文章编号: 1000-0550(2005) 03-0554-05

两元混合天然气定量研究新方法

程付启 金 强

(石油大学(华东)地球资源与信息学院 山东东营 257061)

摘 要 确定端元气混合比例是混源气定量研究的主要内容。以两元混合天然气为例,首先要分析混源成藏的地质 条件,以确定可能的气源岩;然后根据源岩生气模拟实验与实测数据,建立端元气与混源气的地球化学模型,确定混源 气的混合比例与源岩成熟度;最后将结果用于混源成藏过程分析,提出混源成藏的地球化学机制。鄂尔多斯盆地中部 奥陶系风化壳天然气为上古生界煤成气和下古生界油型气混源气。从混源气藏形成的地质条件和地质过程着手,利 用天然气中甲、乙烷百分组成和碳同位素组成,建立了混合比例估算模型,并绘制了估算图版。对靖边等气田 13个天 然气样品进行研究,发现混源气混合比变化很大。除去全为煤成气(陕 21井)和全为油型气(陕 5井)的两个样品之 外,11个样品上古生界煤成气和下古生界油型气比例分布分别为 22% ~ 84%和 16% ~ 78%。但总体以下古生界油型 气为主,平均所占比例 63.2%,说明鄂尔多斯盆地中部奥陶系风化壳天然气以下古生界自生油型气为主。

关键词 混源气 两元混合 定量研究 靖边气田 第一作者介绍 程付启 男 1978年出生 博士研究生 地质资源与地质工程

中图分类号 P593 文献标识码 A

1 引言

天然气大多是由两种以上来源、或同源不同演化 阶段天然气混合而成,其中两元混合气 (包括两源天 然气混合和同一气源两演化阶段天然气混合)最为 常见^[1]。长期以来,前人在混源气研究方面做了大 量工作,提出了许多定性识别的方法。例如,Faber 等^[2]在 Bemard的基础上,建立了能够识别生物气和 热解气之混源气的 C₁ /(C₂ + C₃) $-\delta^{13}$ C₁图版;Faber 和 Bemer^[3]根据不同成因类型天然气 δ^{13} C₁、 δ^{13} C₂的 差别,作出了可以识别混源气的 δ^{13} C₁ $-\delta^{13}$ C₂图;戴 金星^[4]曾提出利用烷烃碳同位素序列识别混源气的 方法。另外,某些天然气类型判识图版,如张义纲 等^[5]的 X 型图、戴金星等^[6]的 V 型图等,都可以识别 混源气。

混源气的定性识别不能确定端元气类型和混合 比例,对天然气成藏有效性评价、气源对比、资源评价 等意义不大。为了解决成藏研究中的这些关键问题, 需要进行混源气的定量研究,即确定端元气类型与混 合比例、混源气成藏过程等。Bemer利用天然气生成 过程中甲、乙烷相对百分含量与碳同位素值和母质 *R*。的关系,建立了同源不同阶混源气识别模型,为确 定同源不同阶天然气混合比例提供了思路。此后,高 先志^[7]提出用甲烷碳同位素组成计算混合气混合比 例;王顺玉等^[8]利用体积加权建立了三端元气混合 比例估算图版。

混源气的混合比例是一系列地质作用和地质过 程的综合反映,定量判识混合比例,首先应了解研究 区的地质背景,恢复混源成藏的地球化学过程。天然 气烷烃组成和同位素比值等是母质成熟度的函数,且 受气体运聚过程的影响,因此混源气定量判识还需要 考虑地球化学参数的动态变化。

2 混源气定量研究新思路

定量判识混源气,首先应进行源岩、圈闭、通道等 成藏条件分析,并结合前人的定性判识方法^[1~6],确 定混源气是否存在及可能的端元气类型;同时分析气 体在运聚成藏过程中组分和同位素的分馏效应,建立 混源气定量判识的地球化学模型;然后绘制混源气混 合比例估算图版,并对所得结果进行综合分析和科学 解释。

具体来说,应当包括: (1)根据组分和同位素等

国家重点基础研究发展规划项目 (2001CB209102)的部分成果。 收稿日期: 2004-10-18 收修改稿日期: 2004-12-24

资料及地质条件分析,定性识别天然气的成因类型及 其端元组成,分析可能的气源岩;(2)气源岩地质地 球化学分析,确定气源岩的有机质类型和天然气生成 过程;(3)气源岩生烃模拟实验和天然气组分与同位 素组成实测数据统计,分析天然气生成、运移对其组 分和同位素等参数的影响,建立端元气地质地球化学 模型;(4)根据不同端元气在藏内物理混合的事实, 建立混合比例判识模型,绘制混合比判识图版;(5) 对结果进行成藏分析,提出混源气的地球化学成藏机 制(图 1)。

图 1 两元混合天然气混合比例定量判识流程

Fig 1 Quantitative identifying process of two-sourcemixed gas reservoirs

3 鄂尔多斯靖边等气田奥陶系风化壳 天然气定量研究

塔里木盆地克拉 2天然气和鄂尔多斯盆地中部 靖边等气田奥陶系风化壳天然气分别是典型的同源 不同阶和两源不同阶混源气。参考文献 1对克拉 2 两阶混合气进行了定量判识,得到了理想结果。本文 仅以鄂尔多斯中部靖边等气田为例,说明两源混合气 的定量判识过程。

- 31 混源气成藏特征分析
- 31.1 成藏地质条件 鄂尔多斯盆地普遍发育上古牛界煤系和下古牛

界碳酸盐岩两套气源岩。上古生界煤系直接覆盖在 奥陶系风化壳侵蚀面之上,以煤、炭质泥岩、生屑灰岩 为主,有机质类型为 型;煤层 TOC达 78 72%,泥、 灰岩 TOC为 0 61% ~ 2 67%;实测镜质体反射率 1 7% ~ 2 0%,处于高一过成熟阶段,能够提供丰富 的煤成气。下古生界碳酸盐岩分布在风化壳之下,岩 性以泥晶灰岩、含泥灰岩、含藻云岩和泥质云岩为主, 有机质类型为 型;TOC为 0 15% ~ 0 34%,平均为 0 28%,陈安定^[9]根据"物质平衡法"和"生烃热模试 验反推法"计算其原始 TOC为 0 35% ~ 0 44%;成熟 度 (R_{\circ})比上古生界煤系高 0 3%左右,已进入过成熟 干气阶段,是油型气有效源岩^[10,11]。

上、下古生界两套气源岩与风化壳储层构成"夹板"式组合。马五。黑色泥质灰岩与石炭系底部本溪 组铝土质泥岩及其上覆太原组暗色泥岩,对奥陶系风 化壳构成"下隔上盖"的遮挡模式^[12]。这种生储盖组 合使风化壳储层能有效捕集上、下古生界两种来源天 然气。

奥陶系风化壳天然气明显具有煤成气与油型气 混合的地化特征。天然气组成偏干,干燥系数超过 9%,甲、乙烷碳同位素组成分别为 – 30.94‰ ~ - 36.09‰ – 23.75‰ ~ – 31.33‰,分布范围较大 (表 1)^[13]。

31.2 混源成藏过程

加里东运动中晚期,在中央古隆起的控制下,盆 地中部先后发育层间岩溶和风化壳岩溶,奥陶系顶部 形成了广泛分布的孔、洞、缝储集网络。海西运动中 晚期,风化壳开始埋藏成岩,和下部碳酸盐岩以及上 古生界煤系相结合,形成"夹板"式组合,同时沉积交 代作用使储集空间外围的封闭性增强,逐渐形成古地 貌一岩性圈闭系统。晚古生代末期,两套气源岩在部 分地区已经开始生气,但这时奥陶系风化壳圈闭刚开 始形成,封闭能力较弱,气体难以保存。从三叠纪印支 运动开始,气源岩普遍生烃,并在燕山期达到高峰。下 古生界油型气向上运移进入风化壳,上古生界煤成气 通过下渗或从侵蚀沟侧侵进入奥陶系风化壳中。由于 盆地后期构造活动缓慢,且岩溶台地的侵蚀充填带能 够起到内部遮挡作用,气藏中天然气组成变化不大。

靖边等气田奥陶系风化壳天然气具有两源混合 成藏的地质条件,天然气也具有煤成气和油型气混合 的地化特征。因此,可以通过建立两种来源天然气生 成时的地球化学模型和混合过程的地球化学模型,来 定量判识风化壳天然气的混合比例。

3 2 混源气混合比例判识

321 端元气地球化学模型

甲烷、乙烷相对烷烃含量和碳同位素组成(CH4 (%)、 $C_2H_6(\%)$ 、 $\delta^{13}C_1$ 、 $\delta^{13}C_2$)是判识天然气成因类 型的有效指标。应用化学动力学理论,可以建立这些 指标与生气母质镜质体反射率 R_{\circ} 的定量关系^[3],即 本文所指端元气地球化学模型。参考前人成 果^[14~17],结合研究区源岩类型和演化特征,可以确定 出上古生界煤成气和下古生界油型气地球化学模型 (式 1~式 8)。

上古生界煤成气甲烷同位素组成的地球化学模 型借用刘文汇等^[17]的二阶段关系 (式 1),式 2~式 4 用模拟和实测的 $\delta^{13}C_{2}$ CH₄ (%)、C₂H₆ (%) 与 R₀值 回归得到,数据个数 (n)分别为 72,68,65,相关系数 (R²)分别为 0 8645 0 8344 0 8246

 $\delta^{13} C_1 = 48.77 \log(R_0) - 34.1 \quad (R_0 \leq 0.9\%)$ (1a) $\delta^{13}C_1 = 22.42 \log(R_0) - 34.8 \quad (R_0 > 0.9\%)$ (1b) $\delta^{13}C_2 = 9.15\log(R_0) - 26.46$ (2) CH_4 (%) = 28 91 log(R_0) + 88 38 (3)δ $\delta^{15}C_{2(\mathbb{R})} =$ $\alpha \bullet C_{2(\mbox{$\mathbb{R}}$)}(R_{01}) + (100 - \alpha) \bullet C_{2(\mbox{$\mathbb{H}}$)}(R_{02})$

式中: α 为上古生界煤成气所占百分比; $\delta^{13}C_{1(k)}$ (R_{ol}) 、 $\delta^{13}C_{2(\mbox{$k$})}$ (R_{ol}) 、 $C_{1(\mbox{$k$})}$ (R_{ol}) 、 $C_{2(\mbox{$k$})}$ (R_{ol}) 分别为 式 (1)、(2)、(3)和 (4), 且当 $R_{o1} \leq 0.9\%$ 时 $\delta^{13}C_{1(k)}$ (R_{ol}) 为式 (1a), $R_{ol} > 0$ 9时 $\delta^{13}C_{1(k)}(R_{ol})$ 为式 (1b); $\delta^{13} C_{1(in)} (R_{o2}), \delta^{13} C_{2(in)} (R_{o2}), C_{1(in)} (R_{o2})$ **1** $C_{2(in)}(R_{o2})$ 分别为式(5)、(6)、(7)和(8)。

由气源演化史可知,下古生界碳酸盐岩成熟度 (Ro)比上古生界煤系约高 0. 3%, 即: R₀ = R₀₁ + 0.3%^[9]。假设 $R_{01} = 0.5\%$ 时开始混合成藏,利用试 算法可以计算出不同 α值 (从 0~100,间隔为 10)对 应的 $\delta^{13}C_{I(\mathbb{R})}$ 、 $\delta^{13}C_{2(\mathbb{R})}$, 并可绘制出靖边等气田奥陶 系风化壳两源不同阶混源气判别图版 (图 2)。

323 判识结果与分析

将实测天然气的 $\delta^{13}C_1$ 、 $\delta^{13}C_2$ 投到判识图版上, 直接读出煤成气、油型气的比例(表 1)。

从表 1 可以看出, 上古生界煤成气和下古生界油 型气混合比例变化很大。其中陕 5井完全为油型气,

 $C_2H_6(\%) = -7.96\log(R_0) + 3.43$ (4)

下古生界碳酸盐岩生气母质以 型为主,甲烷同 位素组成的地球化学模型用沈平等的关系式 (式 5)^[15],式 6~式 8同样用回归的方法得到 (*n*分别为 $63, 52, 52, R^2$ 分别为 0,8553, 0,8279, 0,8132)。

$$\delta^{13}C_1 = 21.72 \operatorname{bg}(R_{\circ}) - 43.3 \tag{5}$$

$$\delta^{13} C_2 = 9 \ 0 \log(R_0) - 34 \ 9 \tag{6}$$

$$CH_4 = 4.56 \log(R_{\circ}) + 94.71$$
 (7)

$$C_2H_6 = -1.12\log(R_0) + 0.98$$
 (8)

322 混源气混合比例判识模型和图版

定量判识混源气,关键在于建立混合气地球化学 参数与混合比例的定量关系。根据同位素比值 (δ) 的定义和物质平衡原理,可以推出混源气碳同位素比 值与端元气碳同位素比值及混合比例的精确公 式^[18],并可近似为端元气的加权平均^[37,18,19]。用端 元气地球化学模型(式 1~式 8)代替静态参数,得到 混源气混合比例判识动态模型。

靖边等气田奥陶系天然气成藏只经过了短距离 运移,组分、同位素等参数在运移中的分馏效应可以 忽略。煤成气和油型气混合比例判识模型直接由式 1~式 4和式 5~式 8构建 (式 9和式 10)。

$$\int_{0}^{13} C_{1(\underline{R})} = \frac{\alpha \cdot C_{1(\underline{R})}(R_{o1}) \cdot \delta^{*} C_{1(\underline{R})}(R_{o1}) + (100 - \alpha) \cdot C_{1(\underline{n})}(R_{o2}) \cdot \delta^{*} C_{1(\underline{n})}(R_{o2})}{\alpha \cdot C_{1(\underline{R})}(R_{o1}) + (100 - \alpha) \cdot C_{1(\underline{n})}(R_{o2})}$$
(9)
$$\int_{0}^{13} C_{2(\underline{R})} = \frac{\alpha \cdot C_{2(\underline{R})}(R_{o1}) \cdot \delta^{13} C_{2(\underline{R})}(R_{o1}) + (100 - \alpha) \cdot C_{2(\underline{n})}(R_{o2}) \cdot \delta^{13} C_{2(\underline{n})}(R_{o2})}{\alpha \cdot C_{1(\underline{R})}(R_{o1}) + (100 - \alpha) \cdot C_{2(\underline{n})}(R_{o2}) \cdot \delta^{13} C_{2(\underline{n})}(R_{o2})}$$
(10)

陕 21井完全为煤成气。除去这两个异常值后油型气 平均为 64 2%。可见,鄂尔多斯盆地靖边等气田奥 陶系风化壳混源气主要来自下古生界油型气。

图 2 鄂尔多斯盆地两源不同阶混源气混合比例估算图版

Fig 2 Calculation figure of ratios of two-source-mixed natural gas with different evolution stages in Ordos basin 表 1 靖边等气田奥陶系风化壳天然气混源比判别结果 Table 1 M ixing ratio of natural gas from Odovician weathering crust reservoir of Jianbian gas fields and other gasfields

		-		
井号	混源气碳同位素组成		估算结果	
	$\delta^{13} C_1 / \! \%$	δ ¹³ C ₂ /‰	煤成气 油型气	$R_{o1}(\%)$
陕 5	- 33. 84	- 31 33	0/100	2.4
陕参 1	- 34. 26	- 27. 22	32/68	1.76
林 1	- 34. 31	- 28 32	22/78	1.89
陕 2	- 35. 87	- 26 49	40/60	1. 35
林 2	- 35. 62	- 25 85	50/50	1. 29
陕 21	- 36. 01	- 24 48	100 /0	0. 92
榆 3	- 30. 94	- 27. 52	40/60	2.35
麒参 1	- 32. 3	- 24 48	65/35	1. 64
洲 1	- 32. 17	- 25 2	55/45	1. 85
米 2	- 31. 86	- 23 75	84/16	1.5
铺 1	- 32. 56	- 26 23	42/58	1. 94
牛 1	- 36. 54	- 29 3	50/50	1. 29
鱼 1	- 40. 55	- 28 9	24/76	0.88

4 结束语

混源气定量研究,对成藏有效性评价、提高资源 评价可信度、以及正确部署勘探开发方案具有重要意 义。混源气的形成是多种地质条件和地质过程综合 作用的结果,混源气混合比例定量判识应从分析混源 成藏的地质要素着手,恢复混源成藏的地质地球化学 过程。甲、乙烷组分百分含量和碳同位素组成是判识 天然气的常用参数,也是定量判识混源气的有效参 数。在建立这些参数的地球化学模型时,除考虑母质 类型和演化程度的因素外,还需分析成藏过程对这些 参数的影响。

鄂尔多斯盆地中部奥陶系风化壳天然气是上古 生界煤成气和下古生界油型气混源成藏,应用本文方 法对其混合比例进行判识,发现两种来源气的源合比 例变化很大,表现"以下古油型气为主,上古煤成气 为辅,局部反客为主"的特征。

参考文献 (R eferences)

- 金强,程付启,刘文汇. 混源气藏及混源比例研究. 天然气工业, 2004,24(2):22~24 [Jin Qiang Cheng Fuqi Liu Wenhui Study on source-mixed gas reservoirs and source-mixed ratios Natural Gas Industry, 2004, 24(2):22~24]
- 2 Faber E, and StahlW. G eoch em ical surface exploration for hydrocarbons in the North Sea AAPG Bulletin, 1984, 68 363~ 368
- 3 Benner U, and Faber E. Maturity related mixing model formethane ethane and propane based on carbon isotopes Advances in Organic Geochemistry, 1988, 13 67~72
- 4 戴金星. 天然气碳氢同位素的特征和各类天然气的识别. 天然气

地球科学, 1993, 4(2-3): 1~40 [DaiJinxing Characteristics of carbon and hydrogen isotopes in natural gas and discrimination of allkinds of natural gas Natural Gas Geoscience, 1993, 4(2~3): 1~40]

- 5 张义纲,章复康,郑朝阳. 识别天然气的碳同位素方法. 有机地球 化学论文集. 北京:地质出版社, 1987. 1~14 [Zheng Y igang Zh ang Fukang Zheng Zhaoyang M ethod of Identifying Natural Gaswith Carbon Isotope Composition. Collected Works of Organic Geochemistry Beijing Geological Publishing House, 1987. 1~14]
- 6 戴金星,裴锡古,戚厚发主编. 中国天然气地质学(卷1). 北京:石 油工业出版社, 1992 [DaiJinxing PeiXigu, QiHoufa NaturalGas Geobgy in China (Vol 1). Beijing Petroleum Industry Press, 1992 386]
- 7 高先志.利用甲烷碳同位素研究混合气的混合体积. 沉积学报, 1997, 15(2): 63~65 [Gao Xianzhi Volume evaluation of the gas mixed with other gases using carbon isotopic compositions ActaSedimento bg ica Sinica, 1997, 15(2): 63~65]
- 8 王顺玉,戴鸿鸣,王海清. 混源天然气定量计算方法一以川西白马 庙气田为例. 天然气地球科学, 2003, 14(5): 351~353 [W ang Shunyu DaiHongming W ang Haiqing M ethod of quantity calculation ofmixed-source natural gas A study of B aim amiao gas field of west in Sichuan basin. Natural Gas Geoscience, 2003, 14(5): 351~353]
- 9 陈安定. 陕甘宁盆地奥陶系源岩及碳酸盐岩生烃的有关问题讨论. 沉积学报, 1996, 14(增刊): 90~99 [Chen Anding Carbonate source-rocks of the Ordovician in Shan-Gan-Ning Basin and discussion on the hydrocarbon generation of carbonates Acta Sedimentologica Sinica, 1996, 14(Supp): 90~99]
- 10 陈安定. 论鄂尔多斯盆地中部气田混合气的实质. 石油勘探与开发, 2002, 29(2): 33~38 [Chen Anding Feature of mixed gas in central gas field of Ordos basin Petroleum Exploration and Development 2002, 29(2): 33~38]
- 11 孙冬敏,秦胜飞,李先奇.鄂尔多斯盆地奥陶系风化壳产层天然 气来源分析.见:戴金星,傅诚德,关德范主编.天然气地质研究 新进展.北京:石油工业出版社,1997 46~54 [Sun Dongn in Q in Shengfei LiX ianqi O rigin of natural gases of Ordovician weather ring crust reservoir in Ordos basin. In: D ai Jinxing Fu Chengde Guan Defan, eds Advance in Natural Gas Geo bgy. Beijing Petroleum Industry Press, 1997 46~54]
- 12 郝石生,高耀斌,黄志龙.鄂尔多斯中部大气田聚集条件及运聚 动平衡.中国科学(D辑), 1996, 26(6): 488~492 [Hao Shisheng Gao Yaobin, Huang Zhilong A ccumulation conditions of natural gas and migration-accumulation balance process of the large gas field in central Ordos basin. Science in China (series D), 1996, 26(6): 488~492]
- 13 关德师,张文正,裴戈. 鄂尔多斯盆地中部气田奥陶系产层的油 气源. 石油与天然气地质, 1993, 14(3): 191~199 [Guan Deshi Zhang W enzh eng Pei Ge Oil-gas sources of Ordovician reservoir in gas field of centralOrdos basin Oil& Gas Geology, 1993, 14(3): 191~199]
- 14 SchoellM. The hydrogen and carbon isotopic composition of methane from natural gases of various origins Geochimica et Cosmochimica Aeta, 1980, 44(5): 649~661

- 15 沈平,徐永昌,王先彬,等. 气源岩和天然气地球化学特征及成气机理研究. 兰州:甘肃科学技术出版社, 1991 1~243 [Shen Ping Xu Yongchang W ang Xianbin, et al. Studies on Geochemical Characteristics of Gas-source Rock and Natural Gas and Mechanism of Genesis of Natural Gas Lanzhour Gansu Science and Technology Press, 1991 1~243]
- 16 Bemer U, and Faber E Empirical carbon isotope /m aturity relationships for gases from algal kerogens and terrigenous organic matter based on dry, open-system pyrolysis O rganic Geochemistry 1996 24(10): 947~955
- 17 刘文汇, 宋岩, 刘全有, 等. 煤岩及其主显微组份热解气碳同位 素组成的演化. 沉积学报, 2003, 21(1): 183~190[LiuWenhu;

Song Yan, Liu Quanyou, *et al.* Evolution of carbon isotopic composition in pyrolytic gases generated from coal and itsmain macerals. Acta Sed in entologica Sinica, 2003, 21 (1): 183~ 190]

- 18 夏新宇,赵林,曾凡刚.鄂尔多斯盆地中部气田奥陶系风化壳气藏 天然气来源及混源比计算.沉积学报,1998,16(3):75~79[Xia Xinyu, Zhao Lin, Zeng Fangang G as sources and mixing ratio of Ordovician weathering crust reservoir of central gas field in Ordos basin Acta Sedimentologica Sinica 1998, 16(3):75~79]
- 19 Jenden P D, D razan D J Kaplan I R M ixing of the mogenic natural gases in northern Appalachian basin. AAPG Bulletin, 1993, 77(6): 980~998

A Novel Approach for Quantitative Study on Two-source-m ixed Natural Gas Reservoirs

CHENG Fu-qi JN Q iang

(College of Geo-resources and Information of University of Petroleum, Dongying, Shandong 257061)

Abstract Calculating ratio of source-mixed natural gas is in portant in studying source-mixed gas reservoir. For a two-source-mixed gas reservoir, the following work must be done (1) analyzing the geological factors of formation of source-mixed gas reservoir, confirming potential source rocks; (2) based on experimental data of ascertained source rocks and measured data of natural gas finding geochemical modes of different end-gas and source-mixed gas then using the modes to calculate ratios of source-mixed gas and maturity of source rocks; (3) using the ratios to analyze the formation process of source-mixed gas reservoir; proposing geochemical trapping mechanism. The natural gas in Ordovician weathering crust reservoir in the Central Portion Gas Field in Ordos basin is source-mixed gas of Upper Paleozo-ic coal-typed gas with Lower Paleozoic oil-typed gas. Starting with analyzing geological factors and process of methane and ethane, a calculating model of ratios was established and a calculating graph of ratios was given in this paper 13 gas samples collected from Jianbian gas field were analyzed using the method. The percent respectively, according to 11 samples (samples collected from W ell Shan21 and Shan5 were excluded). Based on the result, we could draw a conclusion that Lower Paleozoic oil-typed gas, with the percentage of 63.2 is dominant in Ordovician weathering crust reservoir in the percentage of 63.2 is dominant in Ordovician weathering crust reservoir in the percentage of 63.2 is dominant in Ordovician weathering crust reservoir in the percentage of 63.2 is dominant in Ordovician weathering crust reservoir in the percentage of 63.2 is dominant in Ordovician weathering crust reservoir in the CentralPotion gas field in Ordos basin

Keywords source-mixed natural gas, two-source-mixed natural gas, quantitative study, Jinbian gas field