| [1] | 金振奎,冯增昭. 滇东—川西下二叠统白云岩的形成机理:玄武岩淋滤白云化[J]. 沉积学报,1999,17(3):383-389. Jin Zhenkui, Feng Zengzhao. Origin of dolostones of the Lower Permian in east Yunnan-west Sichuan-dolomitization through leaching of basalts[J]. Acta Sedimentologica Sinica, 1999, 17(3): 383-389. |
| [2] | 金振奎,杨有星,余宽宏,等. 塔里木盆地东部地区寒武系白云岩成因类型[J]. 古地理学报,2012,14(6):747-756. Jin Zhenkui, Yang Youxing, Yu Kuanhong, et al. Genetic types of dolostones in the Cambrian, eastern Tarim Basin[J]. Journal of Palaeogeography, 2012, 14(6): 747-756. |
| [3] | Adams J E, Rhodes M L. Dolomitization by seepage refluxion[J]. AAPG Bulletin, 1960, 44(12): 1912-1920. |
| [4] | Alderman A R, Skinner H C W. Dolomite sedimentation in the south-east of South Australia[J]. American Journal of Science, 1957, 255(8): 561-567. |
| [5] | Shinn E A, Ginsburg R N, Lloyd R M. Recent supratital dolomite from Andros Island Bahamas[M]//Pray L C, Murray R C. Dolomitization and limestone diagenesis. Tulsa: SEPM, 1965: 112-123. |
| [6] | Hanshaw B B, Back W, Deike R G. A geochemical hypothesis for dolomitization by ground water[J]. Economic Geology, 1971, 66(5): 710-724. |
| [7] | Badiozamani K. The dorag dolomitization model, application to the Middle Ordovician of Wisconsin[J]. Journal of Sedimentary Research, 1973, 43(4): 965-984. |
| [8] | Hsü K J, Siegenthaler C. Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem[J]. Sedimentology, 1969, 12(1/2): 11-25. |
| [9] | Hardie L A. Dolomitization: A critical view of some current views[J]. Journal of Sedimentary Research, 1987, 57(1): 166-183. |
| [10] | 罗平,王石,李朋威,等. 微生物碳酸盐岩油气储层研究现状与展望[J]. 沉积学报,2013,31(5):807-823. Luo Ping, Wang Shi, Li Pengwei, et al. Review and prospectives of microbial carbonate reservoirs[J]. Acta Sedimentologica Sinica, 2013, 31(5): 807-823. |
| [11] | 李波,颜佳新,刘喜停,等. 白云岩有机成因模式:机制、进展与意义[J]. 古地理学报,2010,12(6): 699-710. Li Bo, Yan Jiaxin, Liu Xiting, et al. The organogenic dolomite model: Mechanism, progress and significance[J]. Journal of Palaeogeography, 2010, 12(6): 699-710. |
| [12] | Degens E T, Guillard R R L, Sackett W M. Metabolic fraction of carbon isotopes in marine plankton-Ⅰ.Temperature and respiration experiments[J]. Deep-Sea Res, 1968, 15: 1-19. |
| [13] | Vasconcelos C, McKenzie J A, Bernasconi S, et al. Microbial mediation as a possible mechanism for natural dolomite Formation at low temperatures[J]. Nature, 1995, 377(6546): 220-222. |
| [14] | Vasconcelos C, McKenzie J A. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil)[J]. Journal of Sedimentary Research, 1997, 67(3): 378-390. |
| [15] | Moore T S, Murray R W, Kurtz A C, et al. Anaerobic methane oxidation and the formation of dolomite[J]. Earth and Planetary Science Letters, 2004, 229(1/2): 141-154. |
| [16] | Wright D T. The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia[J]. Sedimentary Geology, 1999, 126(1/2/3/4): 147-157. |
| [17] | Warthmann R, Van Lith Y, Vasconcelos C, et al. Bacterially induced dolomite precipitation in anoxic culture experiments[J]. Geology, 2000, 28(12): 1091-1094. |
| [18] | Van Lith Y, Warthmann R, Vasconcelos C, et al. Microbial fossilization in carbonate sediments: A result of the bacterial surface involvement in dolomite precipitation[J]. Sedimentology, 2003, 50(2): 237-245. |
| [19] | Wright D T, Wacey D. Precipitation of dolomite using sulphate-reducing bacteria from the Coorong Region, South Australia: Significance and implications[J]. Sedimentology, 2005, 52(5): 987-1008. |
| [20] | Wacey D, Wright D T, Boyce A J. A stable isotope study of microbial dolomite Formation in the Coorong region, South Australia[J]. Chemical Geology, 2007, 244(1/2): 155-174. |
| [21] | Claypool G E, Kaplan I R. The origin and distribution of methane in marine sediments[M]//Kaplan I R. Natural gases in marine sediments. Boston: Springer, 1974. |
| [22] | Mazzullo S J, Bischoff W D, Teal C S. Holocene shallow-subtidal dolomitization by near-normal seawater, northern Belize[J]. Geology, 1995, 23(4): 341-344. |
| [23] | Takeuchi R, Matsumoto R, Ogihara S, et al. Methane-induced dolomite “chimneys” on the Kuroshima Knoll, Ryukyu islands, Japan[J]. Journal of Geochemical Exploration, 2007, 95(1/2/3): 16-28. |
| [24] | Jørgensen N O. Holocene methane-derived, dolomite-cemented sandstone pillars from the Kattegat, Denmark[J]. Marine Geology, 1989, 88(1/2): 71-81. |
| [25] | Ritger S, Carson B, Suess E. Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin[J]. GSA Bulletin, 1987, 98(2): 147-156. |
| [26] | Hovland M, Talbot M R, Qvale H, et al. Methane-related carbonate cements in pockmarks of the North Sea[J]. Journal of Sedimentary Research, 1987, 57(5): 881-892. |
| [27] | Orpin A R. Dolomite chimneys as possible evidence of coastal fluid expulsion, uppermost Otago continental slope, southern New Zealand[J]. Marine Geology, 1997, 138(1/2): 51-67. |
| [28] | Chen D F, Huang Y Y, Yuan X L, et al. Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the northeastern South China Sea[J]. Marine and Petroleum Geology, 2005, 22(5): 613-621. |
| [29] | Roberts J A, Bennett P C, González L A, et al. Microbial precipitation of dolomite in methanogenic groundwater[J]. Geology, 2004, 32(4): 277-280. |
| [30] | Thompson J B, Ferris F G. Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water[J]. Geology, 1990, 18(10): 995-998. |
| [31] | Rivadeneyra M A, Párraga J, Delgado R, et al. Biomineralization of carbonates by Halobacillus trueperi in solid and liquid media with different salinities[J]. FEMS Microbiology Ecology, 2004, 48(1): 39-46. |
| [32] | Sánchez-Román M, Romanek C S, Fernández-Remolar D C, et al. Aerobic biomineralization of Mg-rich carbonates: Implications for natural environments[J]. Chemical Geology, 2011, 281(3/4): 143-150. |
| [33] | Sánchez-Navas A, Martín-Algarra A, Rivadeneyra M A, et al. Crystal-growth behavior in Ca-Mg carbonate bacterial spherulites[J]. Crystal Growth and Design, 2009, 9(6): 2690-2699. |
| [34] | Krumbein W E. Photolithotropic and chemoorganotrophic activity of bacteria and algae as related to beachrock Formation and degradation (Gulf of Aqaba, Sinai)[J]. Geomicrobiology Journal, 1979, 1(2): 139-203. |
| [35] | Chafetz H S, Buczynski C. Bacterially induced lithification of microbial mats[J]. Palaios, 1992, 7(3): 277-293. |
| [36] | Folk R L. SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks[J]. Journal of Sedimentary Petrology, 1993, 63(5): 990-999. |
| [37] | Bontognali T R R, Vasconcelos C, Warthmann R J, et al. Microbes produce nanobacteria-like structures, avoiding cell entombment[J]. Geology, 2008, 36(8): 663-666. |
| [38] | 由雪莲,孙枢,朱井泉,等. 微生物白云岩模式研究进展[J]. 地学前缘,2011,18(4):52-64. You Xuelian, Sun Shu, Zhu Jingquan, et al. Progress in the study of microbial dolomite model[J]. Earth Science Frontiers, 2012, 18(4): 52-64. |
| [39] | 韩作振,陈吉涛,迟乃杰,等. 微生物碳酸盐岩研究:回顾与展望[J]. 海洋地质与第四纪地质,2009,29(4):29-38. Han Zuozhen, Chen Jitao, Chi Naijie, et al. Microbial carbonates: A review and perspectives[J]. Marine Geology & Quaternary Geology, 2009, 29(4): 29-38. |
| [40] | 杨孝群,李忠. 微生物碳酸盐岩沉积学研究进展:基于第33届国际沉积学会议的综述[J]. 沉积学报,2018,36(4):639-650. Yang Xiaoqun, Li Zhong. Research progress in sedimentology of microbial carbonate rocks: A review based on the 33rd international sedimentological congress[J]. Acta Sedimentologica Sinica, 2018, 36(4): 639-650. |
| [41] | 李红,柳益群. “白云石(岩)问题”与湖相白云岩研究[J]. 沉积学报,2013,31(2):302-314. Li Hong, Liu Yiqun. “Dolomite problem” and research of ancient lacustrine dolostones[J]. Acta Sedimentologica Sinica, 2013, 31(2): 302-314. |
| [42] | 杨华,王宝清. 微生物白云石模式评述[J]. 海相油气地质,2012,17(2):1-7. Yang Hua, Wang Baoqing. Microbial dolomite models: An overview[J]. Marine Origin Petroleum Geology, 2012, 17(2): 1-7. |
| [43] | Bhaskar P V, Bhosle N B. Microbial extracellular polymeric substances in marine biogeochemical processes[J]. Current Science, 2005, 88(1): 45-53. |
| [44] | Konhauser K O. Diversity of bacterial iron mineralization[J]. Earth-Science Reviews, 1998, 43(3/4): 91-121. |
| [45] | Sánchez-Navas A, Martín-Algarra A, Nieto F. Bacterially-mediated authigenesis of clays in phosphate stromatolites[J]. Sedimentology, 1998, 45(3): 519-533. |
| [46] | Léveillé R J, Fyfe W S, Longstaffe F J. Geomicrobiology of carbonate-silicate microbialites from Hawaiian basaltic sea caves[J]. Chemical Geology, 2000, 169(3/4): 339-355. |
| [47] | Decho A W, Visscher P T, Reid R M. Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(1/2): 71-86. |
| [48] | Coughlin R T, Tonsager S, McGroarty E J. Quantitation of metal cations bound to membranes and extracted lipopolysaccharide of Escherichia coli[J]. Biochemistry, 1983, 22(8): 2002-2007. |
| [49] | 王浩. 四川盆地西部雷口坡组四段微生物碳酸盐岩储层特征及其主控因素[D]. 成都:成都理工大学,2018. Wang Hao. The characteristics and main controlling factors of the Fourth member of Middle Triassic Leikoupo Formation microbialite reservoir in the western Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2018. |