文章编号: 1000-0550(2010) 03-0426-08

贺兰山中南段米钵山组沉积特征及其物源分析[®]

黄喜峰¹ 钱壮志¹ 逯东霞² 吴文奎¹ 陆彦俊³ 白生明³ (1. 国土资源部成矿作用及其动力学重点实验室长安大学地球科学与资源学院 西安 710054 2陕西省地质矿产局 西安 710054; 3宁夏地质环境监测总站 银川 750021)

摘 要 贺兰山中南段米钵山组地层岩性主要为钙质角砾岩、砾岩、互层状的砂岩或含砾砂岩以及页岩、含砾页岩、 颗粒灰岩等,是一套区域浅变质、厚度巨大、具不同程度变形和深水陆源浊积岩组合的斜坡沉积,发育有复理石韵律 层理及典型的浊积岩鲍马序列。研究表明中奥陶统米钵山组沉积期是贺兰"冷"裂谷活跃的时期,该时期的沉积特征 对探讨贺兰山早古生代的构造格局及岩相古地理方面尤为重要。对米钵山组的地球化学分析结果表明,稀土元素 La Ce Σ REE、 δ Eu等特征值与大陆岛孤和活动大陆边缘构造环境相似。综合该组沉积的矿物特征、构造环境及区域 背景,其物源应来源于其南部的祁连造山带及邻区阿拉善地块,具有二元物源供给的近源沉积特征。

关键词 贺兰山 米钵山组 地球化学 沉积环境 物源分析 第一作者简介 黄喜峰 男 1971年出生 博士 区域构造与成矿研究 E-mailhuangyar@chdeduen 中图分类号 P512.2 文献标识码 A

0 引言

贺兰山构造带位于我国中西部巨型南北向构造 带上.横亘于华北克拉通与阿拉善地块之间.其特殊 的大地构造位置和显生宙以来的构造活动,为地质学 者所重视^[1,2]。米钵山组系 1965年宁夏区测队进行 同心幅 1: 20万区域地质调查时创名。原始定义为 "下部为灰色灰岩与灰绿色、灰黑色板岩互层,沿走 向相变为灰黑色薄层泥质灰岩及板状页岩。厚 161 m. 与下伏天景山组灰岩为连续沉积。上部为灰绿色 砾岩、含砾板岩夹似层状、透镜状的灰岩及板岩.厚 380 m, 含笔石化石"^[3]。本组早年亦称"南山系", 以 后区域地质调查时将其扩展到贺兰山等地区使用。 《宁夏回族自治区岩石地层》对比研究时认为.分布 于贺兰山等地的有关地层,与米钵山地区建立的米钵 山组的层位、岩石组合特征基本一致,应统称米钵山 组为宜。研究表明贺兰山米钵山组的沉积期是贺兰 "冷"裂谷活跃的时期^[4],其在探讨贺兰山早古生代 的构造格局及岩相古地理方面尤为重要。前人对它 的研究主要集中于地球化学^[45],对其地层成因以及 物源方面的研究相对较弱。笔者在对研究区翔实的 野外观测并结合室内工作,对沉积环境及其物源提出 自己的一些看法。

图 1 贺兰山中南段米钵山组分布图 Fig 1 Briefmap of Miboshan Formation distributing in mild le-south of Helan Mountain

1 地质概况

研究区位于华北地台西南缘,主要受南侧的固

①由国家重点基础研究发展规划项目 (编号: 2003CB214600)及 I: 25银川幅区域地质大调查项目 (编号: J48C002003)资助。 收稿日期:)2002(05-13) 收修改稿日期: r2009 10629 nal Electronic Publishing House. All rights reserved. http://www.cnki.net

原一青铜峡断裂控制,米钵山组主要分布于贺兰山柳树村、高石墩、大十字沟一带,可达阿左旗的樱桃沟、呼吉尔台地区,直至贺兰山北段塔儿岭一带^[6~9](图1)。在贺兰山的大十字沟一榆树青沟米钵山组剖面第七层曾采获笔石化石组合,据葛梅钰等(1990)的研究,这一组合应属 Nonagraptus gracilis带中部,即相当庙坡阶。在该剖面向下,米钵山组近 400 m的砂岩、板岩的年代可依呼吉尔台一带该组下部的带笔石证明为牯牛潭期沉积^[10],综上本组时代应为牯牛潭期至庙坡中期。

2 米钵山组的地层划分

柳树村一带该组实测剖面为一套碎屑岩夹泥质 岩及碳酸盐岩建造,发育有复理石韵律层理及典型的 浊积岩鲍马序列。根据岩石组合特征可划分为四个 岩性段 (图 2):

第四段特征 (21~10): 岩石组合为中粗粒长石 石英砂岩、长石岩屑杂砂岩、岩屑杂砂岩、含砂页岩, 呈韵律互层状产出。砂泥比为3:1或4:1,见极 薄层深灰色细砾岩。

第三段特征 (10~7): 该段从上至下灰岩逐渐增 多。其岩石组合为中细粒岩屑杂砂岩、岩屑长石杂砂 岩、粉砂岩、砂屑灰岩。

第二段特征 (7~4): 岩石组合为砾岩、含砾杂砂 岩、粉砂岩、页岩。本段上部鲍马序列发育,可见冲 刷一充填构造和印模构造。

第一段特征 (4~1):本段地层为灰一深灰色中一 厚层砂屑灰岩、薄层灰泥岩、白云质角砾岩、紫红色砂 页岩不等厚互层。沉积构造发育,灰岩具有滑塌构造、 鲍马序列、底蚀面、沙纹层理、粒序层理、包卷层理等。

- 3 米钵山组沉积环境
- 3.1 沉积层序特征

依米钵山组实测剖面并结合柱状图特点,米钵山

组主要有下列几种基本层序(图 3):

A、角砾岩层序 (图 3A): 层序厚数米至数十米, 个别逾百米。岩石以巨厚层一块状碳酸盐质细一粗 角砾岩为主。砾石含量 30% ~ 80% 不等,粒级差别 大,少数呈次圆状。成分以白云岩、硅质白云岩为主, 一般无分选,杂乱排列。岩石有时见发育正粒序层 理。砾岩体具底侵蚀面,多呈透镜体状。该类层序显 示了深水碎屑流沉积特征,有些砾石长轴直立,表明 沉积流体具有较高的粘度。

B,砾岩一板岩夹碳酸盐岩层序 (图 3B): 层序厚 5~60 m,下部为灰一灰绿色块状砾岩,砾石含量 20%~60%不等,砾径以 5~10 m 居多,砾石呈棱 角一次棱角状,部分长轴与层面斜交,无分选,填隙物 为泥质。砾岩体具底侵蚀面,呈规模大小不等的透镜 体积,砾岩体,横向可相变为含砾板岩、板岩。上部为 灰绿色钙质板岩、板岩、深灰色薄一中层微晶灰岩、微 晶砂(砾)屑灰岩。层序下部与上部呈渐变过渡关 系,下部砾岩具水下泥石流沉积特征。

C,含砾板岩一板岩夹碳酸盐岩层序(图 3C):层 序厚 5~60m不等。下部特征与上述 B类层序下部 砾岩相似,后者砾石含量大于 30%。上部组成与 B 类层序上部相似。该类层序与 B类层序呈相变关 系,下部含砾板岩具水下泥石流沉积特征。

D、砂岩一板岩层序(图 3D): 层序厚 10~ 120 m。 下部为灰绿色中一厚层浅变质中一细粒砂岩;上部为 灰绿色板岩,夹少量薄层微晶灰岩。该层序在高石 墩、大十字沟、柳树村都有发育。

E. 块状砾屑灰岩一中厚层灰岩一薄层灰岩向上 变薄变细层序 (图 3E):下部为深灰色块状微晶砾屑 灰岩,砾屑含量 20~60%,砾径以 2~5 m者居多, 砾屑呈次圆一圆状,杂乱排列,成分为深灰一灰色灰 岩,填隙物由砂屑、灰泥和方解石胶结物组成,具基底 式胶结类型。上部由深灰色中厚层微晶灰岩、薄层微 晶灰岩和少量砾屑灰岩构成。层序自下而上沉积物

图 2 中奥陶统米钵山组柳树村实测地质剖面

Fig 2 Linshucun cross section of **M** boshan Formation in **M** iddle-south of **H** elan **M** ountain © 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

图 3 柳树村一高石墩地区米钵山组基本层序图

Fig 3 Diagram showing the basic strata sequence of Miboshan Formation strata of Liushucun and Gaoshidun in Helan Mountain

粒度由粗变细、成层厚度由厚变薄,下部与上部呈渐 变过渡关系,具碎屑流沉积特征。

F、砾屑灰岩一板岩夹碳酸盐岩层序 (图 3F):下 部为灰一深灰色块状砾屑灰岩,砾屑含量 30% ~ 60%,砾径 0 2~5 cm,砾屑磨圆、分选均较差。上部 为灰绿色板岩、钙质板岩夹中一薄层砂屑灰岩、微晶 灰岩等,下部砾屑灰岩属水下碎屑流沉积。

G、板岩与灰岩互层层序(图 3G):由灰、灰绿色 板岩、钙质板岩与灰色薄层微晶灰岩、中一厚层砂屑 微晶灰岩不等厚互层组成,板岩偶含灰岩砾石。

3 2 沉积环境分析

米钵山组沉积相的研究是基于在区域地质背景研究的基础上,根据岩石组合、沉积构造特征确定的基本类型。前人曾视为平行不整合的底砾岩^[8],亦有学者提出"崩塌堆积"或"混杂堆积","缝合线上的混杂岩"^[11],"一套形成于深水环境的重力流沉积"^[12]等观点。笔者通过野外的观测和沉积过程分析研究认为,该组属次深海大陆斜坡坡脚地带的海底扇沉积,重力流沉积发育,代表贺兰裂谷强烈沉陷区

的深水盆地沉积。可鉴别出碎屑流沉积、泥石流沉 积、浊流沉积、下斜坡沉积类型等,其碎屑流沉积主要 发育于柳树村、胡记台等地的米钵山组下一中部,砾 石呈次圆一次棱角状,砾石杂乱排列(图 4a),有时发 育正粒序(图 4b),也可见扁平状砾石的最大扁平面 大体平行层面定向排列(图 4c)。

浊流沉积主要发育在米钵山组中部,由长石石英 砂岩、岩屑石英砂岩和板岩组成,并可见由砂岩形成 的粒序层理及不同粒度砂岩构成的韵律性比较强的 类复理石建造。用鲍马序列衡量有 ae abe bce和 de 4种类型,以前两种类型占优势,后两种类型较少,偶 见完整的鲍马序列,其特征如图 5所示。鲍马序列厚 度变化在 0 3~15m之间,其中砂岩与泥质岩类的 比例变化在 5:1~1:2之间,多数序列中砂岩类厚度 比泥岩厚度大,大多从鲍马序列的 a段开始的,少数 浊积岩鲍马序列的 b段或 c段开始的,表明浊流沉积 时是高流速的^[13],且可能接近浊流的物源区。从砂 岩的成层厚度大、砂泥比值高(4:1)等可看出,米钵 山组浊积岩是近源相的,属近基浊积岩。

图 4 柳树村米钵山组碎屑流(角)砾岩特征

Fig 5 Columnar section of Boum a sequence in the turb id ite of Miboshan Formation

4 物源特征

对沉积物源的分析有助于解决源区与沉积区的 关系,以及物源区的大地构造背景、沉积区的沉积体 系等问题。

4.1 米钵山组沉积的区域背景

古元古代—中元古代是全球重要的拗拉槽活动

阶段^[14],在全球都发育了许多性质的拗拉槽并控制 着以后的构造活动^[15,16]。这些拗拉槽成为岩石圈板 块上一些很难愈合的"伤疤",在以后的构造运动触 发下往往可以重新开始活动。新元古代早期,贺兰山 地区也经历了有地质记录的第一次拉张活动,在这次 活动中,贺兰地区沉积了青白口系黄旗口组^[17,18],因 缺乏相应裂谷早期的双峰式火山岩组合,因而失去了

429

© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

拗拉槽存在的条件。此次拉张活动使得贺兰山地区 地壳或岩石圈结构变得薄弱,为以后该地区的再次活 动奠定了物质基础。北祁连地区在寒武纪就已经出 现了洋壳,并发育了北祁连岛弧^[19,21],在北祁连缝合 带南侧的中祁连地块上发育有年龄为 540 M a岛弧花 岗岩^[22],说明至少寒武纪洋壳已经开始俯冲。且已 有一部分学者^[23,24]认为在北祁连岛弧后发育有弧后 盆地,该弧后盆地由于受北祁连岛弧后发育有弧后 盆地,该弧后盆地由于受北祁连岛弧后发育有弧后 盆地,该弧后盆地由于受北祁连岛弧后发育有弧后 空间,在早、中奥陶世已成为弧后盆地,贺兰山地区就位 于该弧后盆地靠陆一侧^[25,50]。本研究据奥陶系各地 层的发育特点,认为位于北祁连弧后盆地靠陆一侧的 贺兰山地区,在早、中奥陶世可能由于受弧后扩张作 用以及阿拉善地块与中朝板块之间的相对运动的影 响而重新开始了拉张、沉降,形成了被动型裂陷盆 地一贺兰"冷"裂谷^[4](图 6)。

图 6 中奥陶世贺兰山及邻区构造略图 Fig 6 Tecton ic fram ework of Helan

4.2 米钵山组沉积的构造环境及物源

米钵山期 (大弯晚期一庙坡期),海侵达到高潮, 范围扩大,华北海与祁连海连通,大体在大弯期末一 牯牛潭期初直到宝塔期,研究区南北发生了明显的分 化,贺兰山南段沉积的米钵山组属大陆斜坡下部的深 海一次深海沉积,同时生物地层表明,大弯期末开始 牙形石动物种群由华北型转向华南型,反映了海侵方 向有了明显的变化,海水由南向北侵入,体现了两个 不同地层分区之沉积特点。故在空间上构成南北深 而中段浅的强烈坳陷盆地格局。

米钵山组浊积砂岩发育,而浊积砂岩的地球化学 特征可以很好的反映沉积盆地的构造背景^[27]。利用 Bhatia构造环境判别图解对米钵山组砂岩主量元素 进行分析,大多落于大陆岛弧和活动大陆边缘内(图 7)。另外,微量元素与常量元素相比,具有较大的稳 定性。因此,陆源碎屑的微量元素地球化学特征更适 宜于研究源区类型及其大地构造背景。应用 Bhatia 的图解,在 La—Th—Sc图解中样品大部分落在大陆 岛弧区域,在 Th—Co—Zr图解中样品落在大陆岛弧 及活动大陆边缘结合部(图 8),说明该区米钵山组砂 岩的物源区具有活动大陆边缘或大陆岛弧构造属 性^[4]。

在显微镜下观察,区内石英碎屑主要由单晶石英 和多晶石英组成,以单晶石英为主。石英碎屑多呈棱 角一圆状,分选性差,部分光洁度不高。在其中可见 次生加大边现象,应为再旋回石英颗粒。有些单晶石 英残留因构造作用而发生的波状消光现象,有些石英 颗粒边部残留有钾长石残晶,应属于花岗岩岩屑残 留。长石碎屑主要以钾长石为主,发育格子双晶、聚 片双晶,部分蚀变。内部可见锆石、电气石等矿物包

图 7 米钵山组砂岩主量元素构造环境判别图

a 大洋岛弧; b 大陆岛弧; c 活动大陆边缘; d 被动大陆边缘

Fig 7 $TO_2 - Fe_2O_3 + Mg$ and $A_2O_3/SO_2 - (Fe_2O_3 + MgO)$ diagram showing the tecton ic environment of the siliceous rocks © 1994-2012 China Academic Journal ElectrolAic PGMisGiAGMHQuBM. All rights reserved. http://www.cnki.net

图 8 判别构造环境 La—Th—Sc与 Th—Co—Zr关系图 A. 大洋岛弧; B 大陆岛弧; C. 活动大陆边缘; D. 被动大陆边缘 Fig 8 La—Th—Sc and Th—Co—Zr/10 diagram showing the tectonic environment of the siliceous rocks A. OLA; B C IA; C. ACM; D. PM

裹体,有些与石英构成显微文象结构,表明其来源为 中酸性侵入岩。

米钵山组的重矿物组合较稳定,主要包括黑云 母、磷灰石、电气石、榍石及锆石等,其中锆石、磷灰 石、黝帘石较常见。锆石及磷灰石常保留为柱状一针 柱状自形晶,黝帘石自形程度较高,且粒度较粗。该 重矿物组合及特征反映源区母岩类型应包括花岗岩 类及一些变质岩类,而且砂岩成熟度较低。

高振中等研究认为.米钵山组主体属于一个向北 东方向发展的大型海底扇,厚度从南西向北东逐渐减 小,据地层砂岩成分以及古流向分析,绝大多数砂岩 来自于西南方向的基底物源区,一部分来自再旋回造 山带^[28]。经典造山带的前陆盆地中的磨拉石堆积形 成于造山过程中陆一陆板块碰撞的晚期演化阶段,由 干贺兰裂谷产生干活动大陆边缘构造背景,盆地一侧 紧邻同期造山带,而盆地主体则发育于大陆块体之 上,因此碎屑成分具有造山带和大陆双向来源的二元 的物源供给特点。不同构造环境判别图上所获结果 的高度一致,与野外观测的构造变形以及宏观盆地分 析、矿物特征等方面所获得的前陆盆地的认识相同。 揭示米钵山组碎屑主要来自造山带一侧,并受到大陆 一侧(阿拉善地块)碎屑补给影响,裂谷充填物质来 自两个地质演化历史不同的大陆块体,碎屑来源具有 二元物源供给特点。

综上所述,米钵山组沉积环境属大陆斜坡坡脚地 带的海底扇沉积,沉积微相组合具有大陆边缘的微相 组合特征。该组沉积地球化学证据表明,其沉积界面 以还原性为主,局部还原环境较强、沉积速率快,具大 陆斜坡重力流快速堆积特征。该组的物源具有活动 陆缘及岛弧性质,综合考虑该组所处的区域构造背景 及矿物组合等,物源可能来自于南部的北祁连地区及 阿拉善地块,具二元物源特征。

参考文献(References)

- 1 霍福臣. 宁夏地质概论 [M]. 北京: 科学出版社, 1989 [Huo Fuchen. Ningxia Geo bg ica l Overview [M]. Beijing Science Press, 1989]
- 2 宁夏地质矿产局. 宁夏区域地质志 [M]. 北京: 地质出版社, 1990 [Bureau of Geology and M ineral Exploration of N ingxia Autonomous Region. RegionalGeology of N ingxia[M]. Beijing GeologicalPublishing House 1990]
- 3 宁夏回族自治区地质矿产局.1: 200000同心幅区域地质图说明书 [R].1978[Bureau of Geology and Mineral Exploration of Ningxia Autonomous Region. The Instruction of 1: 200000 Tongxin Geology map [R].1978]
- 4 黄喜峰,钱壮志,逯东霞,等.贺兰山中南段奥陶系米钵山组的沉积 环境与构造背景分析 [J].地球学报,2009,30(1):65-71[Huang Xifeng Qian Zhuangzhi, Lu Dongxia, et al. Depositional setting and tectonic background analysis of Ordovician Miboshan Formation in central-southern Helan Mountain [J]. A cta Geoscientia Sinica, 2009, 30 (1):65-71]
- 5 李天斌. 宁夏天景山一米钵山奥陶纪地层地球化学特征 [J]. 地层 学杂志, 1999, 23(1): 16-25[LiTianbin Geochemical characteristics of the Ordovician stratigraphy in Tianjingshan-M boshan, Ningxia[J]. Journal of Stratigraphy, 1999, 23(1): 16-25]
- 6 宁夏回族自治区地质矿产局.1: 50000古拉本幅区域地质图说明 书[R].1992[Bureau of Geology and Mineral Exploration of Ningxia Autonomous Region The Instruction 1: 50000 of Gulabeng Geology Map[R].1992]
- 7 宁夏回族自治区地质矿产局.1: 50000呼鲁斯台幅区域地质图说

、还原性为主。局部还原环境较强、沉积速率快,具大 で1994-2012 China Academic Fournal Electronic Publishing House. All rights reserved. http://www.cnki.net Autonom ou s Region The Manual of 1: 50000 Hu lu sitai G eology Map [R]. 1992]

- 8 宁夏回族自治区地质矿产局.1: 50000元山子幅区域地质图说明 书[R].1992[Bureau of Geo bgy and Mineral Exploration of Ningxia Autonomous Region. The Instruction of 1: 50000 Yuan shan zi Geology Map[R].1992]
- 9 宁夏回族自治区地质矿产局.1: 50000 土井子幅、马夫峡子幅、前 古城子幅区域地质图说明书[R].1993[Bureau of Geology and MineralExploration of Ningxia Autonomous Region The Instruction of I: 50000 Tujingzi Mafuxizzi Qianguch engziGeology map[R].1993]
- 10 宁夏回族自治区地质矿产局.1: 200000阿拉善左旗幅区域地质 图说明书[R].1983[Bureau of Geology and Mineral Exploration of Ningxia Autonomous Region The Instruction of A lex Left Banner I: 200000 Geology Map[R].1983]
- 11 张抗. 论贺兰山裂堑 [C] #鄂尔多斯盆地西缘地区石油地质论文 集. 呼和浩特: 内蒙人民出版社, 1983 29-40 [Zhang Kang Discussion on Helan mountain rifting graben s[C] # The Papers of Petro leum Geology on West Margin of Ordos Basin Hohhot Inner Mongolia People's Publishing House, 1983 29-40]
- 12 林畅松,杨起,等著. 贺兰坳拉槽盆地充填演化分析 [M]. 北京: 地质出版社, 1995 1-143 [Lin Changsong Yang Q; et al. The Analysis on Filling Evolution of Helan Aulacogen Basin [M]. Beijing Geological Publishing House, 1995 1-143]
- 13 Walker R G, ed Facies models [J]. Geoscience Canada Reprint Series 1, 1979
- 14 SengorAM C Sedimentation and tectonics of fossil rifts[M] // Cathy J Busby, Raymond V' ed. Tectonics of Sedimentary Basin London B lackwell Science 1995: 53–148
- 15 Pandey O P, Agraw al P K. Lithospheric mantle deformation beneath the Indian craton [J]. The Journal of Geology, 1999, 107, 683–692
- 16 Timothy Pauken, Stephen Marshak. Cratonicweak zone in the U. S Continental interior The Dakota-Carolina corridor [J]. Geology, 1994 22 15-18
- 17 汤锡元,郭忠铭,陈荷立.陕甘宁盆地西缘逆冲推覆构造及油气勘探[M].西安:西北大学出版社,1992 ⊢156[Tang Xiyuan, Guo Zhongn ing Chen Heli The Thrust-nappe Structure and Petroleum Exploration on the West Margin of Shanganning Basin[M]. Xi an Northwest University Press, 1992: ⊢156]
- 18 Tian Zaiyi Zhang Qingchun Petroliferou s Sedimentary Basins in China and Basin Analysis[M]. Beijing Petroleum Industry Press, 1997 70–76
- 19 夏林圻,夏祖春,徐学义.北祁连山构造一火山岩浆演化动力学 [J].西北地质科学,1995,16(1):1-28[XiaLinq; XiaZuchun, Xu

Xu eyi Dynamics of tectono-volcano-magmatic evolution from North Q ilian M ountains, China [J]. Northwest Geoscience 1995, 16(1): 1– 28]

- 20 汤中立. 华北板块西南边缘大型、超大型矿床的地质构造背景 [J]. 地质学报, 2002, 76(3): 432[T ang Zhongli The geotectonic setting of the large and super largem ineral deposits in the southwestmargin of North China plate[J]. A cta Geologica Sinica, 2002, 76(3): 432]
- 21 许志琴,徐惠棼,张建新等.北祁连走廊南山加里东俯冲杂岩地体 及动力学[J].地质学报, 1994, (1): 1-14[Xu Zhiqin, Xu Huifen, Zhang Jianxin, et al. The Caledonian subductive complex in southem Zoukang moutains of the northerm Qilian mountains and its dynamics [J]. Acta Geologica Sinica 1994, 68(1): 1-14]
- 22 Bian Qian tao Gao Shan lin, Li Dihu, et al A study of the Kun hun-Qilian-Qin ting suture system [J]. A cta Geologica Sinica 2001, 75 (4): 364-374
- 23 高山林.鄂尔多斯盆地西缘中生代构造地层分析及盆地演化研究 [D].北京:中国科学院地质与地球物理研究所,2001 ⊢134[Gao Shanlin The Study of Tectono-Stratigraphic Analysis and Basin Evolation onWestMargin of Ordos Basin in Mesozoic[D]. Beijing hstitute of Geobgy and Geophysics CAS, 2001 1–134]
- 24 A kan D Sm ith, Da-Jen Wen, Li-Yuen H uang et al. Constraints from gneisses in the Q ilian fold belt for the position of the North Ch ina B lock in the Proterozoic [J]. Journal of the Geo logical Society of China, 2000a, 43(1): 81–93
- 25 张进. 陕甘宁地区古生代以来的构造及演化特征研究 [D]. 北京: 中国地震局地质研究所, 2002 1-116 [Zhang Jin A Study on the Structures and Evolution of the Juncture Area of Shanxi Gansu Province and Ningxia Autonomous Region Since Paleozoic Time[D]. Beijing Institute of Geobgy, China Earthquake Administration, 2002 1-116]
- 26 A kan D Smith Fong-Rong Lian, Chuan-H siung Chung et al. Isotopic evidence from metased in ents in the Q ilian fold belt for a North China-Antactica connection in the Early Paleozoic [J]. Journal of the Geo bg ical Society of China, 2000h, 40(3): 481-497
- 27 BhatiaM R. Plate tecton ics and geochem ical composition of sandstone
 [J]. Journal of Geobgy, 1983, (91): 611-627
- 28 高振中,罗顺社,何幼斌,等.鄂尔多斯地区西缘中奥陶世等深流 沉积[J]. 沉积学报, 1995, 13(4): 16-26[Gao Zhenzhong Luo Shunshe, He Youbin *et al*. The Middle Ordovician contourile on the west Margin of Ordos[J]. A cta Sedimentologica Sinica, 1995, 13 (4): 16-26]

432

Depositional Characteristics and Provenance Analysis of the M iboshan Formation, Helan Mountain

HUANG $X \neq \text{feng}^1$ QIAN Zhuang-zh¹ LU Dong-xia² WU W en-ku¹

 $IU Y an-jun^2 BA I Sheng-m ing^2$

 $(1.\ K\ ey\ Labora\ tory\ of\ M\ in eralization\ and\ G\ eodynam\ ic\ the\ M\ in istry\ of\ Land\ and\ Resources\ Fa\ culty\ of\ Ear\ fa\ Science$

and Resources Chang an Un iversity, X ian 710054;

2. ShaanxiBureau of Geology and Mineral Resources Prospecting, Xi an 710054,

3 Ningxia Hu i Na tiona lity Auton on ous Region Geo bgic Environment Monitoring General Station, Yinchuan 750021)

Abstract M boshan Form antion in the southern H elan M ountain m ain ly consisted calcareous breccia conglomerate, interbedded sandstone or pebbled sandstone, and shale pebbled shale and grain limestone, and it is very thick S lope facies that is regionally low-grade metamorphic terrigenous turbidite in deep water, which has experienced different degree deformation and the flysch rhythmic layering and typical Bouma sequence are well developed. Our results shows that the deposition duration of the M iddle Ordovician M boshan Form ation is corresponding to the active stage of H e lan cold rift, which is particularly important to understand the early Paleozoic tectonic framework and lithofacies paleogeography of H e lan M ountain. Our geochemical analysis found that eigenvalue of La Ce Σ REE and δ Eu are similar to that of continental island – are and active continental margin setting. W ith further information from the tectonic environment and local background it is concluded that the source of M iboshan Formation is from its southerm region of Q ilian orogenic belt and its adjacent area of A lashan mass if, which is a near source sed in entation that is binary provenance.

Keywords Helan Mountain, Miboshan Formation; geochemistry, sedimentary environment; provenance analysis