文章编号: 1000-0550(2009) 04-0573-10

豫西济源地区早三叠世和尚沟组湖相 遗迹化石及遗迹组构

胡 斌 杨文涛 宋慧波 王 敏 钟明洋 (河南理I大学资源环境学院 河南省生物遗迹与成矿过程重点实验室 河南焦作 454003)

摘 要 豫西济源地区早三叠世和尚沟组滨浅湖沉积中动物遗迹化石共鉴定出 9个遗迹属 10个遗迹种。包括 Arenicolites isp, Beaconites coronus Cylindricum isp, Palaeophyaus heberti Palaeophycus tubularis Planolites isp, Psilonichnus isp, Scoyen ia gracilis Skolithos linearis和 Taenil ium barretti等。根据遗迹化石分布特征及沉积环境分析,可识别 出三种遗迹组构 1) Scoyen ia 遗迹组构,反映了干旱气候条件下的滨湖沉积环境; 2) Planolites—Taenil ium 遗迹组构,属 于湖泊水体逐渐变浅的浅湖沉积环境; 3) Psilonichnus遗迹组构,代表了水动力由弱到强的湖泊三角洲沉积环境。 关键词 济源 三叠纪 湖泊沉积环境 遗迹化石 和尚沟组 第一作者简介 胡斌 男 1952年出生 教授 博士生导师 遗迹学与沉积学 E-mail hul@ hpu edu cn 中图分类号 0911.28 文献标识码 A

遗迹化石类型或组合的变化,可以反映沉积基底 性质、环境能量、沉积速率及变化、底层水化学性质以 及水体深度,因而遗迹化石的研究对古沉积环境的解 释、层序界面的判断等有着重要的意义^[1~8]。与海洋 沉积环境相比,陆相沉积环境甚至更为复杂多变,陆 相遗迹化石的研究,就更能突出它的重要作用。

豫西济源中生代沉积盆地中遗迹化石的研究,前 人已做了很多工作。黄长春和胡斌^[6]研究了豫西济 源晚三叠世潭庄组含煤含油地层中的遗迹化石,对 中一低能河流、滨湖及半深湖或湖湾沉积环境的遗迹 组构特征做了研究;胡斌^[3,6]对豫西济源盆地晚三叠 世河流环境沉积类型和遗迹组构特征的研究,指出了 温暖潮湿和干旱这两种气候条件下河流沉积环境中 遗迹化石在组成上的差异,并提出*Stipsellus*遗迹组构 可作为河流沉积的典型生物遗迹标志。张国成^[3,10] 在研究济源盆地晚三叠世谭庄组上段湖相沉积及遗 迹化石时,推测谭庄组上段湖相沉积反映出的强烈季 节性可以用潘加亚巨型季风影响的设想模式解释。 齐永安^[4]对豫西济源中三叠世油房庄组遗迹化石, 建立了 6种高能砂质滨湖沉积中的遗迹组构和 3种 极浅湖泥岩夹粉砂岩中的遗迹组构。

本文首次研究了该盆地早三叠世和尚沟组遗迹 化石及遗迹组构,初步探讨了该组沉积环境及干旱气 候条件下湖相遗迹化石的组成特征,这对阐明该盆地 中生代早期的沉积演化提供了新的生物遗迹信息。

1 地质背景

济源盆地位于河南省西北部 (图 1), 发育一套较 完整的中生代地层。由于印支及燕山构造运动的影 响, 盆地由中生代早期的凹陷盆地逐步演化为晚侏罗 世一白垩纪的断陷盆地。其沉积环境大致经历了由 河流[→]湖泊[→]河流[→]湖泊的演化过程。

和尚沟组属早三叠世沉积的一套以鲜红、紫红色 砂质页岩、粉砂岩为主,夹暗紫红色细粒石英砂岩及 数层细砾岩条带,厚 100 m。在细砂岩及细砾岩中发 育大型楔状、板状交错层理及平行层理,在粉砂岩、砂 质泥岩中发育缓波状、波状层理,在泥岩中可见泥裂。 本组属干热气候条件下的滨、浅湖相沉积,与上覆二 马营组和下伏刘家沟组呈整合接触。

从整个和尚沟组沉积史来看, 沉积物颜色继承了 早期的鲜红、暗紫红色, 反映该组沉积物沉积时, 气候 继续干燥。然而, 在这种干燥气候条件下, 湖泊水体 并没有变浅的趋势, 由沉积物颗粒大小来看, 从下到 上是逐渐变细的, 这证明湖泊水体反而在一步一步加 深。由于下部砾石条带的频繁出现, 说明洪流事件频 繁, 向湖泊注入大量的水体, 沉积环境由滨湖不断发 展为浅湖, 水动力强度也随着减小, 水面变得平静。

¹ 科技部《重大基础研究前期研究专项》(批准号: 2005CCA 05000)、河南省"遗迹化石与地球生物学"高校科技创新团队支持计划项目资助。 收稿日期:)2003;08;26;收修改稿日期:)2003;06;10;27;10] Electronic Publishing House. All rights reserved. http://www.cnki.net

图 1 研究区位置及地质背景略图

Fig 1 Location and geobgic setting of the study area

2 实测地层

本次实测和尚沟组地层,位于济源西部王屋山南 15 km 处,主要岩性及遗迹化石组成特征 (图 2)描述 如下:

上覆地层:二马营组 ——整 合—— 9 底部为紫红色细砾岩、含泥砾,砾石分选好,磨 圆度中等,直径 2~5mm,发育楔状交错层理,中间为 紫红色粉砂质泥岩,上部夹一层泥岩,顶部为紫红色 粉砂岩,生物扰动较强。产遗迹化石: Palaeophycus ubularis, Taenidium Barretti, Beaconites coronus Cylindricum isp, Psilonichnus isp, Arenicolites isp等。 15.4m

8. 下部为砖红色薄层状粉砂岩, 底部为一层 10 m 厚的细砾岩条带, 中间为砖红色粉砂质泥岩, 含大 量钙质结核, 上部为砖红色泥质粉砂岩夹一层 10 m 厚的细砾岩条带。发育波状层理、楔状交错层理。产 遗迹化石: Skolithos linearis, Palaephycus tubularis等。 8. 9m

7. 下部为紫红色薄层状粉砂岩, 中部为砖红色泥 2. 砖红色薄层粉砂质泥岩, 中部夹一层 1. 2 m 厚 质粉砂岩夹粉砂质泥岩, 上部为紫红色粉砂质泥岩夹 的粉砂岩。粉砂质泥岩中发育大量钙质结核, 具水平

一薄层泥质粉砂岩,水平层理发育。产遗迹化石:
 Skolihos linearis, Beaconites coronus等。
 11.8m
 6浅紫红、紫红色薄层状粉砂质泥岩,夹浅紫红、

紫红色泥质粉砂岩,水平层理发育。产遗迹化石: Beaconites coronus等。 7.5 m

5.砖红色薄层状泥质粉砂岩,夹浅紫红色粉砂岩,发育缓波状层理,底部含砾石,分选中等,磨圆度较差,最大直径小于3 m,产遗迹化石:*P lanolites* isp,*Palaeophycus tubularis*等。7.3 m

4 浅紫红色薄层状粉砂岩, 中部夹砖红色、浅紫 红色粉砂质泥岩及一层 10 cm 厚的细砾岩条带。砾 石分选中等, 磨圆度较差, 直径约 2 cm。产遗迹化 石: Palaeophycus tubularis, Taenidium Barretti, Beaconites coronus, Scoyenia gracilis, Skolihos linearis等。

9.8 m

3 下部浅紫红色薄层状粉砂岩,中间夹 1 2m厚 砖红色泥质粉砂岩,上部为砖红色粉砂质泥岩,含大 量钙质结核。粉砂岩中平行层理发育,产遗迹化石: Palaeophycus tubularis, Scoyenia gracilis等。 10 5m 2 時代色薄层粉砂质泥岩,中如来一层 1 2 原 层理。产遗迹化石: *Planolites* isp 等。 7.5 m
1. 紫红色、砖红色厚层状细砂岩,中间夹粉砂质
泥岩、泥质粉砂岩及数层细砾岩条带。粉砂质泥岩层
中发育大量钙质结核,砾石分选一般,呈次圆状,直径
小于 3 m。可见平行层理及楔状交错层理。产遗迹
化石: *Palaeophycus heberti* Skolithos linearis, Scoyenia
gracilis, Beaconites coronus等。 20.4 m
下伏地层: 刘家沟组 ——整 合——

3 遗迹化石描述

本次工作发现,该盆地下三叠统和尚沟组滨浅湖 沉积中遗迹化石较丰富,按生态或造迹生物的行为习 性分类,以居住迹、进食迹为主,其中居住迹有 Arenieolites isp, Cylindriam isp, Palaeophycus heberti, Palaeophycus tubularis, Psilonichnus isp 和 Skolithos linearis, 进食迹有 Beaconites coronus, Planolites isp, Scoyenia gracilis和 Taenidium barretti等。根据个体遗 迹化石分析推测,其造迹生物多为昆虫类、十足类、环 节动物和节肢动物等。

这些遗迹化石多以全浮痕或上浮痕的方式保存 在细砂岩、粉砂岩或粉砂质泥岩中。细砾岩条带中不 见遗迹化石,说明生物无法在此种高能环境中生存。

対观察和采集到的大量遗迹化石,经过仔细辨认 和鉴定,共有 9属 10种,分别描述如下: Ichnogenus*Arenicolites* Salter 1857 *Arenicolites* isp (图版 ④B¹)

Fig 2The characteristics of liho bgic and ichnofossil composition of the Lower Triassic Heshanggou Formation in Jiyuan area© 1994-2014 China Academic Journal Electronic Publishing House. All rights reserved.http://www.cnki.net

描述:简单无蹼状构造的 U 形潜穴, U 形管垂直 于层面。单管直径 1 mm, 两管间相距约 1 m。被动 充填, 充填物砂质含量较多。

讨论: Arenicolites 与 Diplocraterion, Rhizocorallium 均为 U形潜穴, 区别是 Diplocraterion 垂直于层面, 并 具蹼状构造, 管口在层面之上略突出; Rhizocorallium 亦具有蹼状构造, 但与层面平行或略倾斜。

Arenicolites的沉积环境,以往多在低能滨岸混合 潮坪环境中发现,近年来在我国陆相地层中也有发 现,李应暹等^[10]在辽河盆地古近系中发现有 Arenicolites,为一种水体氧化条件好,水流能量较低或中等的 沉积环境;郑玉龙等^[11]在松辽盆地上白垩统中发现 Arenicolites,反映水能量较低的浅水环境。此处发现 的 Arenicolites 与 P silon ichnus 共生,其形成在湖泊三 角洲沉积环境中。

产地及层位:豫西济源王屋山地区早三叠世和尚 沟组顶部。

Ichnogenus *Beacon ites* V ia by 1962

Beaconites coronus Viaby, 1962(图版 iv-A、B)

描述: 直一弯曲型进食潜穴, 不分枝。衬壁清楚。 长 4 m, 直径 5 mm。主动充填, 具新月型回填纹构 造, 回填纹宽度明显窄于潜穴直径。与层面平行或斜 交。

讨论:具有新月形的这类遗迹化石一直存在着争 议,特别是 Beaconites Taen id im 和 Ancorichnus。 Brom $ky^{[13]}$ 认为 Ancorichnus中心带具有"U"型回填纹 并与侧壁回填纹的方向相反。Keighley和 Pickerill^[14]修订了 Beaconites 这个遗迹属,将是否存在较厚 的衬壁来作为区分 Beaconites 和 Taenidium 的标志。 然而,这一提法受到很多学者的质疑,主要是 Viabv^[15]对 Beaconites 的描述并没有提到像 Scoyen ia 或 Ancorichnus那样有清楚的衬壁, Retalkck^[16]认为新月 型回填构造特征,是鉴别他们的有效标志。这里采用 Keighley和 Pickerill的区分方法,即 Beaconites 有衬 壁,而 Taenidium 没有。

Beaconites遗迹属有三个遗迹种: Beaconites antarcticus, B. capronus和 B. coronus。其中, B. capronus回填构造具"V"型; B. antarcticus和 B. coronus 均为"U"型,但前者回填纹的单个房室宽度大于潜穴 直径,而后者回填纹的单个房室宽度小于潜穴直径。

该遗迹化石出现在低能浅水条件下,并周期性暴

产地及层位:豫西济源王屋山地区早三叠世和尚沟组。

Ichnogenus Cylindricum Linck, 1949

Cylindricum isp (图版 iv-C)

描述:试管状大型垂直潜穴,下端圆而不尖,外 壁清晰,光滑。潜穴被动充填,充填物与围岩不同。 长 4~5 cm,直径 13 mm,全浮痕保存。

讨论:该遗迹保存在浅紫红色粉砂岩中,充填物 为紫红色泥岩。该遗迹化石在和尚沟组中并不多见, 与 *Psilonichnus*一起出现,其代表的沉积环境二者相 同。

产地及层位:豫西济源王屋山地区早三叠世和尚 沟组上部。

Ichnogenus Palaeophycus Hall 1847

Palaeophycus heberti Saporta, 1872(图版 iv-D)

描述: 直一弯曲型潜穴, 潜穴横断面呈圆、亚圆 状。长 3~4 cm, 宽 6~8 mm。潜穴具较厚衬壁并呈 暗红色, 似含铁物质。被动充填, 充填物与围岩相同, 与层面平行或斜交。

Palaeophycus tubularis Hall 1847(图版 iv-E, F)

描述: 直一弯曲型潜穴, 潜穴横断面呈亚圆状, 外 壁光滑。长 6 cm, 宽 6~ 8 mm。潜穴具衬壁。被动 充填, 充填物与围岩相同, 与层面平行或斜交。

讨论: Palaeophycus 与 Planolites 也是易混淆的 两种化石, K eigh ley 和 Pickeril¹⁴认为潜穴的大小和 分支情况不能用来识别 Palaeophycus 与 Planolites, 它 们的区别重要是存在 (Palaeophycus)或不存在 (Planolites)潜穴壁^[13,17], Palaeophycus 通常出现在固底底 层中, 对于衬壁的出现, M elchor等^[18]将 Palaeophycus 衬壁的作用解释为: 阻止水分从逐渐变干燥的沉积物 中流失, 而不是用来加固潜穴。亦有学者将充填物与 围岩相同 (Palaeophycus)或不相同 (Planolites)作为区 分它们的主要标志。

该遗迹化石广泛出现的环境在河流、泛滥平原、 浅水湖泊中。

这里应提出的是,国内学者对 Paheophycus 的生态分类观点不一,有的定为居住迹^[9],也有的认为是进食迹^[19]。根据一些外文资料来看,Pemberton和 Frey^[20]、Buato is和 Mangano等^[21]认为该遗迹化石是 居住迹,亦有可能为进食迹兼居住迹二种行为,但更

577

产地及层位:豫西济源王屋山地区早三叠世和尚 沟组。

Ichnogenus Planolites Nicholson, 1873

Planolites isp (图版 ④A)

描述:沿岩层面分布的水平潜穴,无衬壁,充填物 与围岩不同,其颜色比之围岩较深,粒度更细。长 5 ~6 cm,直径 3~4 mm。在层面不规则分布,有时相 互穿插。

讨论: Pemberton和 Frey^[20]认为该遗迹属可划分 出 3 个遗迹种: Planolites montanus, P. beverlegensis 和 P. annularis 其中, P. annularis 具有环状纹饰。 P. montanus 和 P. beverlegensis 是依据大小来区分 的,前者直径一般不超过 5 mm, 而后者直径平均 8mm, Buato is和 Mangano^[22]认为在陆相环境中,该 遗迹的造迹生物是节肢动物。

该遗迹可以广泛生活在辫状河三角洲平原、湖 岸、浅水等环境。具有穿相性。

产地及层位:豫西济源王屋山地区早三叠世和尚 沟组中部。

Ichnogenus Psilonichnus Fursich, 1981

Psilonichnus isp (图版 ④-B④)

描述:直一弯曲型垂直潜穴,潜穴中上部出现向 上分支,呈Y型。无衬壁,充填物与围岩不同,含泥 质较多。长10cm,直径 5~10mm。

讨论: 其潜穴形态从 ⊢ J−U−Y 型到不规则型 都有, 一般认为其造迹生物是两种十足甲壳类: 虾和 螃蟹。近年来, *Psilon ichnus* 遗迹群落和 *Psilon ichnus* 遗迹相已经用来代表后滨沙丘沉积环境。然而, 该遗 迹在河口沉积等陆相环境中也有发现^[22]。此处发现 的 *Psilon ichnus* 遗迹化石出现在湖泊三角洲沉积环境 中。

产地及层位:豫西济源王屋山地区早三叠世和尚 沟组顶部。

Ichnogenus Scoyenia White, 1929

Scoyenia gracilis W hite, 1929(图版 ④-C)

描述: 直或弯曲的细长潜穴,衬壁不清晰。长可达 50 cm,宽 3~4 mm,与岩层面平行,常相互交叉但不分支,外壁有抓痕,内部可见半月形充填的回填沉积物。

Goldring和 Pollad^[24]发现了与 Scoyenia gracilis近似 的潜穴并认为其与 Beaconites antarcticus是有联系的。 对于该遗迹属的造迹生物有不同的认识, Frey等^[25] 认为其造迹生物为节肢动物, A lessandro等^[26]认为是 昆虫和多毛目环节动物, 也有些学者认为是十足类甲 壳动物。

Scoyenia 一般认为在经常干旱条件下的低能极 浅水湖泊与冲积平原或三角洲平原分流河湾的浅水 湖泊是其典型的沉积环境。

产地及层位:豫西济源王屋山地区早三叠世和尚 沟组中、下部。

Ichnogenus Skolithos Haldemann, 1840

Skolithos linearis H aldem ann, 1840(图版 ④-D)

描述: 垂直针状潜穴, 横断面呈圆形或亚圆形, 外 壁光滑, 无衬壁, 被动充填。长 5 m, 直径 4 mm。内 迹保存, 与层面垂直或斜交。

讨论:该遗迹属作为滨海相典型代表分子,在陆 相高能沉积环境中亦频繁出现,其保存不仅反映造迹 者的行为习性,还受到很多因素的影响(包括埋藏和 沉积过程)^[13]。造迹者通常认为是环节动物或帚虫 动物的居住潜穴。

产地及层位:豫西济源王屋山地区早三叠世和尚 沟组。

Ichnogenus Taenidium Heer, 1877

Taenidium barretti(Bradshaw, 1981)(图版 ④-E、F)

描述: 直一微弯曲型进食潜穴, 不分支, 可见长度 5 cm, 直径 1 cm。无衬壁。主动充填, 具新月型回填 纹构造, 回填纹宽度明显窄于潜穴直径。内迹保存, 与层面呈高角度斜交。

讨论: Taenidium 与其它具有新月形回填纹潜穴 一样,形成在一种潮湿的底层中,Keighley和 Pickeril¹⁷⁷提到 Taenidium 保存为全浮痕并呈现多节现象。

Taenidium 可划分出四个遗迹种: Taenidium serpentinum, T. cameronensis, T. satanassi和 T. barretti, T. sepentinum 和 T. satanassi新月形回填纹构造呈 "U"型,但 T. serpentinum 新月形宽度和潜穴宽度大 致相等,而 T. satanassi新月形宽度比潜穴宽度小得 多; T. cameronensis和 T. barretti新月形回填纹构造 呈近"V"型,但 T. cameronensis新月形宽度大于潜穴 宽度, 而 T. barretti新月形宽度远小于潜穴宽度。

◎ 讨论: Scovenia 的原始描述现在已经不清楚了

环境中出现,陆相环境中的遗迹化石主要有节肢动物 或多足类动物产生^[27]。

产地及层位:豫西济源王屋山地区早三叠世和尚 沟组中、上部。

4 遗迹化石分布及遗迹组构

济源中生代沉积盆地下三叠统和尚沟组遗迹化 石的分布具有一些明显的特征:首先,在该组湖泊沉 积早期,一些遗迹化石占据着明显的统治地位,在地 层中频繁出现,然而却在该组沉积的中、晚期消失。 比如 Scoyenia gracilis 和 Palaeophycus heberti。 Scoyenia gracilis的消失,可能原因是由于水体的不断加 深,造成该地区不再暴露到地表,促使其造迹生物迁 移到水浅的地方造迹,而 Palaeophycus heberti的消失 就有些有趣,取代它的是 Palaeophycus tubu laris 前者 保存在暗红色的砂质岩层中,其衬壁清晰可见,并含 铁质,后者基本上保存在颜色较浅的粉砂岩中,衬壁 不清晰,整体物质与围岩相同,可能的解释是;早期气 候干燥,沉积物中水分大量流失,造迹生物需要建造 一个厚的衬壁潜穴来阻止水分的流失,随着水体的加 深,造迹生物的这种意图也可以随之消失。然后是一 些遗迹化石的阶段性出现,比如 Skolithos linearis。 Skolihos linearis出现在极细砂岩层中,这种高能环境 下的产物. 代表了一次事件沉积或是水下扇环境。随 着沉积的演化,像 Planolites isp., Taen idium barretti Psilonichnus isp 和 A ren icolites isp 这些遗迹化石都相 继出现。Planolites isp, Taenidium barretti的出现在 很大程度上是由于水体变深的结果.而 Psilonichnus isp 与 Arenicolites isp 共生, 这类居住迹, 一般生活在 滨岸环境中,由于底层固结度较好,又有水流的不断 补充,提供了其造迹生物居住的良好环境。也有些遗 迹化石在整个沉积史中都有分布,比如 Beaconites coronus 这种化石对水体深度要求不很严格,造迹者 可以在浅水下生活,也可以在暴露的地表中生存。

按上述遗迹化石的产状特征,可将和尚沟组滨浅 湖沉积环境中遗迹化石划分为三种遗迹组构: Scoyenia遗迹组构、Planolites—Taenidium 遗迹组构和 Psilonichnus遗迹组构。

1) Sayenia 遗迹组构

该遗迹组构主要发育在和尚沟组沉积早期的细砂中,底层有一定的固结,细砾岩条带出现频繁,组成分子包括: S coy enia gracilis, Palaeophy cus heberti Skolithos, linearis和 Beaconites coronus,这些遗迹化石能够。 在水动力较强的环境中生存,以 Scoyen in gracilis的首次出现为开始,水流淹没了曾经暴露的地表, Palaeophycus heberti和 Skolithos linearis相继出现,造迹生物 开始活跃,此时,底层生物扰动强烈,待到水动力稍微 小点, Beaconites coronus也移居过来,生物扰动强度达 到顶峰。该遗迹组构代表了一种处于周期性水流条 件下的滨湖沉积环境(图 3)。

	岩性	柱		岩石类型	层理类型	遗迹化石	沉积环境
	4.4			粉砂质泥岩 粉砂岩	-	Beaconites Scovenia	浅湖
*	•	* *	*	细砂岩	平行层理	Palaeophycus Skolithos	滨湖
0	0	0		细砾岩	楔状交错层理		

图 3 Scovenia遗迹组构

Fig 3 Scoyen ia ichnofabric

2) Planolites—Taenidium 遗迹组构

该遗迹组构主要发育在和尚沟组中、上部的粉砂 及粉砂质泥岩沉积中,底层还未达到固结状态,组成 分子包括: Planolites isp, Taen il im barretti, Palaeophyaus tubularis, Scoyenia gracilis和 Skolithos linearis, 该遗迹组构则以 Planolites isp 的出现为开始,此时, 湖泊水体已相对较深,水体较安静,适合 Planolites isp 和 Taenil im barretti等这些造迹生物生活,但其 生物扰动强度与之前相比,较弱,原因在于水体变深 之后,水动力也随之减小,便于沉积物快速沉积,生物 扰动时间受到限制。随后, Palaeophyaus tubularis, Scoyenia gracilis和 Skolithos linearis造迹生物开始活 动,但并没有出现能够指示沉积底层暴露的标志性遗 迹化石或岩性特征,推测,该遗迹组构代表了湖泊水 体较浅的浅湖沉积环境,是一种水下环境(图 4)。

岩性柱	岩石类型	层理类型	遗迹化石	沉积环境
N 0 0 0 2 4 4 4 2 4 4 4 2 4 4 4 2 4 4 4 3 4 5 5 3 5 5 5 4 5 5 5	粉砂岩	缓波状层理	Scoyenia	滨湖
	粉砂质泥岩		Taenidium	浅湖
10 10 10 10 10 10 10 10 10	粉砂岩	平行层理	Skolithos	水下扇
	粉砂质泥岩		Planolites	浅湖

thos linearis和 Beaconites coronus,这些遗迹化石能够。_____3)Psilonichnus遗迹组构。_____3)Psilonichnus遗迹组构。______3)Psilonichnus遗迹组成和______3)Psilonichnus遗迹组成和______3)Psilonichnus遗迹

该遗迹组构主要发育在和尚沟组上部的粉砂岩 沉积中,底层由未固结到固结状态,组成分子包括: Arenicolites isp, P silonichnus isp, Beaconites coronus, Cylindricum isp, Taenidium barretti和 Palaeophycus ubularis。该遗迹组构发育在二马营组黄灰色厚层砂 岩下部,由于河流冲击的强水流原因,打破了原来适 合 Beaconites coronus和 Taenidium barretti造迹生物生 活的安静环境,水流带来了丰富的营养物质,为 Palaeophycus tubu laris造迹生物提供了良好的生存场 地,而水流不断冲洗,将松散的沉积物带走,使早已固 结的底层暴露出来, Cylindricum isp、P silonichnus isp 和 A ren icolites isp 的造迹生物则正是需要这种固底来 掘穴。所以,该遗迹组构代表了水动力由弱到强的湖 泊三角洲沉积环境(图 5)。

沙岩 砂岩	楔状交错层3 平行层理 平行层理	理 E Cylindricum Psilonichnus Arenicolites	二马营组 河口冲积扇 湖泊三角洲
砂岩	平行层理	E Cylindricum Psilonichnus Arenicolites	湖泊三角洲
		Arenicolites	1
质泥岩	水平层理	Beaconites	浅湖
		小丁広ち	Beaconites

图 5 Psilonichnus遗迹组构

Fig 5 Psilonichnus ichnofabric

5 结论

(1)豫西济源地区早三叠世和尚沟组属一套干 旱气候条件下,滨浅湖沉积。发现 2大类 9属 10种 遗迹化石,其中居住迹有 Arenicolites isp, Cylindricum isp, Palaeophycus heberti, Palaeophycus tubularis, Psilonichnus isp 和 Skolithos linearis, 进食迹有 Beaconites coronus, Planolites isp, Scoyenia gracilis和 Taenidium barretti,这些遗迹化石多为全浮痕或上浮痕保存,其 丰度较高,而分异度较低,生物扰动中等一强烈。

(2) 对该组遗迹化石特征进行了分析和讨论,总 结出了三种遗迹组构: Scoyenia 遗迹组构、Planolites— Taenidium 遗迹组构和 Psilonichnus遗迹组构,分别代 表了干旱气候条件下滨湖、浅湖及湖泊三角洲沉积环 境。

参考文献(References)

 1 张建平,李明路.遗迹学研究现状及其在层序地层学中的应用潜力
 sin, Henan Province[J]. Journal of Pakeogeography 2004 6(4)

 ①J. 沉积学报. 42000a 18(3): 389-394 [Zhang Jianping LiMing u
 434-441]

 ④J. 1994-2014 China Academic Journal Electronic Publishing House: All rights reserved.
 http://www.cnki.net

A dvan ces in ichnology and its potential for sequence stratigraphy [J]. A cta S ed in entologica S in ica, 2000, 18(3): 389-394]

- 2 张建平,薛叔浩,杨式溥,等.新疆吐哈盆地侏罗纪湖相动物遗迹化 石的发现及古环境意义[J].现代地质,2000h 14(3):373-378 [Zhang Jiangping Xue Shuhao, Yang Shifu, et al D iscovery of Jurassic lacustrine trace fossils and their paleoenvironmental significance from Turpan-Ham i Basin, Xin jiang[J]. Geoscience-Journal of Graduate School, China University of Geosciences 2000, 14(3):373-378]
- 3 胡斌,张国成,郭卫星,等.豫西济源谭庄组河流沉积中的 Stipsellus 遗迹组构 [J].煤田地质与勘探, 2004, 32(3): 1-4 [HuBin, Zhang Guocheng GuoWeixing et al TheStipsellus ichnofabric in the fluvial deposits of Upper Triassic Tanzhuang Formation in Jiyuan, Westem Henan[J]. CoalGeology & Exploration 2004, 32(3): 1-4]
- 4 齐永安,胡斌,张国成,等.豫西济源地区中三叠世油房庄组遗迹组构及其环境解释[J]. 沉积学报. 2007. 25(3): 372-379 [QiYongan, HuBin, Zhang Guodheng et al. Ichnofabrics and their environmental interpretation from Middle Triassic Youfangzhuang Formation, Jiyuan Region, Western Henan Province [J]. Acta Sedimentologica Sinica, 2007, 25(3): 372-379]
- 5 施振生,胡斌,张新培.山东省东北部车镇凹陷古近系沙河街滨浅 湖沉积中的遗迹群落[J].古生物学报,2005,44(1):96-104 [Shi Zhensheng HuBin, Zhang Xinpei Idhnocoenosis of shore-shallow kacustrine Shahejie Formation (Paleogene) in Chezhen Sag Jiyang Depression of Bohaiwan Basin, Shandong[J]. A cta Pakeon to bg ica Sinica 2005, 44(1):96-104]
- 6 黄长春,胡斌,济源上三叠统含煤含油地层中痕迹组构 [J]. 河南石 油, 1998, 5 5-7 [Huang Chunchang Hu Bin The Ichnofabrics of the coal and oil-bearing strata in UpperTrassic in Jiyuan [J]. Henan Petroleum, 1998, 5: 5-7]
- 7 胡斌,黄长春,张宏敏,等.豫西济源晚三叠世河流沉积类型及生物 痕迹组构特征 [J].河南地质,2000 18(3): 176-180 [Hu Bin, Huang Changchun, Zhang Hongmin, et al. The types of fluvial deposits and its Ichnofabric feature from the Upper Triassic Epoch of Jiyuan Basin, Westem Henan [J]. Henan Geo bgy 2000, 18(3): 176-180]
- 8 施振生,杨威,郭长敏,等.遗迹化石在层序地层学研究中的应用 [J].地层学杂志,2008,32(1):79-84 [Shi Zhensehng YangWei Guo Changmin *et al.* The application of trace fossils to the research of sequence stratigraphy[J]. Journal of Stratigraphy, 2008, 32(1):79-84]
- 9 张国成,曾玉凤, Buatois L A,等. 济源盆地谭庄组 (T₂₋₃)上段湖 相沉积及遗迹化石特征 [J]. 沉积学报, 2005, 23(1): 100-107 [Zhang Guocheng Zeng Yu feng Buatois L A, et al Lacustrine deposits and associated trace fossils in the upper part of the Tanzhuang Formation (T₂₋₃), Jiyuan Basin, H enan Province[J]. A cta Sed in entobgica Sinica, 2005, 23(1): 100-107]
- 10 张国成,郭卫星,曾玉凤. 河南西峡盆地上白垩统河流及湖泊沉积 中的遗迹组构 [J]. 古地理学报, 2004 6(4): 434-441 [Zhang Guocheng GuoWeixing Zeng Yufeng Ichnofabric characteristics of fluvial and lacustrine sed in ents of the Upper Cretaceous in Xixia Basin, Henan Province[J]. Journal of Pakeogeography 2004 6(4):

- 11 李应暹,卢宗盛,王丹,等. 辽河盆地陆相遗迹化石与沉积环境研究[M]. 北京:石油工业出版, 1997: 1-44[LiYingxian, Lu Zong-sheng Wang Dan *et al* Continental Trace Fossils and Sedimentary Environments in Liaohe Basin [M]. Beijing Petroleum Industry Press, 1996 1-44]
- 12 郑玉龙,陈春瑞,任林伟.松辽盆地上白垩统陆相遗迹化石及其沉积环境[J].古地理学报,2005,7(3):337-346[Zheng Yubng Chen Chunni, Ren Linwei Continental trace fossils and their sedimentary environments of the Upper Cretaceous in Songliao Basin[J]. Journal of Palaeogeography, 2005,7(3):337-446]
- 13 B rm ky R G. Trace Foss ils-B iology, Taphonom y, and App locations, 2nd edition[C]. Chapman & Hall London 1996 361
- Keighley D G, Pickerill R K. The ichnogenus Beaconites and its distinction from Ancoridnus and Taenidium [J]. Pakeontology, 1994 37: 305-337
- 15 Vialov O S Problem atica of the Beacon Sandstone at Beacon Heights West Antarctica[J]. New Zealand Journal of Geology and Geophysics, 1962, 5 718-752
- 16 Retallack G J Compaction of Devonian lycopsid stems from the Beacon Heights Orthoquatzite, southern Victoria Land [J]. United States Antarctic Journal 1997, 30(5), 42-44
- Keighley D G, Pickerill R K. The ichnotaxaPalaeophycus and Planolites. historical perspectives and recommendations[J]. Ichnos. 1995, 3: 301–309
- 18 Melchor R N, Bedatou E, Vakis S, et al Lithofacies distribution of invertebrate and vertebrate trace-fossil assemblages in an EarlyMesozoic ephemeral fluvio-lacustrinesystem from Argentina Implications for the Scoyenia ichnofacies [J]. Pakeogeography, Pakeoclimatology, Palaeoecology, 2006, 239–253-285
- 19 张喜林,朱筱敏,郭长敏,等.苏北盆地高邮凹陷古近系戴南组滨
 浅湖沉积中的遗迹化石[J].沉积学报,2006 24(1):81-89

[Zhang Xilin, Zhu Xiaom in Guo Changm in *et al.* Trace fossils of Shore-shallow Lacustrine Dainan Formation (Paleogene) in Gaoyou Sag. Subei Basin, Jiangsu Privince [J]. A cta Sed in entologica Sinica, 2006, 24(1): 81–89]

- 20 Pern berton S G, Frey R W, Trace fossil nom en clature and the *P lan ol-ites P alaeophycus* dilemm a[J]. Jou n al of Paleon to bgy, 1982, 56: 843-871
- 21 Buatois L A, Mangano M G, Trace fossils from Carbon iferous floodplain deposits in western Argentina implication for ichnofacies models of continental environments[J]. Palaeogeography, Palaeoclin atology, Palaeoecology 2002, 183: 71-86
- 22 Buatois L A, Mangano M G, Trace fossils from a Carboniferous turbiditic take implications for the recognition of additional normarine ichnofacies [J]. Ichnos, 1993, 2 237-258
- 23 Marshall P, Trew in N, Hartley A, Idnofossils of the *psilonichnus* ichnofacies and their paleoecological and paleoenvironmental significance in the Scottish Middle Jurassic [J]. Ichnos 2002, 9 95-108
- 24 Goldring R, Pollard JE, A re-evaluation of Ophian orpha burrows in the Wealden Group (Lower Cretaceous) of Southern England [J]. Cretaceous Research, 1995, 16 665-680
- 25 Frey R W, Pemberton S G, Fagers trom J A, Morphobgical ethological and environmental significance of the idmogenera *Scoyenia* and *Ancorichnus*[J]. Journal of Paleontology, 1984–58: 511–528
- 26 A lessand to D A, Ekd ale A A, Picard M. Trace fossils in fluvial deposits of the Duchesne River Formation (Eocene), U inta Basin, U tah [J]. Palaeogeography, Palaeoclin atology, Palaeoecology, 1987, 61: 285–301
- 27 Draganits E, Braddy S J, Briggs E G, A G ondwanan coastal arthropod ichnofauna from the M uth Formation (Low er D evonian, Northern India): paleoenvironment and trace maker behavior[J]. Palaios, 2001, 16 126–147

Trace Fossils and Ichnofabrics in the Heshanggou Formation of Lacustrine Deposits, Jiyuan Area, Henan Province

HU B in YANG W en- tao SONG Huibo WANG M in ZHONG M ing-yang (Institute of Resources Environment Henan Polytechnic University, Jiaozuo Henan 454003)

Abstract The trace fossils in the Heshanggou Formation consist of at least 9 ichnogenus and 10 ichnospecies namely, Arenicolites isp., Beaconites coronus, Cylindricum isp., Palaeophycus heberti, Palaeophycus tubularis, Planolites isp., Psilonichnus isp., Scoyenia gracilis, Skolithos linearis and Taenidium barretti Based on the distribution of trace fossils and analysis of palaeoenvironment, three ichnofabrics are recognized 1) Scoyenia ichnofabric, which represents shore lacustrine depositional environment under arid climate 2) Planolites-Taenidium ichnofabric, which formed in a shallow lacustrine sedimentary environment, and the substrate did not expose to the surface, 3) Psilonichnus ichnofabric, which generated in a lacustrine delta sedimentary environment and shows the hydrodynamic becoming more and more strongly in sequence

Key word Jiyuan Basin, Triassic, Lacustrine sedimentary environment, trace fossil Heshanggou Formation © 1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

图版 iv说明: A、B 平面上 Beaconites coronus 产于豫西济源地区和尚沟组,整个沉积时期都出现; C:垂面上 Cylindricum isp 产于豫西济源地区和尚沟组顶部; D. 平面上 Palaeophycus heberti,产于豫西济源地区和尚沟组底部; E、 F. 平面上 Palaeophyaus tubu laris 产于豫西济源地区和尚沟组中、上部。

图版 ①说明: A: 平面上 Planolites isp,产于豫西济源地区和尚沟组中、上部; B¹ 垂面上 Arenicolites isp,产于豫西济源地区和尚沟组顶部; ④垂面上 Psilonidnus isp.,产于豫西济源地区和尚沟组顶部; C: 平面上 Sayenia gracilis,产于豫西济源地区和尚沟组中、下部; D. 垂面上 Skolithos linearis,产于豫西济源地区和尚沟组粉砂岩、极细砂岩中; F、F. 平面上 Taenilium barrett;产于豫西济源地区和尚沟组。