文章编号:1000-0550(2014)01-0008-11

湖南晚奥陶世凯迪晚期一赫南特期沉积相及岩相古地理

葛祥英¹² 牟传龙¹² 周恳恳¹² 梁 薇¹²

(1.中国地质调查局成都地质调查中心 成都 610081;2.国土资源部沉积盆地与油气资源重点实验室 成都 610081)

摘 要 湖南晚奥陶世凯迪晚期一赫南特期沉积的地层在湘西北区为五峰组、观音桥组;湘中区为五峰组;湘南区为 天马山组和苏水冲组。根据其岩性特征、沉积构造及古生物特征,将湖南地区晚奥陶世凯迪晚期一赫南特期沉积相 划分为局限浅海相、潮坪相、深水盆地相、陆棚边缘一斜坡相等类型。凯迪期晚期,由于华夏陆块向扬子陆块不断挤压 碰撞 黔中隆起、川中隆起等边缘古隆起面积不断增大,此时海平面相对上升,湘西北区变为被各古隆起围限的沉积 了黑色碳、硅质页岩及泥灰岩的局限浅海环境,湘中地区主要为黑色碳、硅质页岩、粉砂质页岩的深水盆地环境,而湘 南地区由于两陆块挤压隆升而沉积了陆棚边缘一斜坡相的砂板韵律;赫南特期随着全球冰川事件的发生,整个南方 地区发生大规模海退,湘西北永顺一张家界一慈利一线以北抬升成湘鄂隆起,该线以南的湘西北区水体继续变浅,主 要沉积了厚度仅十几厘米的观音桥组泥灰岩,湘中湘南地区沉积格局基本未变。

关键词 湖南 凯迪晚期—赫南特期 沉积相 岩相古地理

第一作者简介 葛祥英 女 1986 年出生 硕士 助理工程师 沉积学与盆地分析 E-mail: gexiangying – 2006@ 163. com

通讯作者 牟传龙 男 研究员 E-mail: cdmchuanlong@163.com 中图分类号 P512.2 文献标识码 A

对于中国南方晚奥陶世沉积环境及岩相古地理, 前人曾经做过相对较多的研究工作并取得了相应成 果[1~18] 20 世纪80 年代以前均被认为赫南特期湘西 北地区是抬升降起,不存在观音桥组的沉积,但在后 期的地层勘测工作中发现在桃源九溪一带五峰组顶 部尚有一层厚约15~20 cm 的棕黄色泥灰岩 富含腕 足类和三叶虫^[19 20] ,与鄂西、黔北及川东南等地的观 音桥组可对比 对于该地区赫南特期的沉积相及岩相 古地理 前人并未做过系统研究。在经历了五峰期黑 色笔石页岩沉积之后出现了这样一套浅水介壳沉积 并且沉积时间极短 仅2 Ma 年左右 而其后志留纪鲁 丹期早期又开始沉积龙马溪组黑色笔石页岩相 ,为何 在两套黑色页岩中会出现短暂繁荣的浅水介壳沉积? 其成因又是如何?笔者通过对研究区晚奥陶世沉积 相及古地理的详细研究 结合华南大地构造背景及古 气候等因素对上述问题做出了相应的解释。

1 地层特征

湖南地区的奥陶系,以生物一环境为主要依据, 同时结合岩性、构造等方面的特点,分为了湘西北区、 湘中区和湘南区(图1) 其中湘西北区又分为八面山 小区和武陵山小区^[1]。多年以来,国内外许多地质 学家针对奥陶纪地层进行了大量的研究工作,建立了 较为准确的牙形石和笔石带生物地层对比标 志^[21~26]。上奥陶统分为桑比阶、凯迪阶和赫南特阶。 凯迪阶以笔石 Diplacanthograptus caudatus 带之底为 底界,其早期上限与湘西北和川东南的"临湘组"、湘 中"南石冲组"、湘南"城步组"、赣北"黄泥岗组"、黔 北"涧草沟组"的上限基本一致,晚期以笔石 D. complanatus 带为底界,分别对应于湘西北、湘中、黔北、川 东南及赣北地区的"五峰组"、湘南"天马山组"的底 界。赫南特阶以笔石 Normalograptus extraordinarius 带之底为底界,分为 N. extraordinarius 和 N. persculptus 两个亚带,并大致对应于湘西北、黔北、川东南"观音 桥组"、赣北"新开岭组"(表1)。

五峰组在湘西北、湘中地区均有沉积,主要由灰 黑色一黑色粉砂质页岩、碳质页岩及硅质页岩组成, 在松桃、秀山一带主要为砂质页岩及含碳质页岩。沉 积厚度自湘西北向南部湘中地区逐渐增大。生物以 浮游的笔石和三叶虫(圆尾虫类和球接子类)为主,

①国家重大科技专项"全国油气基础地质研究与编图"(编号:2011ZX05043-005)与中国地质调查局项目"中国岩相古地理编图"(编号:1212010916060)联合资助 收稿日期:2012-11-28;收修改稿日期:2013-02-04

表1 湖南及邻区上奥陶统地层划分及对比(据湖南省地质矿产局 1988;陈旭等 2000 2006 2011)

 Table 1
 Stratigraphic correlation of the Upper Ordovician in Hunan province and its adjacent area

 (after Bureau of Geology and Mineral Resources of Hunan Province 1984; Chen Xu , et al. , 2000 2006 2011)

年代地层		生物地层	湘西北	湘中	湘南	黔北	鄂西南	赣北	川东南
兰多维列统	鲁丹阶	P. cyphus带 (g) C. vesiculosus谐 (g) P. acuminatus肯 (g) A. ascensus带 (g)	龙马溪组	龙马溪组	龙马溪组	龙马溪组	龙马溪组	龙马溪组	龙马溪组
上奥陶统	赫南特阶 凯 逋 阶	N. persculptus省(g) N. extraordinarius特(g)	观音桥组	五 峰 乳	苏水冲组	观音桥组		新开岭组	观音桥组
		P. pacificus D. mirus D. complexits D. complexits D. complexits	五 峰 组		天 马 山 组	五 峰 组	五 峰 组	五峰组	五 峰 组
		A. ordovicicus带(c) P. linearis書(g)	临湘组	南石冲组	城步组	涧草沟组	临湘组	黄泥岗组	临湘纠
	桑比阶	D. caudatus带(g) C. bicornis带(e) N. graeilis带(g)	宝塔组	磨刀溪组	双家口组	宝塔组	宝塔组	視瓦山组	宝塔组

注:(g)表示笔石graptolite(c)表示牙形刺(conodont)

硅质页岩中普遍有放射虫发育。

天马山组沉积于湘南地区 岩性主要为青灰色— 深灰色中厚层状浅变质岩屑石英砂岩、长石石英砂岩 夹砂质板岩、板岩或成互层 厚度在 600 ~1 000 m 以 上 在宁远、新田一带厚达 3 000 m。生物以浮游的笔 石为主 与湘西北地区的五峰组为同期异相沉积。

观音桥组仅发现于湘西北武陵山小区的桃源九 溪剖面中,但在其邻区鄂西宜昌、黔北桐梓—遵义、黔 东北綦江—秀山、川东南一带均有分布。该组位于五 峰组之上,主要为棕黄色的泥质灰岩沉积,厚度在15 ~20 cm 左右,地层中富含小达尔曼虫和赫南特贝等 化石。

苏水冲组为天马山组之上的一段地层,目前仅在 东安大庙口谢家湾一地见有本组出露,其岩性下部为 灰色厚层砂岩夹灰绿色砂质板岩,中部为灰黑色、黑 色薄层具纹带砂质板岩夹砂岩,向上板岩含碳质逐渐 增多。本组厚度仅53 m 左右^[1,19]。生物化石主要以 浮游的笔石为主,与湘西北观音桥组为同期异相 沉积。

2 沉积环境分析

通过对湖南地区及邻区 30 多个地层剖面点的调 查研究,并结合前人的研究成果,根据沉积地层的岩 石学特征、沉积构造特征及古生物特征变化,将该区 划分为局限浅海相、潮坪相、深水盆地相、陆棚边缘一 斜坡相(图2)。

2.1 局限浅海相

局限浅海相 顾名思义 ,是指被多个边缘隆起所 围限的半封闭的浅海环境,沉积水深大概在水下10 ~60 m 的范围。该沉积相主要发育在湘西北地区, 从构造演化上来讲 湘西北地区属于稳定的扬子克拉 通沉积区 凯迪期以前扬子区主要为浅水陆表海碳酸 盐沉积 凯迪后期随着加里东构造运动发生 扬子与 华夏两陆块不断地挤压碰撞 华南构造开始反转进入 前陆盆地沉积演化阶段^[16,27] 黔中降起、雪峰降起等 前陆隆起降出水面 扬子陆块由碳酸盐台地沉积转为 隆后盆地^[27] 湘西北地区沉积了五峰组及其顶部的 观音桥组,五峰组为黑色碳质页岩和硅质页岩互层 (图版 [-A) 沉积厚度仅 0.5 米到十几米。该套碳 硅质页岩互层中发育笔石,且以双笔石科为主,多生 活于 BA3 的水体深度环境中^[3 28],另外硅质页岩中 见放射虫发育 放射虫作为海洋微体古生物中的一个 重要类群,被广泛的用于重建古海洋、古气候、古环境 和古温度变化的研究^[29~32],对于华南地区古生代放 射虫过去一直被认为是深海沉积的标志 而且许多学 者从五峰组海平面上升速率、沉积速率及古生态组合 认定其属典型的深海远洋沉积^[33]。但是国内外许多 专家通过研究现代放射虫的生态特征^[30,34,35]指出放 射虫的发育并不完全限于深海环境 在浅海区也有分布, 方一亭等^[36]通过稀土元素分析指出五峰组碳硅质页岩

Fig. 2 The sedimentary facies correlation diagram of the Late Katian in the Late Ordovician in Hunan

中的 Σ Ce/ Σ Y 与 La/Lu 比值多与东海浅海大陆架沉 积物的值域相近 属同一个体系中 并且所测试的五 峰组的笔石页岩的镁铝含量比值也处在张士三[37]所 提出的海陆过渡环境的高值和海水沉积环境的低值 范围内 侧面说明五峰组形成干淡化了的浅海海域 中,另外构造角度来讲如前所述的湘西北地区是在浅 水碳酸盐台地上形成的隆后盆地 在这里将其定为半 深海—深海相沉积也不太合适 观音桥组沉积的棕黄 色的硅质灰岩、泥灰岩 产特征性赫南特贝动物群 赫 南特贝动物群是一个地质历史短暂、地理分布广泛、 主要生活在凉、浅水海底的腕足动物组合^[24~26],该动 物群常与以 Dalmanitina 为主的三叶虫相伴生^[38,39], 在生态位置上它相当干底栖组合 BA2-3,主要为 BA3,水深不超过60m相比于五峰组水体继续变浅, 总体来说湘西北地区在晚奥陶世为受到边缘隆起所 围限的半封闭浅海环境。

2.2 潮坪相

潮坪相主要发育在黔中隆起周缘松桃、保靖、秀山一带 晚奥陶世凯迪晚期,随着扬子与华夏两陆块的不断挤压碰撞 黔中水下隆起开始露出水面,隆起边缘接受到少量碎屑物源,沉积的五峰组以细粒碎屑岩为主,岩性为灰黄色的砂质页岩、页岩及粉砂岩,沉积构造多为透镜状层理和小型的沙纹层理。

2.3 深水盆地相

深水盆地相是指陆架环境上发育的相对较深的 盆地沉积区,通常在60~200 m的深度范围内,该沉 积相与湘西北局限浅海相相比沉积水体更深,由于并 未受到川中、黔中等边缘隆起的围限,与外海连通性 较好,水体相对通畅。在研究区的主要产出层位为湘 中地区"五峰组"。主要为黑色碳质页岩(图版 I-B)、硅质页岩及粉砂质页岩。生物化石以发育叉笔 石 *Dicellograptus* 为主,生活水体大致在 GA4 范围(60 ~100 m)^[28],见黑白条纹状的水平层理发育,在桃 江、安化、炉观等地先后也发现放射虫发育^[3](图版 I-C),沉积厚度约10~70 m 不等。

2.4 陆棚边缘一斜坡相

陆棚边缘一斜坡相指的是浅海陆棚之外向盆地 发育的地形较陡的边缘斜坡地带,该相带由于地形坡 度较大,故主要沉积天马山组、苏水冲组青灰色中厚 层状浅变质岩屑石英砂岩、长石石英砂岩、砂岩夹砂 质板岩、碳质板岩、板岩韵律(图版 I -D ,E ,F)。中晚 奥陶世由于两陆块的挤压碰撞,东南侧华夏一带抬升 隆起,构成了倾向为北西方向的斜坡带(砂板韵律中 的沙纹层理测的古流向并绘制玫瑰花图指示北西方 向 表 2 图 3),为距离相对较近的湘南地区提供了大 量的陆源碎屑物源,使得湘南地区沉积了多套砂板韵 律^[3,12,40]。单个韵律厚几厘米 ~ 几十厘米,发育鲍马 序列 AD、BC、CD 组合(图版 I-G,H),具典型的边 缘一斜坡沉积特征。

表 2 湘中湘南地区各剖面上奥陶统古流向值 Table 2 The value of ancient flow of different sections from Late Ordovician in the central and southern Hunan

刘西久称	古流向值								
司山石朴	1	2	3	4	5	6			
双峰天马山	265°	280°	325°	316°	286°	298°			
祁东石门口	308°	310°	275°	284°	332°	316°			
新田槽头源	330°	313°	295°	284°	306°	275°			
茶陵回岭	267°	235°	305°	278°	314°	336°			
桂东龙渣	278°	293°	276°	304°	312°	334°			

图 3 湘中湘南地区上奥陶统天马山组古流向玫瑰花图 Fig. 3 The rose diagram of the ancient flow from Tianmashan Formation of Late Ordovician in the central and southern Hunan

3 沉积演化分析

3.1 凯迪晚期

在凯迪期晚期黔中隆起露出水面,在其周缘松 桃、怀化一带为灰黄色砂质页岩及碳质页岩的潮坪相 沉积,围绕隆起边缘呈环带展布^[41],沉积物粒度自西 向东逐渐变细,到湘西北沅陵一桃源一线以北西沉积 为五峰组的灰黑色、黑色碳质页岩及硅质页岩互层, 整个湘西北地区由于受到黔中隆起、川中隆起的构造 围限此时应为一个相对半封闭的局限浅海环 境^[2,11,36,42~46],由于其沉积厚度差别很大,在张家界 温塘、永顺石堤西一带仅0.7 m、0.5 m,但在桃源九 溪一带厚度却达40 m,沉积厚度的差异是由于沉积 基底不平导致的,这也表明了当时湘西北地区的局限 浅海环境并非为一个广阔平缓的基底,而是存在水下 相对隆起区(图4,5)。在沅陵—桃源一线以南,洞 口—通道—双峰以北范围内为深水盆地沉积区,主要

沉积黑色碳质页岩、硅质页岩及粉砂质页岩,沉积厚 度较湘西北地区增大,在10~70 m 左右。在洞口— 通道—双峰以南为陆棚边缘—斜坡沉积,由于东南侧 华夏陆块不断的向北西扬子陆块挤压碰撞^[3~6,47],东 南侧隆起不断抬升,为该沉积区提供了大量陆源碎屑 物,使得本区沉积了大套的岩屑石英砂岩、长石石英 砂岩夹板岩、砂质板岩韵律。

图 4 湖南晚奥陶世凯迪期晚期沉积模式图

Fig. 4 The depositional model diagram of the Late Katian of Late Ordovician in Hunan province

Fig. 5 The lithofacies paleogeography map of the Late Katian of Late Ordovician in Hunan province

在晚奥陶世凯迪期晚期出现以上古地理格局是 华夏陆块不断向北西方向推挤扩大的结果,由于华夏 陆块不断地向扬子陆块挤压靠拢,扬子陆块的川中、 黔中等一些水下隆起开始露出水面,湘西北地区水体 加深成为被各古隆起所围限的局限浅海,沉积黑色笔 石页岩相。随着推挤作用的继续,华南盆地也不断地 向北西方向迁移,湖南地区盆地中心由最初的湘南地 区向湘中移动,沉积了黑色碳、硅质页岩、粉砂质页岩。

3.2 赫南特期

在赫南特期 黔中隆起的面积不断扩大,在其周 缘依旧为砂质页岩、页岩等碎屑岩潮坪沉积,龙山— 永顺一张家界一慈利一线以北露出海面成为湘鄂隆 起区(图6,7),湘西北地区沉积水体更加局限,转为 沉积厚度仅几十厘米~几米的观音桥组泥质灰岩,东 南侧由于华夏陆块碰撞挤压产生的隆起面积不断增 大,湘南地区依旧沉积大套的砂板韵律互层且范围不 断向北西方向扩增,而在安化—溆浦—桃江一线与通 道—城步—洞口一线之间仍然存在深水盆地沉积区, 沉积五峰组黑色碳质页岩、硅质页岩及粉砂质页岩。

赫南特期湖南地区整体体现一个海退过程,较凯 迪期海水深度明显变浅,是什么导致晚奥陶世末期出 现如此大的海退事件呢?又是什么让全球广泛分布 的赫南特贝动物群仅仅出现了2 Ma 年如此短暂的繁 荣呢?从全球角度上来看,晚奥陶世时期,北非、南 非、南欧和中欧、西亚等地区均发生大陆冰川活动,冰 盖的扩张引起全球海平面大幅度下降,高峰时期海平 面下降幅度50~100 m,一些黑色笔石页岩区转为发 育浅水型赫南特贝动物群,但由于生态环境、温度、压 力及水动力的剧烈变更,使得赫南特贝动物群在短时 间内也很快消亡^[39,49~53],志留纪鲁丹期冰盖的消融 与海平面的迅速回升,开始了早志留世初期大规模的 海侵 整个扬子地区又开始沉积龙马溪组黑色笔石页 岩。综上所述 晚奥陶世赫南特期短暂发育赫南特贝 动物群主要是全球性大陆冰川事件导致海退的结果。

4 结论

通过野外多个剖面的观察、室内分析研究以及前 人资料成果的总结吸收 将湖南地区晚奥陶世凯迪期 晚期一赫南特期沉积相划分为局限浅海相、潮坪相、 深水盆地相、陆棚边缘一斜坡相。

凯迪期晚期随着华南两陆块挤压碰撞作用的加 剧 川中隆起、黔中隆起等一些边缘古隆起不断抬升 扩大 使得湖南某些地区海平面相对上升 ,湘西北地 区发育为受各隆起围限的半封闭的局限浅海环境 ,沉 积了黑色的碳、硅质页岩。两陆块的挤压使得东南侧 边缘隆起抬升为湘南地区提供了大量陆源碎屑 ,沉积 了大套的砂板韵律 ,湘中地区为一深水盆地沉积区 , 沉积了厚度相对稳定的碳质页岩、硅质页岩及粉砂质 页岩。

赫南特期由于全球性冰川事件的发生,整个中上 扬子地区发生大规模海退,湘西北永顺一张家界一慈 利一线以北的水下隆起抬升至水面之上成为湘鄂隆 起,沅陵、桃源一带与凯迪晚期相比受到边缘隆起围 限更甚,加之水体深度的变浅,开始沉积厚度仅实际 厘米的观音桥组泥灰岩,湘中、湘南地区的沉积格局 基本未变。

湘西北及湘中地区沉积了大范围的五峰组黑色碳、硅质页岩,虽然沉积厚度不大,但是整体分布稳定 且沉积范围广,有机质含量高,具相当大的生烃潜力, 是中上扬子地区油气勘探的重点层位。

致谢 感谢成都地质矿产研究所陈小炜、康建威、 门玉鹏工程师在野外工作期间给予的帮助及指导。

Fig. 7 The lithofacies paleogeography map of the Hirnantian of Late Ordovician in Hunan area

参考文献(References)

- 湖南省地质矿产局.湖南省区域地质志[M].北京:地质出版社, 1988:62-86 [Bureau of Geology and Mineral Resources of Hunan Province. Regional Geology of Hunan Province [M]. Beijing: Geological Publishing House, 1988:62-86]
- 2 黄志诚,黄钟锦,陈智娜. 下扬子区五峰组火山碎屑岩与放射虫硅 质岩[J]. 沉积学报,1991,9(2):1-14 [Huang Zhicheng, Huang Zhongjin, Chen Zhina. Volcanic rock and radiolarian Silicilith of Wufeng Formation in Lower Yangtze region [J]. Acta Sedimentologica Sinica,1991,9(2):1-14]
- 3 周名魁,王汝植,李志明,等. 中国南方奥陶一志留纪岩相古地理 与成矿作用[M]. 北京:地质出版社,1993:1-96 [Zhou Mingkui, Wang Ruzhi, Li Zhiming, et al. The Lithofacies and Paleogeography of South China [M]. Beijing: Geological Publishing House,1993:1-96]
- 4 刘宝珺,许效松 潘杏南,等. 中国南方古大陆沉积地壳演化与成 矿[M]. 北京:科学出版社,1993:30-35[Liu Baojun, Xu Xiaosong, Pan Xingnan, et al. The Lithofacies and the Crustal Evolution of South China Palaeocontinents[M]. Beijing: Science Press,1993:30-35]
- 5 刘宝珺,许效松,夏文杰,等. 中国南方岩相古地理图集[M]. 北京:科学出版社,1994:1-188 [Liu Baojun, Xu Xiaosong, Xia Wenjie, et al. Paleogeographic Atlas of South China [M]. Beijing: Science Press,1994:1-188]

- 6 许效松 徐强,潘桂棠,等. 中国南大陆演化与全球古地理对比 [M]. 北京:地质出版社,1996:42-63 [Xu Xiaosong, Xu Qiang, Pan Guitang, et al. The Comparison between the Continental Evolution of South China and the Global Paleogeography [M]. Beijing: Geological Publishing House,1996:42-63]
- 7 冯增昭 彭勇民 念振奎 ,等. 中国南方中及晚奥陶世岩相古地理 [J]. 古地理学报 ,2001 ,3(4):10-24 [Feng Zengzhao, Peng Yongmin, Jin Zhenkui, et al. Lithofacies palaegeography of the Middle and Late Ordovician in South China [J]. Journal of Palaeogeography 2001, 3(4):10-24]
- 8 冯增昭 彭勇民 念振奎 等. 中国晚奥陶世岩相古地理[J]. 古地 理学报 2004 ,6(2): 127-139 [Feng Zengzhao, Peng Yongmin, Jin Zhenkui, et al. Lithofacies palaegeography of the Late Ordovician in South China[J]. Journal of Palaeogeography 2004 6(2): 127-139]
- 9 蔡俊 何幼斌 张来,等.中上扬子地区五峰组沉积环境分析[J]. 海洋地质动态,2010,26 (6):24-30 [Cai Jun, He Youbin, Zhang Lai, et al. Sedimentary environment analyses of Wufeng Formation in the Middle-Upper Yangtze area of South China [J]. Marine Geology Letters, 2010,26(6): 24-30]
- 10 张鹏飞. 中扬子地区古生代构造古地理格局及其演化[D]. 青岛: 中国石油大学,2009 [Zhang Pengfei. Pattern and evolution of Paleozoic tectono-palaeogeography in the Middle Yangtze region [D]. Qingdao: China University of Petroleum, 2009]

- 11 刘伟,许效松,余谦,等. 中上扬子晚奥陶世赫南特期岩相古地理 [J]. 成都理工大学学报:自然科学版,2012,39(1):32-39[Liu Wei,Xu Xiaosong,Yu Qian, et al. Lithofacies palaeography of the Late Ordovician Hirnantian in the Middle-Upper Yangtze region of China[J]. Journal of Chengdu University of Technology: Natural Science Edition, 2012, 39(1): 32-39]
- 12 罗薇 何幼斌 蒋金晶,等. 湘南地区奥陶系岩石组合及其沉积环境[J]. 地质通报 2012 31(7):1105-1114 [Luo Wei, He Youbin, Jiang Jinjing, et al. An analysis of Ordovician rock association and sedimentary environment in southern Hunan province [J]. Geological Bulletin of China, 2012 31(7):1105-1114]
- 13 黄福喜 陈洪德,侯明才,等.中上扬子克拉通加里东期(寒武一志留纪) 沉积层序充填过程与演化模式[J].岩石学报 2011 27 (8):2299-2317 [Huang Fuxi, Chen Hongde, Hou Mingcai, et al. Filling process and evolutionary model of sedimentary sequence of Middle-Upper Yangtze craton in Caledonian(Cambrian-Silurian) [J]. Acta Petrologica Sinica 2011 27(8):2299-2317]
- 14 周小进 杨帆. 中国南方大陆加里东晚期构造一古地理演化[J]. 石油实验地质,2009,31(2):128-135 [Zhou Xiaojin, Yang Fan. Tectonic and paleogeographic evolution of Late Caledonian in the South of China Continent [J]. Petroleum Geology & Experiment, 2009,31(2):128-135]
- 15 李聪 陈世悦 涨鹏飞 筹. 雪峰陆内多期复合造山带震旦—三叠 纪沉积演化特征 [J]. 中国地质,2011,38(1):43-51 [Li Cong, Chen Shiyue, Zhang Pengfei, et al. Palaeozoic-Mesozoic sedimentary evolution characteristics of the Xuefeng Mountain intracontinental orogenic belt [J]. Geology in China, 2011, 38(1):43-51]
- 16 陈洪德,侯明才,许效松,等. 加里东其华南的盆地演化与层序格架[J]. 成都理工大学学报:自然科学版 2006 33(1):1-8 [Chen Hongde, Hou Mingcai, Xu Xiaosong, et al. Tectonic evolution and sequence stratigraphic framework in South China during Caledonian [J]. Journal of Chengdu University of Technology: Natural Science Edition, 2006 33(1):1-8]
- 17 刘运黎,周小进,廖宗庭,等. 华南加里东期相关地块及其汇聚过 程探讨[J]. 石油实验地质,2009,31(1):19-25 [Liu Yunli, Zhou Xiaojin, Liao Zongting *et al.* Relative blocks and convergence process during the Calenonian Movement in South China [J]. Petroleum Geology & Experiment 2009,31(1):19-25]
- 18 杜远生 徐亚军. 华南加里东运动初探[J]. 地质科技情报 2012, 31(5):43-49 [Du Yuansheng, Xu Yajun. A preliminary study on Calenonian Event in South China[J]. Geological Science and Technology Information 2012 31(5):43-49]
- 19 湖南省地质矿产局.湖南地层[M]. 长沙:湖南省地质矿产局四零二队印刷厂,1986:151-227 [Bureau of Geology and Mineral Resources of Hunan Province. The Strata of Hunan [M]. Changsha: Hunan Bureau of Geology and Mineral Resources 402 Geological Team Publishing House, 1986:151-227]
- 20 刘义仁 /傅汉英. 湖南晚奥陶世五峰期的古地理[J]. 湖南地质, 1990 9(1):1-7 [Liu Yiren, Fu Hanying. Paleogeography of Hunan province in Wufeng Age of Late Ordovician [J]. Geology of Hunan, 1990 9(1):1-7]

- 21 安太痒. 中国南部早古生代牙形石[M]. 北京:北京大学出版社, 1987:31-83 [An Taiyang. The Early Paleozoic Conodonts in the South China [M]. Beijing: Press of Peking University, J987:31-87]
- 22 陈旭, 戎嘉余. 从生物地层学到大地构造学——以华南奥陶系和志留系为例[J]. 现代地质,1999,13(4):385-389[Chen Xu, Rong Jiayu. From biostratiraphy to tectonics-with Ordovician and Silurian of South China as an example [J]. Geoscience,1990,9(1):1-7]
- 23 陈旭 , 成嘉余 张元动 , 等. 奥陶纪年代地层学研究综述[J]. 地层 学杂志 2000 , 24(1): 18-26 [Chen Xu, Rong Jiayu, Zhang Yuandong, et al. Acommentary on Ordovician Chronostratigraphy [J]. Journal of Stratigraphy, 2000 , 24(1): 18-26]
- 24 陈旭, 戎嘉余, 樊隽轩, 等. 扬子区奥陶纪末赫南特亚阶的生物地 层学研究[J]. 地层学杂志 2000 24(3):169-175[Chen Xu, Rong Jiayu, Fan Juanxuan, et al. Biostratigraphy of the Hirnantian Substage in the Yangtze region [J]. Journal of Stratigraphy, 2000, 24 (3): 169-175]
- 25 陈旭 , 成嘉余 / 樊隽轩, 等. 奥陶一志留系界线地层生物带的全球 对比[J]. 古生物学报 2000 39(1):100-114 [Chen Xu, Rong Jiayu, Fan Juanxuan, et al. A global correlation of Biozones across the Ordovician-Silurian boundary [J]. Acta Palaeontologica Sinica, 2000, 39(1): 100-114]
- 26 陈旭,戎嘉余,樊隽轩,等. 奥陶系上统赫南特阶全球层型剖面和 点位的建立[J]. 地层学杂志,2006,30(4):289-304 [Chen Xu, Rong Jiayu, Fan Juanxuan, *et al.* A final report on the global stratotype section and point(GSSP) for the Hirnantian stage (Upper Ordovician) [J]. Journal of Stratigraphy, 2006, 30(4): 289-304]
- 27 牟传龙,许效松. 华南地区早古生代沉积演化与油气地质条件 [J]. 沉积与特提斯地质 2010 30(3):24-29 [Mou Chuanlong, Xu Xiaosong. Sedimentary evolution and petroleum geology in South China during the Early Palaeozoic [J]. Sedimentary Geology and Tethyan Geology, 2010 30(3):24-29]
- 28 陈旭. 论笔石的深度分带[J]. 古生物学报 ,1990 29(5):507-526 [Chen Xu. Graptolite depth zonation[J]. Acta Palaeontologica Sinica ,1990 29(5):507-526]
- 29 Casey R E. The Ecology and distribution of recent radiolarian [C] // Ramsay A T S. Oceanic Micropaleontology. Vol 2. London: Academic Press ,1977: 809-846
- 30 Renz G W. The distribution and ecology of radiolaria in the central Pacific: Plankton and surface sediments [J]. Bulletin of the Scripps Institution of Oceanography ,1976, 22:267
- 31 Abelmann A, Gowing M M. Spatial distribution pattern of living polycystine radiolarian taxa-baseline study for paleoevironmental reconstructions in the southern ocean(Atlantic sector) [J]. Marine Micropaleontolgy, 1997, 30: 3-28
- 32 Vnee Peyr M T, Caulet J P. Paleoproductivity changes in the upwelling system of Socotra (Somali Basin, N W Indian Ocean) during the last 72 000 years: Evidence from biological signatures [J]. Marine Micropaleontology, 2000, 40: 321-344
- 33 肖传桃 李建明 郭成贤. 中上扬子地区五峰组沉积环境的再认识[J]. 四川地质学报,1996,16(4):294-298 [Xiao Chuantao, Li Jianming, Guo Chengxian. Reunderstanding of sedimentary environ-

ment of the Wufeng Formation in Mid-Upper Yangtze area [J]. Acta Geologica Sichuan ,1996 ,16(4):294-298]

- 34 耿良玉.中国古生物学会第十三、十四届学术年会论文选集[C]. 合肥:安徽科学技术出版社,1986:103-112 [Geng Liangyu. The Thirteenth and Fourteenth Academic Annual Meeting Symposium of Palaeontological Society of China [C]. Hefei: Anhui Science and Technology Press,1986:103-112]
- 35 吴浩若.《中国的近海放射虫》的古环境启示[J]. 地质科学, 2000 35(4):507 [Wu Haoruo. The palaeoenvironment enlightenment of radiolarian in the coastal China seas [J]. Scientia Geologica Sinica, 2000 35(4):507]
- 36 方一亭,边立曾,俞剑华,等. 晚奥陶世五峰期扬子板块沉积模式 [J]. 沉积学报,1993,11(3):7-12 [Fang Yiting, Bian Lizeng, Yu Jianhua, et al. Sedimentary environment pattern of Yangtz Plate in Wufeng Age of Late Ordovician [J]. Acta Sedimentologica Sinica, 1993,11(3):7-12]
- 37 张士三. 沉积岩层中镁铝含量比的研究及其应用[J]. 矿物岩石 地球化学通讯,1988(2):112-113 [Zhang Shisan. The research and application of magnesium-aluminium content ratio in sedimentary rocks [J]. Mineralogy, Petrology and Geochemistry Communication, 1988 (2):112-113]
- 38 戎嘉余.中国的赫南特贝动物群(*Hirnantia fauna*)并论奥陶系与志留系的分界[J].地层学杂志,1979,3(1):1-27 [Rong Jiayu.
 The Hirnantia fauna in China and the Ordovician-Silurian boundary
 [J]. Journal of Stratigraphy,1979,3(1):1-27]
- 39 戎嘉余. 上扬子区晚奥陶世海退的生态地层证据与冰川活动影响[J]. 地层学杂志,1984,8(1):19-29 [Rong Jiayu. Ecostratigraphical evidence of the regression in the Late Ordovician and influences of glacier activities in the Upper South China [J]. Journal of Stratigraphy, J984,8(1):19-29]
- 40 葛祥英,牟传龙,周恳恳,等.湖南晚奥陶世桑比期—凯迪期早期 沉积特征及沉积模式[J].古地理学报 2013,15(1):59-68 [Ge Xiangying, Mou Chuanlong, Zhou Kenken, et al. Sedimentary characteristics and depositional model in the Sandbian-Early Katian of Late Ordovician in Hunan province [J]. Journal of Palaeogeography, 2013,15(1):59-68]
- 41 谢尚克,汪正江,王剑. 黔东北地区晚奥陶世岩相古地理[J]. 古 地理学报 2011,13(5):539-549 [Xie Shangke, Wang Zhengjiang, Wang Jian. Lithofacies palaeogeography of the Late Ordovician in northeastern Guizhou province [J]. Journal of Palaeogeography, 2011,13(5):539-549]
- 42 穆恩之. 论五峰页岩[J]. 古生物学报,1954 2(2):153-170 [Mu Enzhi. On the Wufeng shale [J]. Acta Palaeontologica Sinica,1954 2 (2):153-170]
- 43 戎嘉余 陈旭. 华南晚奥陶世的动物群分异及生物相、岩相分布 模式[J]. 古生物学报,1987,26(5):507-545 [Rong Jiayu, Chen Xu. Faunal differentiation, biofacies and lithofacies pattern of Late Ordovician(*Ashgillian*) in South China[J]. Acta Palaeontologica Sinica,1987,26(5):507-545]
- 44 胡书毅,文玲,田海芹.扬子地区奥陶纪古地理与石油地质条件

[J]. 中国海上油气:地质 2001 ,15(5):317-334 [Hu Shuyi, Wen Ling, Tian Haiqin. Ordovician paleogeography and petroleum geology in Yangtze area [J]. China Offshore Oil and Gas: Geology, 2001 ,15 (5):317-334]

- 45 牟传龙,周恳恳,深薇,等.中上扬子地区早古生代烃源岩沉积环境与油气勘探[J].地质学报 2011 85(4):1-7 [Mou Chuanlong, Zhou Kenken, Liang Wei, et al. Early Paleozoic sedimentary environment of hydrocarbon source rocks in the Middle-Upper Yangtze area and petroleum and gas exploration [J]. Acta Geologica Sinica, 2011, 85(4):1-7]
- 46 刘伟 许效松 ,冯心涛 ,等. 中上扬子上奥陶统五峰组含放射虫硅 质岩与古环境[J]. 沉积与特提斯 2010 ,30 (3):65-70 [Liu Wei, Xu Xiaosong, Feng Xintao, et al. Radiolarian siliceous rocks and palaeoenvironmental reconstruction for the Upper Ordovician Wufeng Formation in the Middle-Upper Yangtze area [J]. Sedimentary Geology and Tethyan Geology , 2010 , 30 (3):65-70]
- 47 许效松,刘宝珺,楼雄英,等.中国中西部海相沉积盆地分析与油 气资源[M].北京:地质出版社,2004:1-19[Xu Xiaosong, Liu Baojun, Lou Xiongying, et al. Marine Sedimentary Basins' Analysis and Oil and Gas Resources in the Middle-Western China[M]. Beijing: Geological Publishing House,2004:1-19]
- 48 樊隽轩, Michael J Melchin 陈旭,等. 华南奥陶一志留系龙马溪组 黑色笔石页岩的生物地层学[J]. 中国科学(D辑):地球科学, 2012 A2(1):130-139 [Fan Juanxuan, Michael J Melchin, Chen Xu, et al. Biostatigraphy and geography of the Ordovician-Silurian Lungmachi black shales in South China [J]. Science China (Seri. D): Earth Sciences, 2012, 42(1):130-139]
- 49 戎嘉余 ,詹仁斌. 华南奥陶一志留纪腕足动物群的更替兼论奥陶 纪末冰川活动的影响[J]. 现代地质 ,1999 ,13(4): 390-394 [Rong Jiayu ,Zhan Renbin. Ordovician-Silurian brachiopod turnover in South China [J]. Geoscience ,1999 ,13(4): 390-394]
- 50 戎嘉余 陈旭, Harper DAT,等.关于奥陶系最上部赫南特(Hirnantian) 亚阶全球层型的建议[J]. 地层学杂志,2000,24(3): 176-181 [Rong Jiayu, Chen Xu, Harper DAT, et al. Proposal of a GSSP Candidate Section in South China for a new Hirnantian boundary stratotype[J]. Journal of Stratigraphy, 2000,24(3):176-181]
- 51 冯洪真,俞剑华,方一亭,等. 五峰期上扬子海古盐度分析[J]. 地 层学杂志,1993,17(3):179-185 [Feng Hongzhen, Yu Jianhua, Fang Yiting, et al. The palaeosalinity anlysis in the Wufengian Upper Yangtze Sea [J]. Journal of Stratigraphy,1993,17(3):179-185]
- 52 何卫红 汪啸风,卜建军. 扬子海盆中部晚奥陶世五峰期海平面 变化[J]. 地球学报 2003 24(1):55-60 [He Weihong, Wang Xiaofeng, Bu Jianjun. Sea-level change of the central Yangtze sea basin in the Late Ordovician Wufengian Period [J]. Acta Geoscientia Sinica, 2003, 24(1):55-60]
- 53 王传尚,汪啸风,陈孝红,等. 奥陶纪末期层序地层学研究[J]. 地 球科学,2003,28(1):6-10 [Wang Chuanshang, Wang Xiaofeng, Cheng Xiaohong, et al. Study of sequence stratigraphy at terminal of Ordovician [J]. Earth Science, 2003,28(1):6-10]

Sedimentary Facies and Lithofacies Palaeogeography in the Late Katian-Hirnantian of Late Ordovician in Hunan Province

GE Xiang-ying^{1 2} MOU Chuan-long^{1 2} ZHOU Ken-ken^{1 2} LIANG Wei^{1 2}

(1. Chengdu Institute of China Geology and Mineral Resources, Chengdu 610081;

2. Key Laboratory for Sedimentary Basin and Oil and Gas Resources , Ministry of Land and Resources , Chengdu 610081)

Abstract: During the Late Katian-Hirnantian Age of Late Ordovician , it were deposited Wufeng and Guanyinqiao Formations in the Northwestern Hunan , Wufeng Formation in the central Hunan , Tianmashan and Sushuichong formations in the southern Hunan. According to the lithological characters , sedimentary structures and paleontological features , Hunan can be divided into restricted shallow marine facies , tidal-flat facies , deep-water basin facies and shelf-marginslope facies. In the Late-Katian , As a result of the continuous extrusion and collision between Yangtze and Cathaysia blocks , the area of the central Sichuan and central Guizhou uplifts gradually increased and the sea level relatively rise , the northwestern Hunan were changed into restricted shallow marine with black carbonaceous , siliceous shales and marlstones surrounded by ancient uplifts , the central Hunan was a deep-water basin with black carbonaceous , siliceous and sility shales , whereas the southern Hunan deposited the interbeds of sandstones and shales in the shelfmargin-slope facies. In the Hirnantian age of Late Ordovician , as the global glacier event occurred , large scale of retrogression had begun in the south area , the north area of the Yongshun-Zhangjiajie-Cili line were lifted to be Hunan-Hubei uplift , and the south of the front line deposited marlstones with more than 10 centimeters in thickness , but the depositional pattern of southern and central Hunan did not change.

Key words: Hunan province; Late Katian-Hirnantian Age of Late Ordovician; sedimentary facies; lithofacies palaeogeography

图版 I 说明: A. 五峰组碳质页岩、硅质页岩互层,湖南永顺; B. 五峰组黑色碳质页岩(+),湖南溆浦; C. 五峰组硅质页岩中 发育的放射虫,湖南溆浦; D. 天马山组砂板韵律,湖南祁东; E. 天马山组长石石英砂岩,湖南桂东; F. 天马山组岩屑石英砂 岩 湖南桂东; G. 鲍马序列 AD 段,湖南茶陵; H. 鲍马序列 CD 段,湖南桂东