文章编号:1000-0550(2012)01-0197-07

渤海湾盆地东营凹陷沙四下亚段地层 压力演化与天然气成藏[®]

刘 华¹ 蒋有录¹ 宋国奇² 蔡东梅¹ 徐昊清¹

(1. 中国石油大学地球科学与技术学院 山东青岛 266555; 2. 中国石油化工股份有限公司 胜利油田分公司 山东东营 257001)

摘 要 通过实测压力、泥岩声波时差、流体包裹体古压力恢复,对东营凹陷民丰地区沙四下亚段地层压力的演化特 征进行了分析。研究表明,民丰地区地层压力纵向上存在"常压一超压一常压"三段式结构;时间上,沙四下亚段地层 压力具有"二旋回波动模式",即存在"常压一弱超压一常压"和"常压一超高压一常压(弱超压)"的演化过程,其中两 次地层超压的形成时间与中深层天然气藏的两期成藏时间相对应,为油气藏的形成提供了动力条件。研究区地层压 力的动态演化过程是多因素作用的结果,第一次高压的形成是地层快速沉积产生欠压实的结果,生烃贡献相对较小; 第二次超压的形成是烃源岩大量生烃和原油裂解成天然气造成的,沉积作用为辅。由于地温梯度降低、断裂一砂体 泄压、饱和气藏深埋等作用的影响,现今民丰地区沙四下储层表现为以常压为主,伴生部分超压的分布特征。 关键词 渤海湾盆地 东营凹陷 裂解气 成藏动力 地层压力演化 第一作者简介 刘华 女 1977年出生 副教授 石油地质 E-mail: liuhua_rjl@163.com 中图分类号 TE311⁺.1 文献标识码 A

中深层天然气作为富油盆地勘探的热点之一,已 经在我国东部两个最大的产油盆地一松辽盆地和渤 海湾盆地取得了重大突破^[12]。其中,渤海湾盆地已 在东营凹陷的沙四下亚段地层中陆续发现了多口井 高产天然气和凝析油^[3,4],展示了中深层具有良好的 天然气勘探前景。然而,由于中深层天然气埋深大 (大于3500m),储层物性条件差,成藏动力演变及 成藏过程复杂,从而制约了中深层天然气的勘探成 效^[5,6]。因此,开展东营凹陷沙四下亚段地层的压力 演化特征及天然气成藏过程研究,不仅能够阐明中深 层天然气的成藏动力和成藏模式,也有助于指明天然 气的勘探潜力及方向。

1 研究区概况

东营凹陷已发现的中深层天然气主要分布于凹 陷北部的利津—民丰地区,包括利津洼陷、民丰洼陷 及胜坨地区,重点产气井分布于民丰洼陷沙四下亚段 的碎屑岩储层中,包括丰深1井、丰深2井、丰深3井 及丰8井等^[7]。地球化学特征表明,该区中深层天然 气主要来源于民丰洼陷沙四下亚段的成熟烃源岩,由 腐泥型干酪根裂解气和原油裂解气组成,且以原油裂 解气为主^[34],为高一过成熟阶段的产物。裂解气储 集层主要分布在生气中心周围,以沙四下亚段发育的 多种类型扇体作为天然气有利的储集体,储集岩石类 型主要以砂砾岩为主,受沉积相影响,物性非均质性 较强。

东营凹陷具有良好的深层天然气成藏条件,其中 含气层系的沙四下亚段为间歇性盐湖一盐湖相沉积, 以凹陷北坡的冲积扇一干盐湖体系及湖盆中心大面 积分布的膏盐沉积为特征,其中暗色泥岩一般集中在 本段地层中上部,厚度在 50~200 m; 凹陷中心有机 质类型以 I、II,型为主,边缘地区有机质类型变差, 以 II,和 III型占优势, 埋深大于4 000 m 以生气为主。

2 地层压力演化特征及成因

2.1 现今压力分布特征

根据东营凹陷不同层系砂岩储层的实测地层压 力数据可知,沙二段及其以上地层为静水压力带,属 于常压系统;沙三段开始出现异常流体压力,并在不 同层系出现不同的超压幅度(图1),其中埋深大于 2500 m之下的沙三中、下地层和沙四上亚段地层均 存在超高压(压力系数大于1.5)现象,有的压力系数 可达1.8;而到了沙四下亚段大部分储层实测地层压 力以常压为主,仅在部分井区存在超压(如,丰深5

①国家"十五"科技攻关项目(编号: 2001BA605A09)和中国石油大学(华东)自主创新项目资助。 收稿日期: 2010-11-22;收修改稿日期: 2011-03-26 井压力系数为 1.6)。总体上,东营凹陷地层压力在 纵向上具有"常压一超压一常压"三段式结构特征, 其中,利津地区的地层超压幅度明显大于民丰地区。

图1 东营凹陷实测压力系数与深度关系图

Fig. 1 The relationship of measured pressure and depth in Dongying depression

结合丰深 3 井泥岩声波时差资料分析表明,从地 表到沙三下亚段,泥岩声波数值随埋藏深度的增大而 逐渐变小,表现为正常压实趋势;沙四段地层存在被 膏盐层所分隔的两套欠压实带(图2),上部欠压实带 发育于沙四上亚段地层中,欠压实现象明显,分布普 遍,反映了泥岩中存在异常高压;下部欠压实段发育 于沙四下亚段地层的中上部,欠压实幅度较明显,向 下超压幅度降低,接近常压。泥岩声波时差所表现出 的特点与实测压力数据相一致:4 753~4 784 m 深度 段实测压力系数为1.11;4 826~4 851 m 深度段实测 压力系数为1.06,随着沙四下亚段地层埋藏深度的 增加,地层压力逐渐降低至常压。

2.2 主要成藏期地层压力分布特征
目前,可用于恢复地层压力的方法有很多,如

Fig. 2 The relationship of mudstone AC time and depth of Well Fengshen 3, Dongying depression

Fillippone 法^[8 9]、"流体包裹体法"^[10-12]、"黏土矿物 法"^[13]、"声波时差法"^[14]及"盆地模拟法"^[15,16]等。 根据研究区的地质背景,系统选择了6口井22块沙 四下亚段储层流体包裹体样品,进行了荧光观察、流 体包裹体显微测温、测盐等系统分析,综合利用四史 以及流体包裹体 PVT 等容法,恢复了研究区的油气 成藏时间和古地层压力。整体来看,研究区的次生流 体包裹体较发育,存在气态烃、气液态烃、液态烃以及 盐水包裹体,广泛分布于石英次生加大边、穿石英颗 粒裂缝以及长石表面溶蚀孔洞中;其中气态包裹体较 小,为灰色,灰黑色;液态烃包裹体个体较大,发蓝白 色荧光或黄色荧光。

流体包裹体均一温度及荧光颜色分析表明,沙四 下亚段储层存在两期成藏过程:沙二一东营末期,以 充注原油为主,成藏范围较小;馆陶末期一现今,以充 注干酪根裂解气和古油藏裂解气为主,是中深层天然 气藏形成的主要时期(表1)。对应成藏期的古压力

.

Table 1	Data of paleo-pressure calculated from brine inclusions of lower Es_4 reservoirs in Dongying depression						
井号	现今深度/m	成藏时间与期次	平均 Th/℃	古埋深/m	古压力/MPa	剩余压力/MPa	压力系数
丰 8	4201.10	Es ₁ 第一期	122.50	2329.55	27.26	3.97	1.17
丰 8	4055.35	Ng 第二期(早)	161.37	3851.75	41.21	2.7	1.07
丰 8	4201.10	Ng 第二期(早)	157.31	3745.11	38.95	1.05	1.04
丰 8	4055.35	Nm 末第二期(晩)	170.20	3984.08	55.39	15.55	1.39
丰 8	4181.50	Nm 末第二期(晩)	163.83	3916.58	49.42	10.25	1.26
丰 8	4200.50	Nm 末第二期(晩)	171.40	4015.92	56.67	16.51	1.41
丰深1	3684.90	Ed 第一期	109.31	2029.77	23.74	3.44	1.17
丰深1	4322.00	Ng 第二期(早)	154.54	3672.11	37.45	0.73	1.02
丰深1	4322.00	Nm 末第二期(晩)	169.40	3962.86	54.56	14.93	1.38
丰深1	4348.80	Nm 末第二期(晩)	174.39	4095.16	60.11	19.16	1.47
利 912	3642.00	Ng 第二期(早)	143.01	3368.80	38.71	5.02	1.15
利 912	3643.60	Ng 第二期(早)	148.45	3511.74	40.35	5.23	1.15
坨 762	3428.20	Ng 第二期(早)	132.20	3084.21	32.38	1.54	1.05
坨 762	3495.30	Ng 第二期(早)	144.47	3275.44	34.06	1.31	1.04
坨 762	3438.00	Nm 末第二期(晩)	177.26	4171.35	63.74	22.03	1.53
坨 762	3451.00	Nm 末第二期(晩)	167.10	3901.86	52.31	13.3	1.34
坨 762	3495.30	Nm 末第二期(晩)	162.53	3780.73	48.38	10.57	1.28

表1 东营凹陷沙四下亚段部分盐水包裹体古压力计算

恢复表明: 沙二一东营末期沙四下亚段地层的古压力

在 20 MPa 左右 压力系数介于 1.1~1.2 之间,剩余 地层压力为 3~5 MPa,为弱超压系统,超压幅度较 低; 馆陶组沉积末期是第二次油气藏形成的早期,此 时沙四下亚段地层的压力多为 32~42 MPa,地层压 力系数介于 1.0~1.1 之间,剩余压力多在 2 MPa 以 下 表现为常压环境至弱超压环境; 明化镇末期即二 次成藏的晚期是天然气大规模成藏的时间,该时期生 烃洼陷中心区对应着较高的压力系统,地层压力系数 可达 1.25~1.5 左右,剩余压力达到 10 MPa 以上,超 压明显(表 1),油气成藏动力条件较好。

2.3 压力演化旋回性特征

沙四下亚段地层压力的演化特征对于解剖中深 层天然气成藏机理具有重要的意义。以现今压力特 征作为最终约束,流体包裹体数据作为过程约束,恢 复了研究区沙四下亚段储层压力随时间的演化特征。 研究认为民丰地区沙四下亚段储层压力具有"二旋 回波动模式",即存在"常压—弱超压—常压—超高 压—常压"的演化模式,存在两次超压形成过程以及 两次降压过程(图3)。

(1) 第一次"常压一弱超压一常压"演化模式

该演化模式对应的时期是沙四段沉积时期至东 营沉积末期。沙四下亚段地层开始沉积时,由于地层 埋藏较浅,以压实作用为主,流体排出畅通,地层多表 现为常压;沙二段沉积期开始,沙四下亚段烃源岩开 始生油,加上上覆新沉积地层的不断形成以及沉积物 的快速堆积,地层压力逐渐增大,积聚了越来越多的 剩余压力;在东营沉积末期之前,沙四下亚段地层压 力系数达到1.2 左右,剩余地层压力为3~5 MPa,表 现出弱超压特征;到了东营沉积末期,由于构造运动 的影响,地层抬升并遭受不同程度的剥蚀、地温逐渐 降低,此时烃源岩的生烃作用也趋于停滞,导致沙四 下亚段地层的压力迅速释放,变成常压地层,完成了 压力的第一次演化过程。

(2) 第二次"常压一超高压一常压"演化模式

随着东营构造运动的停止, 馆陶组沉积时期伴随 着凹陷的又一次整体下沉, 沙四下亚段地层进一步被 埋深, 在馆陶末期达到二次生烃,由于该时期沉积速 率低, 生烃量小, 地层压力增长缓慢, 表现为常压一弱 超压状态; 进入明化镇沉积时期, 地层沉降速度加快, 洼陷中心的沙四下亚段烃源岩进入了热裂解生凝析 气阶段, 气体的大量生成导致流体体积的迅速膨胀, 致使地层压力迅速升高, 地层压力系数可达 1.5(如 坨 762 井), 剩余地层压力为 22 MPa, 明化镇沉积后 期储层压力达到最大值; 第四纪平原组时期, 由于地 温降低等因素影响, 部分沙四下亚段地层压力迅速减 小, 超压现象逐渐变成以常压为主, 超压相伴的分布 特点。

2.4 地层异常压力成因

综上所述,民丰地区沙四下亚段在不同时期对应 着不同的压力系统,地层压力存在着动态的演化过 程,不均衡压实和生烃作用是超压产生的两种主要机 制。其中,第一次弱超压的产生主要取决于快速堆积 形成的泥岩欠压实,而烃源岩的生烃作用为辅;第二 次超压是烃源岩大量生烃以及古油藏原油裂解造成 的体积膨胀,沉积作用为辅。

此外,研究区的地层还经历了两次泄压过程:第 一次泄压发生在东营末期,受东营运动的影响,地层 抬升温度下降,生烃作用停滞,导致压力不断下降变 为常压;第二次泄压发生在第四纪沉积时期,地层由 超压转为常压,泄压幅度较明显。前人研究表明,沉 积盆地中存在大量泄压环境,并且往往与天然气藏相 伴生^[17,18],本次结合负压产生的主要原因^[19,20]以及 研究区的实际情况,分析了第二次泄压的具体影响因 素。

(1) 地温降低

明化镇沉积时期至今,东营凹陷的地温梯度逐渐 降低,由明化镇时期的4.2℃/100m 变为现今的 3.5℃/100m。根据PVT 公式可知,当气藏体积不变 时,地温的降低会导致压力的相应降低。例如,以地 表温度为15℃,埋深4500m的地层考虑,当体积不 变时,由于地温梯度从4.2℃/100m降低为3.5℃/ 100m,导致地层压力变为原来压力的0.846倍。因 此,受地温降低的影响,民丰地区的裂解气藏压力系 数会有所降低,并且这一影响因素具有普遍性。

(2) 断一砂输导泄压

由于深部地层地质体致密,导致地应力大部分转 化为作用于骨架颗粒上的有效应力、油气的运移也对 压力的释放具有一定的贡献。虽然民丰地区沙四下 亚段地层之上存在巨厚的膏盐层,而且储层已经较致 密,遭受压实程度较高,形成了近似于封闭的体系,但 是在洼陷边缘发育的砂砾岩体具有层层叠加、互相连 通的现象(图4);此外,民丰洼陷较小,断裂系统发 育,虽然后期活动性不强,但大量气体的生成和超压 的作用,可以导致裂缝^[4]和小断层的重新开启,为裂 解气的进一步运移提供了通道,导致了地层压力的降 低。现今,民丰地区断一砂输导体系发育的地方以常 压为主,超压在洼陷区输导体系发育较差的局部地区 存在,这种不平衡的分布特征表明了断一砂输导泄压 的重要性。

(3) 饱和天然气藏深埋

Barker 指出,当地层中岩石被气相饱和时,其压 力分布与充满液体的地层有很大差异^[20]。充满液体 的地层,随着埋深的增加和温度的升高,受到烃类生 成、水热增压等作用,常常形成异常高压;而在充满气 体的地层中,流体压力理论上满足理想气体方程,即 随埋深增加,在封闭的情况下气体体积不变,绝对温 度增加与压力增加之比为常数。然而,随埋深增加, 压力增量常常低于正常静水压力梯度下的压力增量, 最终易形成低压^[15]。"饱和天然气藏深埋"导致压力 降低需要在封闭体系中^[19]。由于民丰地区沙四下亚 段烃源岩上覆巨厚的膏盐层,而且在明化镇中后期大 量充注天然气后,深部储层已经较致密,砂体的侧向 连通性变差,部分气藏可以近似地看成封闭体系,导 致压力的降低。

综上所述,封闭体系下储层压力的变低主要是饱 和天然气藏的深埋作用引起的;非封闭体系下天然气 藏压力的降低主要是断层泄压或储层连通泄压造成 的;而温度降低导致的压力下降具有普遍性,这些因 素共同作用,导致了民丰地区沙四下亚段现今地层压 力的分布具有不均一的特点,存在异常高压与常压相 伴生的特点。

图 4 东营凹陷民丰地区砂体与油气藏剖面图 Fig. 4 Cross section of sand body and reservoir in Minfeng area, Dongying Depression

3 地层压力特征与天然气成藏

东营凹陷中深层天然气由腐泥型干酪根裂解气 和原油裂解气组成,具有两期油气充注过程:第一期 为沙二一东营末期,以充注原油为主,规模较小;第二 期为馆陶末期一现今,以充注干酪根裂解气和古油藏 裂解气为主,其成藏过程与地层压力的两次旋回存在 密切关系。

地层压力的第一次旋回,对应着油气成藏的第一 期。该阶段洼陷中心的沙四下亚段烃源岩以生成石 油和伴生气为主,生烃量有限。此时,地层压力以常 压一弱超压为主,储层埋深较浅、物性较好,石油可以 在弱超压系统内运移充注,形成近源的原生油藏。东 营末期 受东营运动的影响 ,生烃作用停滞 ,油气第一 期成藏结束(图 5) 。

新近纪馆陶组沉积时期,伴随着新地层的沉积作 用,沙四下亚段烃源岩经受的地温增大,到馆陶组沉 积末期,民丰地区烃源岩再次达到生烃门限;明化镇 沉积末期至今,洼陷中心烃源岩已经进入生裂解气阶 段。该时期埋藏深度加大,储层致密,天然气成藏所 需的动力条件较高,因此,后期形成的干酪根裂解气 在异常高压的驱动下,沿着邻近洼陷区的砂体和高角 度裂缝进入圈闭形成气藏(图5)。此外,由于地温迅 速增高,早期洼陷区形成的古油藏达到了裂解温度, 直接在原储层内形成了古油藏裂解气藏。

Fig. 5 Hydrocarbon accumulation model and pressure characteristics in Minfeng area , Dongying Depression

4 主要结论

通过现今地层压力和流体包裹体恢复古压力的 研究表明,民丰地区沙四下亚段地层压力的演化过程 具有"二旋回波动模式",即存在"常压—弱超压—常 压—超高压—常压"的演化过程,两次超压的形成时 间与天然气藏的形成时间相对应:第一期成藏为沙 二—东营末期,对应着弱高压系统;第二期早期即馆 陶组沉积末期,油气成藏环境为常压,而明化镇中后 期洼陷中心区的裂解气成藏主要对应着高压系统,现 今以常压为主。

民丰地区地层压力的动态演化过程是多因素作 用的结果:第一次高压的形成是地层快速沉积产生欠 压实的结果,生烃作用的贡献相对较小;第二次超压 的形成是大量生烃造成的,沉积作用为辅;由于地温 梯度的降低、断裂一砂体的输导泄压、饱和气藏深埋 等作用的影响,使现今民丰大部分地区的气藏表现为 常压。

参考文献(References)

- 1 李剑,刘成林,罗霞,等. 松辽盆地北部深层天然气资源潜力[C] //贾承造主编. 松辽盆地深层天然气勘探研讨会报告集. 北京: 石油工业出版社,2004 [Li Jian, Liu Chenglin, Luo Xia, et al. The resource potential of deep gas in the north of Songliao Basin[C] //Edited by Jia Chengzao. The Proceedings of Deep Gas Exploration in Songliao Basin. Beijing: Geological Publishing House,2004]
- 2 宋岩,柳少波.中国天然气勘探思路的转变[J].天然气工业, 2008,28(2):12-16[Song Yan, Liu Shaobo. Transformation on natural gas exploration strategy in China[J]. Natural Gas Industry, 2008, 28(2):12-16]
- 3 宋国奇,金强,王力,等.东营凹陷深层沙河街组天然气生成动力 学研究[J].石油学报,2009,30(5):672-677 [Song Guoqi, Jin Qiang, Wang Li, et al. Study on kinetics for generating natural gas of Shahejie Fm. in deep-buried sags of Dongying Depression [J]. Acta Petrolei Sinica,2009,30(5):672-677]
- 4 李延钧,宋国奇,李文涛,等.济阳坳陷东营凹陷北带丰深1井区 深层沙四下古油藏与天然气成因[J].石油与天然气地质,2010, 31(2):173-179[Li Yanjun, Song Guoqi, Li Wentao, et al. A fossil oil-reservoir and the gas origin in the Lower Sha4 member of the well Fengshen1 area, the north Dongying zone of the Jiyang depression[J]. Oil & Gas Geology, 2010,31(2):173-179]
- 5 宋岩,王毅,王震亮,等. 天然气运聚动力学与气藏形成[M]. 北京:石油工业出版社,2002[Song Yan, Wang Yi, Wang Zhenliang, et al. The Dynamics and Forming of Natural Gas Pool[M]. Beijing: Geological Publishing House,2002]
- 6 王震亮,孙明亮,张立宽,等.川西地区须家河组异常压力演化与 天然气成藏模式[J].地球科学-中国地质大学学报,2004,29

(4): 433-439 [Wang Zhenliang , Sun Mingliang , Zhang Likuan , et al. Evolution of abnormal pressure and model of gas accumulation in Xujia– he Formation , western Sichuan basin [J]. Earth Science-Journal of China University of Geosciences , 2004 , 29(4): 433-439]

- 7 陈勇,林承焰,张善文,等. 东营凹陷民丰洼陷深层天然气储层流体包裹体油气地质研究[J]. 沉积学报,2010,28(3): 620-625 [Chen Yong, Lin Chengyan, Zhang Shanwen, et al. Study on fluid inclusions in deep natural gas reservoirs in Minfeng Sub-Sag, Dongying Sag[J]. Acta Sedimentologica Sinica, 2010,28(3): 620-625]
- 8 Fillippone W R. Estimation of formation parameters and the prediction of overpressures from seismic data [J]. Geophysics , 1983 , 48 (4) : 482-483
- 9 刘震,张万选,张厚福,等. 辽西凹陷北洼下第三系异常地层压力 分析[J]. 石油学报,1993,14(1): 14-23 [Liu Zheng, Zhang Wanxuan, Zhang Houfu, et al. The study of abnormal pressure in the north of Liaoxi depression [J]. Acta Petrolei Sinica, 1993,14(1): 14-23]
- 10 陈红汉,董伟良,张树林,等. 流体包裹体在古压力模拟研究中的应用[J]. 石油与天然气地质,2002,23(3): 207-211 [Chen Honghan, Dong Weiliang, Zhang Shulin, et al. Application of fluid inclusion in palaeopressure modeling research [J]. Oil & Gas Geology, 2002,23(3): 207-211]
- 11 刘斌,沈昆. 流体包裹体热力学[M]. 北京: 地质出版社,1999 [Liu Bin, Shen Kun. Thermodynamics of Fluid Inclusions[M]. Beijing: Geological Publishing House,1999]
- 12 米敬奎,肖贤明,刘德汉,等.利用储层流体包裹体的PVT特征 模拟计算天然气藏形成的古压力——以鄂尔多斯盆地上古生界 深盆气藏为例[J].中国科学:D辑,2003,33(7):679-685[Mi Jingkui,Xiao Xianming,Liu Dehan, et al. The ancient pressure of gas accumulation simulated by the PVT characteristic of reservoir fluid inclusions: Taking deep basin gas of the upper Proterozoic in Ordos basin for example[J]. Science in China: Series D,2003,33(7): 679-685]
- 13 邹海峰.大港探区前第三系古流体和古温压特征及演化[D].长春: 吉林大学,2000[Zou Haifeng. The characteristics and evolution of paleo-fliud and paleo-temperature-pressure of Pre-Tertiary in Dagang exploration area[D]. Changchun: Jilin University,2000]
- 14 刘福宁. 异常高压区的古沉积厚度和古地层压力恢复方法探讨 [J]. 石油与天然气地质,1994,15(2): 180-185 [Liu Funing. An approach to reconstruction of paleo-sedimentary thickness and paleoformation pressure in abnormal high pressure region [J]. Oil & Gas Geology, 1994, 15(2): 180-185]
- 15 李善鹏,邱楠生.利用盆地模拟方法分析昌潍坳陷古压力[J]. 新疆石油学院学报,2003,15(4): 5-8[Li Shanpeng, Qiu Nansheng. Analyzing the paleopressure of Changwei depression by the use of basin modeling method [J]. Journal of Xinjiang Petroleum Institute, 2003,15(4): 5-8]
- 16 曹强,叶加仁,郭飞飞,等.伊通盆地莫里青断陷地层压力演化 与油气运聚[J].吉林大学学报:地球科学版,2009,39(4):642-649 [Cao Qiang, Ye Jiaren, Guo Feifei, et al. Pressure evolution in the Moliqing fault-depression, Yitong Basin[J]. Journal of Jilin University: Earth Science Edition, 2009,39(4): 642-649]

- 17 华保钦,林锡祥,杨小梅,等.鄂尔多斯盆地下古生界负压气藏 及运移[J]. 沉积学报,1994,11(2):105-113[Hua Baoqin,Yang Xixiang,Yang Xiaomei, et al. The under pressure gas reservoir and gas migration of Ordovician in Ordos basin[J]. Acta Sedimentologica Sinica,1994,11(2):105-113]
- 18 解习农,焦赳赳,熊海河. 松辽盆地十屋断陷异常低压体系及其 成因机制[J]. 地球科学-中国地质大学学报,2003,29(5):589-595 [Xie Xinong, Jiao Jiujiu, Xiong Haihe. Underpressure system and forming mechanism in the Shiwu depression of Songliao basin [J].

Earth Science-Journal of China University of Geoscience , 2003 , 29 (5): 589-595]

- 张立宽,王震亮,于在平. 沉积盆地异常低压的成因[J]. 石油实验地质,2004,26(5):422-426[Zhang Likuan, Wang Zhengliang, Yu Zaiping. Causes of subnormal pressure in the sedimentary basins
 [J]. Petroleum & Experiment Geology, 2004,26(5):422-426]
- 20 Barker C. Generation of anomalous internal pressures in source rocks [C] // IFP , ed. Migration of hydrocarbon in Sedimentary Basin. Paris: IFP , 1987: 79–112

Pressure Evolution and Gas Accumulation of the Fourth Member of the Shahejie Formation in Dongying Depression, Bohai Bay Basin

LIU Hua¹ JIANG You-lu¹ SONG Guo-qi² CAI Dong-mei¹ XU Hao-qing¹ (1. School of Geosciences, China University of Petroleum, Qingdao, Shandong 266555; 2. Shengli Oilfield, SINOPEC, Dongying, Shandong 257001)

Abstract: After the paleo-pressure build-up by means of measured pressure , mudstone sonic log interval and fluid inclusions , the pressure evolution model of the fourth member of the Shahejie Formation is analyzed in Minfeng area , Dongying depression. The results show that , different periods of reservoir formation correspond to different pressure system in Es_4 reservoir , Minfeng area: the hydrocarbon accumulation of Sha 2-last stage of Dongying was accomplished in a higher pressure system; the hydrocarbon accumulation environment of the last stage of Ng was normal pressure; and after the middle and late period of Nm the cracking gas in the central area of sub sag was formed in a high pressure system. The dynamic evolution process of formation pressure is the results of integrated effect of multiple factors , the first high pressure was due to uncompaction of the high-rate deposition of the formation , and the hydrocarbon-generation made a little contribution; a large amount of hydrocarbon played an important part in the form of the second high pressure , in addition , the sedimentation acted as the auxiliary role. Under the influence of the decrease of geothermal gradient , fracture , sand body-pressure discharge and the deep-burial of gas reservoir , the gas reservoir founded in Sha 4 reservoir , Minfeng area is mainly normal pressure.

Key words: Dongying depression; cracking gas; dynamic hydrocarbon accumulation; paleo-pressure