[1] Gussone N,Schmitt A D,Heuser A,et al. Calcium stable isotope geochemistry[M]. Berlin: Springer,2016: 1-260.
[2] DePaolo D J. Calcium isotopic variations produced by biological,kinetic,radiogenic and nucleosynthetic processes[J]. Reviews in Mineralogy and Geochemistry,2004,55(1): 255-288.
[3] Fantle M S,Tipper E T. Calcium isotopes in the global biogeochemical Ca cycle: Implications for development of a Ca isotope proxy[J]. Earth-Science Reviews,2014,129: 148-177.
[4] Griffith E M,Fantle M S. Calcium isotopes[M]. Cambridge: Cambridge University Press,2021: 1-28.
[5] Fantle M S. Evaluating the Ca isotope proxy[J]. American Journal of Science,2010,310(3): 194-230.
[6] Chakrabarti R,Mondal S,Jacobson A D,et al. Review of techniques,challenges,and new developments for calcium isotope ratio measurements[J]. Chemical Geology,2021,581: 120398.
[7] Dai W,Moynier F,Paquet M,et al. Calcium isotope measurements using a collision cell (CC)-MC-ICP-MS[J]. Chemical Geology,2022,590: 120688.
[8] Gussone N,Eisenhauer A,Heuser A,et al. Model for kinetic effects on calcium isotope fractionation (δ44Ca) in inorganic aragonite and cultured planktonic foraminifera[J]. Geochimica et Cosmochimica Acta,2003,67(7): 1375-1382.
[9] Lemarchand D,Wasserburg G J,Papanastassiou D A. Rate-controlled calcium isotope fractionation in synthetic calcite[J]. Geochimica et Cosmochimica Acta,2004,68(22): 4665-4678.
[10] Marriott C S,Henderson G M,Belshaw N S,et al. Temperature dependence of δ 7Li,δ 44Ca and Li/Ca during growth of calcium carbonate[J]. Earth and Planetary Science Letters,2004,222(2): 615-624.
[11] DePaolo D J. Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solutions[J]. Geochimica et Cosmochimica Acta,2011,75(4): 1039-1056.
[12] Nielsen L C,DePaolo D J,De Yoreo J J. Self-consistent ion-by-ion growth model for kinetic isotopic fractionation during calcite precipitation[J]. Geochimica et Cosmochimica Acta,2012,86: 166-181.
[13] Fantle M S,DePaolo D J. Ca isotopes in carbonate sediment and pore fluid from ODP Site 807A: The Ca2+(aq)-calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sediments[J]. Geochimica et Cosmochimica Acta,2007,71(10): 2524-2546.
[14] Blättler C L,Miller N R,Higgins J A. Mg and Ca isotope signatures of authigenic dolomite in siliceous deep-sea sediments[J]. Earth and Planetary Science Letters,2015,419: 32-42.
[15] Blättler C L,Hong W L,Kirsimäe K,et al. Small calcium isotope fractionation at slow precipitation rates in methane seep authigenic carbonates[J]. Geochimica et Cosmochimica Acta,2021,298: 227-239.
[16] Kang J T,Ionov D A,Liu F,et al. Calcium isotopic fractionation in mantle peridotites by melting and metasomatism and Ca isotope composition of the bulk silicate earth[J]. Earth and Planetary Science Letters,2017,474: 128-137.
[17] Liu F,Li X,Wang G Q,et al. Marine carbonate component in the mantle beneath the southeastern Tibetan Plateau: Evidence from magnesium and calcium isotopes[J]. Journal of Geophysical Research: Solid Earth,2017,122(12): 9729-9744.
[18] Dai W,Wang Z C,Liu Y S,et al. Calcium isotope compositions of mantle pyroxenites[J]. Geochimica et Cosmochimica Acta,2020,270: 144-159.
[19] Chen C F,Ciazela J,Li W,et al. Calcium isotopic compositions of oceanic crust at various spreading rates[J]. Geochimica et Cosmochimica Acta,2020,278: 272-288.
[20] Sun J,Zhu X K,Belshaw N S,et al. Ca isotope systematics of carbonatites: Insights into carbonatite source and evolution[J]. Geochemical Perspectives Letters,2021,17: 11-15.
[21] 刘占民,刘丛强,韩贵琳,等. 钙同位素方法在环境地球化学研究中的应用与进展[J]. 地球与环境,2005,33(1):71-78.

Liu Zhanmin,Liu Congqiang,Han Guilin,et al. Advances in applications of calcium isotopes in environmental geochemistry research[J]. Earth and Environment,2005,33(1): 71-78.
[22] 李亮,蒋少涌. 钙同位素地球化学研究进展[J]. 中国地质,2008,35(6):1088-1100.

Li Liang,Jiang Shaoyong. Advance in calcium isotope geochemistry[J]. Geology in China,2008,35(6): 1088-1100.
[23] 吴能友,张必东,邬黛黛. 海洋钙同位素分馏机制及其古海洋学应用[J]. 地球科学进展,2015,30(4):433-444.

Wu Neng- you,Zhang Bidong,Wu Daidai. Fractionation mechanism and paleoceanographic applications of calcium isotopes in marine settings[J]. Advances in Earth Science,2015,30(4): 433-444.
[24] 祝红丽,张兆峰,刘峪菲,等. 钙同位素地球化学综述[J]. 地学前缘,2015,22(5):44-53.

Zhu Hongli,Zhang Zhaofeng,Liu Yufei,et al. Calcium isotope geochemistry review[J]. Earth Science Frontiers,2015,22(5): 44-53.
[25] 童铄云,冯兰平,刘金存,等. 钙同位素分析测试技术进展[J]. 矿物岩石地球化学通报,2016,35(3):487-496.

Tong Shuoyun,Feng Lanping,Liu Jincun,et al. A review on the development of Ca isotope analytical techniques[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2016,35(3): 487-496.
[26] Wang S H,Yan W,Magalhães H V,et al. Calcium isotope fractionation and its controlling factors over authigenic carbonates in the cold seeps of the northern South China Sea[J]. Chinese Science Bulletin,2012,57(11): 1325-1332.
[27] Wang S H,Yan W,Magalhães V H,et al. Factors influencing methane-derived authigenic carbonate formation at cold seep from southwestern Dongsha area in the northern South China Sea[J]. Environmental Earth Sciences,2014,71(5): 2087-2094.
[28] Chen X F,Deng W F,Zhu H L,et al. Assessment of coral δ44/40Ca as a paleoclimate proxy in the Great Barrier Reef of Australia[J]. Chemical Geology,2016,435: 71-78.
[29] Wei G Y,Hood A V S,Chen X,et al. Ca and Sr isotope constraints on the formation of the Marinoan cap dolostones[J]. Earth and Planetary Science Letters,2019,511: 202-212.
[30] Zhao H,Dahl T W,Chen Z Q,et al. Anomalous marine calcium cycle linked to carbonate factory change after the Smithian Thermal Maximum (Early Triassic)[J]. Earth-Science Reviews,2020,211: 103418.
[31] Cui Y,Zhang F F,Wang J Y,et al. Marine anoxia and ocean acidification during the end‐Permian extinction: An integrated view from δ238U and δ44/40Ca proxies and earth system modeling[M]//Ernst R E,Dickson A J,Bekker A. Large igneous provinces: A driver of global environmental and biotic changes. Hoboken: Wiley,2021: 325-340.
[32] Song H J,Song H Y,Tong J N,et al. Conodont calcium isotopic evidence for multiple shelf acidification events during the Early Triassic[J]. Chemical Geology,2021,562: 120038.
[33] Fantle M S,Ridgwell A. Towards an understanding of the Ca isotopic signal related to ocean acidification and alkalinity overshoots in the rock record[J]. Chemical Geology,2020,547: 119672.
[34] le Houedec S,McCulloch M,Trotter J,et al. Conodont apatite δ88/86Sr and δ44/40Ca compositions and implications for the evolution of Palaeozoic to Early Mesozoic seawater[J]. Chemical Geology,2017,453: 55-65.
[35] Erhardt A M,Turchyn A V,Bradbury H J,et al. The calcium isotopic composition of carbonate hardground cements: A new record of changes in ocean chemistry?[J]. Chemical Geology,2020,540: 119490.
[36] 周锡强,陈代钊,刘牧,等. 中国沉积学发展战略:沉积地球化学研究现状与展望[J]. 沉积学报,2017,35(6):1293-1316.

Zhou Xiqiang,Chen Daizhao,Liu Mu,et al. The future of sedimentology in China: A review and perspective of sedimentary geochemistry[J]. Acta Sedimentologica Sinica,2017,35(6): 1293-1316.
[37] Gussone N,Ahm A S C,Lau K V,et al. Calcium isotopes in deep time: Potential and limitations[J]. Chemical Geology,2020,544: 119601.
[38] Farkaš J,Böhm F,Wallmann K,et al. Calcium isotope record of Phanerozoic oceans: Implications for chemical evolution of seawater and its causative mechanisms[J]. Geochimica et Cosmochimica Acta,2007,71(21): 5117-5134.
[39] Farkaš J,Buhl D,Blenkinsop J,et al. Evolution of the oceanic calcium cycle during the Late Mesozoic: Evidence from δ44/40Ca of marine skeletal carbonates[J]. Earth and Planetary Science Letters,2007,253(1/2): 96-111.
[40] Blättler C L,Jenkyns H C,Reynard L M,et al. Significant increases in global weathering during Oceanic Anoxic Events 1a and 2 indicated by calcium isotopes[J]. Earth and Planetary Science Letters,2011,309(1/2): 77-88.
[41] Blättler C L,Henderson G M,Jenkyns H C. Explaining the Phanerozoic Ca isotope history of seawater[J]. Geology,2012,40(9): 843-846.
[42] Payne J L,Turchyn A V,Paytan A,et al. Calcium isotope constraints on the end-Permian mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(19): 8543-8548.
[43] Komar N,Zeebe R E. Oceanic calcium changes from enhanced weathering during the Paleocene-Eocene thermal maximum: No effect on calcium-based proxies[J]. Paleoceanography,2011,26(3): PA3211.
[44] Griffith E M,Fantle M S,Eisenhauer A,et al. Effects of ocean acidification on the marine calcium isotope record at the Paleocene-Eocene Thermal Maximum[J]. Earth and Planetary Science Letters,2015,419: 81-92.
[45] Ahm A S C,Maloof A C,Macdonald F A,et al. An early diagenetic deglacial origin for basal Ediacaran "cap dolostones"[J]. Earth and Planetary Science Letters,2019,506: 292-307.
[46] Ahm A S C,Bjerrum C J,Blättler C L,et al. Quantifying early marine diagenesis in shallow-water carbonate sediments[J]. Geochimica et Cosmochimica Acta,2018,236: 140-159.
[47] Higgins J A,Blättler C L,Lundstrom E A,et al. Mineralogy,early marine diagenesis,and the chemistry of shallow-water carbonate sediments[J]. Geochimica et Cosmochimica Acta,2018,220: 512-534.
[48] Busch J F,Hodgin E B,Ahm A S C,et al. Global and local drivers of the Ediacaran Shuram carbon isotope excursion[J]. Earth and Planetary Science Letters,2022,579: 117368.
[49] Ahm A S C,Bjerrum C J,Hoffman P F,et al. The Ca and Mg isotope record of the Cryogenian Trezona carbon isotope excursion[J]. Earth and Planetary Science Letters,2021,568: 117002.
[50] de Laeter J R,Bohlke J K,de Bièvre P J,et al. Atomic weights of the elements: Review 2000[J]. Pure and Applied Chemistry,2003,75(6): 683-800.
[51] Becker J S,Füllner K,Seeling U D,et al. Measuring magnesium,calcium and potassium isotope ratios using ICP-QMS with an octopole collision cell in tracer studies of nutrient uptake and translocation in plants[J]. Analytical and Bioanalytical Chemistry,2008,390(2): 571-578.
[52] Russell W A,Papanastassiou D A,Tombrello T A. Ca isotope fractionation on the Earth and other solar system materials[J]. Geochimica et Cosmochimica Acta,1978,42(8): 1075-1090.
[53] Halicz L,Galy A,Belshaw N S,et al. High-precision measurement of calcium isotopes in carbonates and related materials by multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS)[J]. Journal of Analytical Atomic Spectrometry,1999,14(12): 1835-1838.
[54] Tacail T,Télouk P,Balter V. Precise analysis of calcium stable isotope variations in biological apatites using laser ablation MC-ICPMS[J]. Journal of Analytical Atomic Spectrometry,2016,31(1): 152-162.
[55] Zhang W,Hu Z C,Liu Y S,et al. In situ calcium isotopic ratio determination in calcium carbonate materials and calcium phosphate materials using laser ablation-multiple collector-inductively coupled plasma mass spectrometry[J]. Chemical Geology,2019,522: 16-25.
[56] Hippler D,Schmitt A D,Gussone N,et al. Calcium isotopic composition of various reference materials and seawater[J]. Geostandards Newsletter,2003,27(1): 13-19.
[57] Amini M,Eisenhauer A,Böhm F,et al. Calcium isotope (δ44/40Ca) fractionation along hydrothermal pathways,Logatchev field (Mid-Atlantic Ridge,14°45'N)[J]. Geochimica et Cosmochimica Acta,2008,72(16): 4107-4122.
[58] Heuser A,Eisenhauer A. The calcium isotope composition (δ44/40Ca) of NIST SRM 915b and NIST SRM 1486[J]. Geostandards and Geoanalytical Research,2008,32(3): 311-315.
[59] Reynard L M,Henderson G M,Hedges R E M. Calcium isotopes in archaeological bones and their relationship to dairy consumption[J]. Journal of Archaeological Science,2011,38(3): 657-664.
[60] Holmden C,Papanastassiou D A,Blanchon P,et al. δ44/40Ca variability in shallow water carbonates and the impact of submarine groundwater discharge on Ca-cycling in marine environments[J]. Geochimica et Cosmochimica Acta,2012,83: 179-194.
[61] Morgan J L L,Skulan J L,Gordon G W,et al. Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(25): 9989-9994.
[62] 刘芳. 钙同位素分析方法及其地质应用:以腾冲火山岩和粤北碳酸盐风化壳为例[D]. 广州:中国科学院广州地球化学研究所,2018:1-153.
[63] Griffith E M,Paytan A,Caldeira K,et al. A dynamic marine calcium cycle during the past 28 million years[J]. Science,2008,322(5908): 1671-1674.
[64] Blättler C L,Higgins J A. Calcium isotopes in evaporites record variations in Phanerozoic seawater SO4 and Ca[J]. Geology,2014,42(8): 711-714.
[65] Gussone N,Böhm F,Eisenhauer A,et al. Calcium isotope fractionation in calcite and aragonite[J]. Geochimica et Cosmochimica Acta,2005,69(18): 4485-4494.
[66] Crockford P W,Kunzmann M,Blättler C L,et al. Reconstructing Neoproterozoic seawater chemistry from early diagenetic dolomite[J]. Geology,2021,49(4): 442-446.
[67] Tang J W,Dietzel M,Böhm F,et al. Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: II. Ca isotopes[J]. Geochimica et Cosmochimica Acta,2008,72(15): 3733-3745.
[68] Tang J W,Niedermayr A,Köhler S J,et al. Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: III. Impact of salinity/ionic strength[J]. Geochimica et Cosmochimica Acta,2012,77: 432-443.
[69] Alkhatib M,Eisenhauer A. Calcium and strontium isotope fractionation during precipitation from aqueous solutions as a function of temperature and reaction rate; II. Aragonite[J]. Geochimica et Cosmochimica Acta,2017,209: 320-342.
[70] Alkhatib M,Eisenhauer A. Calcium and strontium isotope fractionation in aqueous solutions as a function of temperature and reaction rate; I. Calcite[J]. Geochimica et Cosmochimica Acta,2017,209: 296-319.
[71] Gussone N,Langer G,Geisen M,et al. Calcium isotope fractionation in coccoliths of cultured Calcidiscus leptoporus,Helicosphaera carteri,Syracosphaera pulchra and Umbilicosphaera foliosa [J]. Earth and Planetary Science Letters,2007,260(3/4): 505-515.
[72] Inoue M,Gussone N,Koga Y,et al. Controlling factors of Ca isotope fractionation in scleractinian corals evaluated by temperature,pH and light controlled culture experiments[J]. Geochimica et Cosmochimica Acta,2015,167: 80-92.
[73] Zhu P,Macdougall J D. Calcium isotopes in the marine environment and the oceanic calcium cycle[J]. Geochimica et Cosmochimica Acta,1998,62(10): 1691-1698.
[74] Nägler T F,Eisenhauer A,Müller A,et al. The δ44Ca-temperature calibration on fossil and cultured Globigerinoides sacculifer: New tool for reconstruction of past sea surface temperatures[J]. Geochemistry Geophysics Geosystems,2000,1(9): 2000GC000091.
[75] Gussone N,Hönisch B,Heuser A,et al. A critical evaluation of calcium isotope ratios in tests of planktonic foraminifers[J]. Geochimica et Cosmochimica Acta,2009,73(24): 7241-7255.
[76] Hippler D,Kozdon R,Darling K F,et al. Calcium isotopic composition of high-latitude proxy carrier Neogloboquadrina pachyderma (sin.)[J]. Biogeosciences,2009,6(1): 1-14.
[77] Kısakürek B,Eisenhauer A,Böhm F,et al. Controls on calcium isotope fractionation in cultured planktic foraminifera,Globigerinoides ruber and Globigerinella siphonifera [J]. Geochimica et Cosmochimica Acta,2011,75(2): 427-443.
[78] Sime N G,de la Rocha C L,Galy A. Negligible temperature dependence of calcium isotope fractionation in 12 species of planktonic foraminifera[J]. Earth and Planetary Science Letters,2005,232(1/2): 51-66.
[79] Böhm F,Gussone N,Eisenhauer A,et al. Calcium isotope fractionation in modern scleractinian corals[J]. Geochimica et Cosmochimica Acta,2006,70(17): 4452-4462.
[80] Gussone N,Langer G,Thoms S,et al. Cellular calcium pathways and isotope fractionation in Emiliania huxleyi [J]. Geology,2006,34(8): 625-628.
[81] Langer G,Gussone N,Nehrke G,et al. Calcium isotope fractionation during coccolith formation in Emiliania huxleyi: Independence of growth and calcification rate[J]. Geochemistry Geophysics Geosystems,2007,8(5): Q05007.
[82] Hippler D,Witbaard R,van Aken H M,et al. Exploring the calcium isotope signature of Arctica islandica as an environmental proxy using laboratory- and field-cultured specimens[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2013,373: 75-87.
[83] Hoffmann R,Riechelmann S,Liebetrau V,et al. Calcium isotope values of modern and fossil cephalopod shells:Trophic level or proxy for seawater geochemistry?[J]. Chemical Geology,2021,583: 120466.
[84] von Allmen K,Nägler T F,Pettke T,et al. Stable isotope profiles (Ca,O,C) through modern brachiopod shells of T. septentrionalis and G. vitreus: Implications for calcium isotope paleo-ocean chemistry[J]. Chemical Geology,2010,269(3/4): 210-219.
[85] Bradbury H J,Halloran K H,Lin C Y,et al. Calcium isotope fractionation during microbially induced carbonate mineral precipitation[J]. Geochimica et Cosmochimica Acta,2020,277: 37-51.
[86] Hensley T M. Calcium isotopic variation in marine evaporites and carbonates: Applications to Late Miocene Mediterranean brine chemistry and Late Cenozoic calcium cycling in the oceans[D]. La Jolla: Scripps Institution of Oceanography,University of California,2006: 1-124.
[87] Harouaka K,Eisenhauer A,Fantle M S. Experimental investigation of Ca isotopic fractionation during abiotic gypsum precipitation[J]. Geochimica et Cosmochimica Acta,2014,129: 157-176.
[88] Griffith E M,Paytan A,Eisenhauer A,et al. Seawater calcium isotope ratios across the Eocene-Oligocene transition[J]. Geology,2011,39(7): 683-686.
[89] Griffith E M,Schauble E A,Bullen T D,et al. Characterization of calcium isotopes in natural and synthetic barite[J]. Geochimica et Cosmochimica Acta,2008,72(23): 5641-5658.
[90] Soudry D,Glenn C R,Nathan Y,et al. Evolution of Tethyan phosphogenesis along the northern edges of the Arabian-African shield during the Cretaceous-Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation[J]. Earth-Science Reviews,2006,78(1/2): 27-57.
[91] Schmitt A D,Stille P,Vennemann T. Variations of the 44Ca/40Ca ratio in seawater during the past 24 million years: Evidence from δ44Ca and δ18O values of Miocene phosphates[J]. Geochimica et Cosmochimica Acta,2003,67(14): 2607-2614.
[92] Arning E T,Lückge A,Breuer C,et al. Genesis of phosphorite crusts off Peru[J]. Marine Geology,2009,262(1/2/3/4): 68-81.
[93] Skulan J,DePaolo D J,Owens T L. Biological control of calcium isotopic abundances in the global calcium cycle[J]. Geochimica et Cosmochimica Acta,1997,61(12): 2505-2510.
[94] 刘康,周锡强,江茂生. 牙形刺氧同位素古温度计:研究进展与展望[J]. 沉积学报,2022,40(2):396-409.

Liu Kang,Zhou Xiqiang,Jiang Maosheng. Oxygen isotope palaeothermometry of conodont apatite: A review[J]. Acta Sedimentologica Sinica,2022,40(2): 396-409.
[95] Sarmiento J L,Gruber N. Ocean biogeochemical dynamics[M]. Princeton: Princeton University Press,2006: 1-503.
[96] Jacobson A D,Holmden C. δ44Ca evolution in a carbonate aquifer and its bearing on the equilibrium isotope fractionation factor for calcite[J]. Earth and Planetary Science Letters,2008,270(3/4): 349-353.
[97] Berner E K,Berner R A. Global environment: Water,air,and geochemical cycles[M]. Upper Saddle River: Prentice Hall,1996: 1-376.
[98] Adloff M,Ridgwell A,Monteiro F M,et al. Inclusion of a suite of weathering tracers in the cGENIE Earth system model- muffin release v.0.9.23[J]. Geoscientific Model Development,2021,14(7): 4187-4223.
[99] Wang J Y,Jacobson A D,Zhang H,et al. Coupled δ44/40Ca,δ88/86Sr,and 87Sr/86Sr geochemistry across the end-Permian mass extinction event[J]. Geochimica et Cosmochimica Acta,2019,262: 143-165.
[100] Pruss S B,Blättler C L,Macdonald F A,et al. Calcium isotope evidence that the earliest metazoan biomineralizers formed aragonite shells[J]. Geology,2018,46(9): 763-766.
[101] Fantle M S. Calcium isotopic evidence for rapid recrystallization of bulk marine carbonates and implications for geochemical proxies[J]. Geochimica et Cosmochimica Acta,2015,148: 378-401.
[102] Gothmann A M,Bender M L,Blättler C L,et al. Calcium isotopes in scleractinian fossil corals since the Mesozoic: Implications for vital effects and biomineralization through time[J]. Earth and Planetary Science Letters,2016,444: 205-214.
[103] Lau K V,Maher K,Brown S T,et al. The influence of seawater carbonate chemistry,mineralogy,and diagenesis on calcium isotope variations in Lower-Middle Triassic carbonate rocks[J]. Chemical Geology,2017,471: 13-37.
[104] Silva-Tamayo J C,Lau K V,Jost A B,et al. Global perturbation of the marine calcium cycle during the Permian-Triassic transition[J]. GSA Bulletin,2018,130(7/8): 1323-1338.
[105] Immenhauser A,Nägler T F,Steuber T,et al. A critical assessment of mollusk 18O/16O,Mg/Ca,and 44Ca/40Ca ratios as proxies for Cretaceous seawater temperature seasonality[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2005,215(3/4): 221-237.
[106] Steuber T,Buhl D. Calcium-isotope fractionation in selected modern and ancient marine carbonates[J]. Geochimica et Cosmochimica Acta,2006,70(22): 5507-5521.
[107] Hippler D,Eisenhauer A,Nägler T F. Tropical Atlantic SST history inferred from Ca isotope thermometry over the last 140ka[J]. Geochimica et Cosmochimica Acta,2006,70(1): 90-100.
[108] Sime N G,De La Rocha C L,Tipper E T,et al. Interpreting the Ca isotope record of marine biogenic carbonates[J]. Geochimica et Cosmochimica Acta,2007,71(16): 3979-3989.
[109] Hinojosa J L,Brown S T,Chen J,et al. Evidence for end-Permian ocean acidification from calcium isotopes in biogenic apatite[J]. Geology,2012,40(8): 743-746.
[110] Sulpis O,Jeansson E,Dinauer A,et al. Calcium carbonate dissolution patterns in the ocean[J]. Nature Geoscience,2021,14(6): 423-428.
[111] Shields G A,Mills B J W,Zhu M Y,et al. Unique Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite burial[J]. Nature Geoscience,2019,12(10): 823-827.
[112] de la Rocha C L,DePaolo D J. Isotopic evidence for variations in the marine calcium cycle over the Cenozoic[J]. Science,2000,289(5482): 1176-1178.
[113] Tipper E T,Gaillardet J,Galy A,et al. Calcium isotope ratios in the world's largest rivers: A constraint on the maximum imbalance of oceanic calcium fluxes[J]. Global Biogeochemical Cycles,2010,24(3): GB3019.
[114] Griffith E M,Schmitt A D,Andrews M G,et al. Elucidating modern geochemical cycles at local,regional,and global scales using calcium isotopes[J]. Chemical Geology,2020,534: 119445.
[115] Cenki-Tok B,Chabaux F,Lemarchand D,et al. The impact of water-rock interaction and vegetation on calcium isotope fractionation in soil- and stream waters of a small,forested catchment (the Strengbach case)[J]. Geochimica et Cosmochimica Acta,2009,73(8): 2215-2228.
[116] Milliman J D. Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state[J]. Global Biogeochemical Cycles,1993,7(4): 927-957.
[117] Schmitt A D,Chabaux F,Stille P. The calcium riverine and hydrothermal isotopic fluxes and the oceanic calcium mass balance[J]. Earth and Planetary Science Letters,2003,213(3/4): 503-518.
[118] Fantle M S,Barnes B D,Lau K V. The role of diagenesis in shaping the geochemistry of the marine carbonate record[J]. Annual Review of Earth and Planetary Sciences,2020,48(1): 549-583.
[119] Bradbury H J,Turchyn A V. Calcium isotope fractionation in sedimentary pore fluids from ODP Leg 175: Resolving carbonate recrystallization[J]. Geochimica et Cosmochimica Acta,2018,236: 121-139.
[120] James D H,Bradbury H J,Antler G,et al. Assessing sedimentary boundary layer calcium carbonate precipitation and dissolution using the calcium isotopic composition of pore fluids[J]. Frontiers in Earth Science,2021,9: 601194.
[121] Fantle M S,Higgins J. The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: Implications for the geochemical cycles of Ca and Mg[J]. Geochimica et Cosmochimica Acta,2014,142: 458-481.
[122] Ahm A S,Husson J. Local and global controls on carbon isotope chemostratigraphy[M]. Cambridge: Cambridge University Press,2022: 1-28.
[123] Fantle M S,DePaolo D J. Variations in the marine Ca cycle over the past 20 million years[J]. Earth and Planetary Science Letters,2005,237(1/2): 102-117.
[124] Heuser A,Eisenhauer A,Böhm F,et al. Calcium isotope (δ44/40Ca) variations of Neogene planktonic foraminifera[J]. Paleoceanography,2005,20(2): PA2013.
[125] Zhou X Q,Chen D Z,Dong S F,et al. Diagenetic barite deposits in the Yurtus Formation in Tarim Basin,NW China: Implications for barium and sulfur cycling in the earliest Cambrian[J]. Precambrian Research,2015,263: 79-87.
[126] 周锡强,遇昊,黄泰誉,等. 重晶石沉积类型及成因评述:兼论扬子地区下寒武统重晶石的富集机制[J]. 沉积学报,2016,34(6):1044-1056.

Zhou Xiqiang,Yu Hao,Huang Taiyu,et al. Genetic classification of sedimentary barites and discussion on the origin of the Lower Cambrian barite-rich deposits in the Yangtze Block,South China[J]. Acta Sedimentologica Sinica,2016,34(6): 1044-1056.
[127] Stanley S M,Hardie L A. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,1998,144(1/2): 3-19.
[128] Farkaš J,Frýda J,Holmden C. Calcium isotope constraints on the marine carbon cycle and CaCO3 deposition during the Late Silurian (Ludfordian) positive δ 13C excursion[J]. Earth and Planetary Science Letters,2016,451: 31-40.
[129] Kasemann S A,von Strandmann P A E P,Prave A R,et al. Continental weathering following a Cryogenian glaciation: Evidence from calcium and magnesium isotopes[J]. Earth and Planetary Science Letters,2014,396: 66-77.
[130] Hoffman P F,Abbot D S,Ashkenazy Y,et al. Snowball Earth climate dynamics and Cryogenian geology-geobiology[J]. Science Advances,2017,3(11): e1600983.
[131] Sawaki Y,Tahata M,Ohno T,et al. The anomalous Ca cycle in the Ediacaran ocean: Evidence from Ca isotopes preserved in carbonates in the Three Gorges area,South China[J]. Gondwana Research,2014,25(3): 1070-1089.
[132] Kasemann S A,Hawkesworth C J,Prave A R,et al. Boron and calcium isotope composition in Neoproterozoic carbonate rocks from Namibia: Evidence for extreme environmental change[J]. Earth and Planetary Science Letters,2005,231(1/2): 73-86.
[133] Silva-Tamayo J C,Nägler T F,Sial A N,et al. Global perturbation of the marine Ca isotopic composition in the aftermath of the Marinoan global glaciation[J]. Precambrian Research,2010,182(4): 373-381.
[134] Zachos J C,Dickens G R,Zeebe R E. An Early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics[J]. Nature,2008,451(7176): 279-283.
[135] Chen Z L,Wang X,Hu J F,et al. Structure of the carbon isotope excursion in a high-resolution lacustrine Paleocene-Eocene thermal maximum record from central China[J]. Earth and Planetary Science Letters,2014,408: 331-340.