,平均为 29.7%。
29.7%。
藿烷以 印构型为主。不同构型在藿烷中占的比例是:印构型为 66.8~72.8%, βα 构 型为 15~18.3%, φ 构型为 12.1~14.9%。
这些反映了有机质处于早期成岩阶段的特点。

不同碳数藿类化合物的分布特点,反映了物源性质和成岩条件(尚薏芸等,1984;傅家漠 等,1987;史维扬等,1991)。如表1所示,藿烯是以C30为主,C27和C31藿烯相对含量很低,缺少 C30和C32以上的藿烯。藿烷分布特征以C20为主,其次是C27,C30、C31和C32相对含量很低,缺少 C32以上的升藿烷。考虑到藿烯的影响,用藿烷加藿烯反映其分布特征更富有代表性。从藿烷加 藿烯的相对百分含量看,在Q-1泥质物中,是C30相对含量最高,C20也占很高的比例;其它三 个泥炭是C20相对含量最高。

甘南沼泽沉积有机质主要为陆源植物,其中藿烷的这种分布,无疑反映了陆源植物榆入的特征。我们曾对南沙海域现代沉积物研究发现,藿类化合物是以 C30占绝对优势(10 个样品平均为 43.2%)并存在较高丰度的 Ca1 ~ C34藿类(平均为 28.9%)。因此,笔者认为甘南沼泽 C20

霍烷占很高的比例,说明C29 霍烷可能主要来自陆源植物,而高碳数 霍类含量很低,可能反映了
 它们主要来源于细菌和水生生物。

样	<u></u> 着 院	葦烯相对含量(%)			藿烷相对含量(%)					着烷十灌烯相对含量 (%)				
号		C27	C30	C31	C27	Czs	С30	Cn	C32	C27	C29	C30	C31	C32
Q-1	36.6	8.3	85.6	6. 1	32.8	47.5	12.7	6.1	0.9	23. 8	30.2	39.4	6.1	0.5
Q-2	28.4	15.0	74.2	10.8	31.4	47.5	15.8	4.6	0.7	26.7	34.8	31.6	6.4	0.5
Q-3	28.4	7.0	81.3	11.7	28.6	46.2	16.2	8.1	0.9	22. 4	34.1	33. 8	9.1	0.6
Q-4	25.3	8.2	74.3	17.5	25.4	48.8	17.8	7.3	0.7	21. 1	36.5	32.0	9.9	0.5

表1 薯类化合物的相对含量

Table 1 Composition of hopanes andhopenes in the samples

2.4 D环芳构化 8,14-断藿烷的检出

Hussler (1984)首次在碳酪盐样品中检出了 D 环芳构化 8,14一断藿烷,但是我国许多含 煤沉积和陆相原油中都检出了这类化合物(卢松年等,1986;傅家漠等,1986)。笔者首次从现代 沼泽沉积物中检出了 D 环芳构化 8,14一断藿烷。甘南沼泽沉积环境特点是,介质属于酸性 pH =5)、弱氧化一弱还原;微生物活跃。芳香断藿烷的存在可能与这种沉积环境有关。

结论

在甘南现代沼泽沉积物中,检出了五个新的脱A-羽扇烯和二烯化合物,根据其质谱和分子断裂分析,初步鉴定为:脱A-羽扇-18(19)-烯(两个异构体)、脱A 羽扇-12(13)-烯、脱A-羽扇-5(10),18(19)-二烯和脱A-羽扇-5(10),11(12)-二烯。羽扇-3-酮和羽扇酸酮-3可能是脱A-羽扇烯的前身物。在早期成岩阶段的微生物参与下,这两种化合物发生A 环 3,4 断裂以及脱羧基,都可以形成脱A-羽扇烯和二烯。因此,脱A-羽扇烯是早期成岩阶段的产物,也是指示陆源植物输入的特征生物标志化合物。

样品分析得到我室孟仟祥工程师和丁万仁同志的帮助,在此表示感谢。

收稿日期:1992年7月28日

参考文献

史继扬等,1991,沉积学报增刊,26-33页。

卢松年等,1986,中国科学院地球化学研究所有机地球化学开放研究验室研究年报,贵州人民出版社,21—31页。 宋振亚等,1986、石油实验地质、8卷,3期,271—281页。 尚慧芸等,1984,石油和天然气地质,5卷,1期,20-28页。

段数、罗斌杰,1990,沉积学报,8卷,2期,113-119页。

博家谟等,1987,地球化学,1期,1-9页。

Angts Barbe A. et. al. , 1990, Org. Geochem. , V. 16, N. 4-6.

Corbet, B., Albrecht, p. et al, 1980, J. Am. chem. Soc., Vol. 102, P. 1171-1173.

Fan Pu et al ,1991, Journal of Southeast Asian Eeath Science, Vol. 5, N. 1-4, p. 113-128.

Philp, 1985, Fossil fuel biomarker (application and spatra, Elsvier p. 137-162.

Schmitter, J. M., Arpmo, P. J. et al, 1981, Geochem. Cosmochem. Actra, Vol. 45, p. 1951-1955.

Compositional Characteristics of Pentacyclic Triterpanoids in Modern Marsh Sediments

Duan Yi Luo Binjie Hui Rongyao

(Lanzhou Institute of Geology, Chinese Academy of Sciences)

Abstract

Compositional characteristics of pentacyclic tritepanoids in modern marsh sediments of southern Gansu is discussed by means of GC-MS.

Five novel compounds of de - A-lupenes in 1-4 samples were found. By means of mass spectra, they are determined as: de - A - lup - 18(19) - ene(two isomers), de - A - lup - 12(13) - ene, de - A - lup - 5(10), 18(19) - diene and de - A - lup - 5(10), 11(129 - diene. It is assumed that 3-ketolupane and 3-ketolupane acid are the precursor of the lupenes. De - A-lupenes are formed by ways of complete loss of ring A' resulting from a 3,4 cleavage and the last of carboxyl, de - A-lupanes acid are degraded products of lupanoids during early diagenisis stage and also biomarkers indicating higher plant input.

Hopanoids are composed of C_{27} , C_{30} , C_{31} , hopenes and C_{27} , C_{30} — C_{32} hopanes. There is a higher proportion of C_{29} hopane in the 1-4 samples. C_{31} and C_{32} hopanes are only present at small concentration. Therefore it is prorposed that C_{10} hopanes may mainly originated form higher plants, while high carbon number hopanoids from bacteria and aquatic organism. Isomerides of hopanes are composed of $\beta\beta$, $\beta\alpha$ and $\alpha\beta$ hopanes. $\beta\beta$ hopanes are predominant; hopenes have reladtively higher concentration. These points reflect the characteristics of organic material during diagenesis stage. The discovery of C_{29} , C_{20} ring D momoaromatic 8,14—secohopanes in the 1-4 samples is significant, which is presence may be related to acidic medium (pH=5) and weak oxidation—weak reduction environment as well as activity of microbes in the modern marsh sediments of southern Gansu.