[1] 金振奎,冯增昭. 滇东—川西下二叠统白云岩的形成机理:玄武岩淋滤白云化[J]. 沉积学报,1999,17(3):383-389.

Jin Zhenkui, Feng Zengzhao. Origin of dolostones of the Lower Permian in east Yunnan-west Sichuan-dolomitization through leaching of basalts[J]. Acta Sedimentologica Sinica, 1999, 17(3): 383-389.
[2] 金振奎,杨有星,余宽宏,等. 塔里木盆地东部地区寒武系白云岩成因类型[J]. 古地理学报,2012,14(6):747-756.

Jin Zhenkui, Yang Youxing, Yu Kuanhong, et al. Genetic types of dolostones in the Cambrian, eastern Tarim Basin[J]. Journal of Palaeogeography, 2012, 14(6): 747-756.
[3] Adams J E, Rhodes M L. Dolomitization by seepage refluxion[J]. AAPG Bulletin, 1960, 44(12): 1912-1920.
[4] Alderman A R, Skinner H C W. Dolomite sedimentation in the south-east of South Australia[J]. American Journal of Science, 1957, 255(8): 561-567.
[5] Shinn E A, Ginsburg R N, Lloyd R M. Recent supratital dolomite from Andros Island Bahamas[M]//Pray L C, Murray R C. Dolomitization and limestone diagenesis. Tulsa: SEPM, 1965: 112-123.
[6] Hanshaw B B, Back W, Deike R G. A geochemical hypothesis for dolomitization by ground water[J]. Economic Geology, 1971, 66(5): 710-724.
[7] Badiozamani K. The dorag dolomitization model, application to the Middle Ordovician of Wisconsin[J]. Journal of Sedimentary Research, 1973, 43(4): 965-984.
[8] Hsü K J, Siegenthaler C. Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem[J]. Sedimentology, 1969, 12(1/2): 11-25.
[9] Hardie L A. Dolomitization: A critical view of some current views[J]. Journal of Sedimentary Research, 1987, 57(1): 166-183.
[10] 罗平,王石,李朋威,等. 微生物碳酸盐岩油气储层研究现状与展望[J]. 沉积学报,2013,31(5):807-823.

Luo Ping, Wang Shi, Li Pengwei, et al. Review and prospectives of microbial carbonate reservoirs[J]. Acta Sedimentologica Sinica, 2013, 31(5): 807-823.
[11] 李波,颜佳新,刘喜停,等. 白云岩有机成因模式:机制、进展与意义[J]. 古地理学报,2010,12(6): 699-710.

Li Bo, Yan Jiaxin, Liu Xiting, et al. The organogenic dolomite model: Mechanism, progress and significance[J]. Journal of Palaeogeography, 2010, 12(6): 699-710.
[12] Degens E T, Guillard R R L, Sackett W M. Metabolic fraction of carbon isotopes in marine plankton-Ⅰ.Temperature and respiration experiments[J]. Deep-Sea Res, 1968, 15: 1-19.
[13] Vasconcelos C, McKenzie J A, Bernasconi S, et al. Microbial mediation as a possible mechanism for natural dolomite Formation at low temperatures[J]. Nature, 1995, 377(6546): 220-222.
[14] Vasconcelos C, McKenzie J A. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil)[J]. Journal of Sedimentary Research, 1997, 67(3): 378-390.
[15] Moore T S, Murray R W, Kurtz A C, et al. Anaerobic methane oxidation and the formation of dolomite[J]. Earth and Planetary Science Letters, 2004, 229(1/2): 141-154.
[16] Wright D T. The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia[J]. Sedimentary Geology, 1999, 126(1/2/3/4): 147-157.
[17] Warthmann R, Van Lith Y, Vasconcelos C, et al. Bacterially induced dolomite precipitation in anoxic culture experiments[J]. Geology, 2000, 28(12): 1091-1094.
[18] Van Lith Y, Warthmann R, Vasconcelos C, et al. Microbial fossilization in carbonate sediments: A result of the bacterial surface involvement in dolomite precipitation[J]. Sedimentology, 2003, 50(2): 237-245.
[19] Wright D T, Wacey D. Precipitation of dolomite using sulphate-reducing bacteria from the Coorong Region, South Australia: Significance and implications[J]. Sedimentology, 2005, 52(5): 987-1008.
[20] Wacey D, Wright D T, Boyce A J. A stable isotope study of microbial dolomite Formation in the Coorong region, South Australia[J]. Chemical Geology, 2007, 244(1/2): 155-174.
[21] Claypool G E, Kaplan I R. The origin and distribution of methane in marine sediments[M]//Kaplan I R. Natural gases in marine sediments. Boston: Springer, 1974.
[22] Mazzullo S J, Bischoff W D, Teal C S. Holocene shallow-subtidal dolomitization by near-normal seawater, northern Belize[J]. Geology, 1995, 23(4): 341-344.
[23] Takeuchi R, Matsumoto R, Ogihara S, et al. Methane-induced dolomite “chimneys” on the Kuroshima Knoll, Ryukyu islands, Japan[J]. Journal of Geochemical Exploration, 2007, 95(1/2/3): 16-28.
[24] Jørgensen N O. Holocene methane-derived, dolomite-cemented sandstone pillars from the Kattegat, Denmark[J]. Marine Geology, 1989, 88(1/2): 71-81.
[25] Ritger S, Carson B, Suess E. Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin[J]. GSA Bulletin, 1987, 98(2): 147-156.
[26] Hovland M, Talbot M R, Qvale H, et al. Methane-related carbonate cements in pockmarks of the North Sea[J]. Journal of Sedimentary Research, 1987, 57(5): 881-892.
[27] Orpin A R. Dolomite chimneys as possible evidence of coastal fluid expulsion, uppermost Otago continental slope, southern New Zealand[J]. Marine Geology, 1997, 138(1/2): 51-67.
[28] Chen D F, Huang Y Y, Yuan X L, et al. Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the northeastern South China Sea[J]. Marine and Petroleum Geology, 2005, 22(5): 613-621.
[29] Roberts J A, Bennett P C, González L A, et al. Microbial precipitation of dolomite in methanogenic groundwater[J]. Geology, 2004, 32(4): 277-280.
[30] Thompson J B, Ferris F G. Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water[J]. Geology, 1990, 18(10): 995-998.
[31] Rivadeneyra M A, Párraga J, Delgado R, et al. Biomineralization of carbonates by Halobacillus trueperi in solid and liquid media with different salinities[J]. FEMS Microbiology Ecology, 2004, 48(1): 39-46.
[32] Sánchez-Román M, Romanek C S, Fernández-Remolar D C, et al. Aerobic biomineralization of Mg-rich carbonates: Implications for natural environments[J]. Chemical Geology, 2011, 281(3/4): 143-150.
[33] Sánchez-Navas A, Martín-Algarra A, Rivadeneyra M A, et al. Crystal-growth behavior in Ca-Mg carbonate bacterial spherulites[J]. Crystal Growth and Design, 2009, 9(6): 2690-2699.
[34] Krumbein W E. Photolithotropic and chemoorganotrophic activity of bacteria and algae as related to beachrock Formation and degradation (Gulf of Aqaba, Sinai)[J]. Geomicrobiology Journal, 1979, 1(2): 139-203.
[35] Chafetz H S, Buczynski C. Bacterially induced lithification of microbial mats[J]. Palaios, 1992, 7(3): 277-293.
[36] Folk R L. SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks[J]. Journal of Sedimentary Petrology, 1993, 63(5): 990-999.
[37] Bontognali T R R, Vasconcelos C, Warthmann R J, et al. Microbes produce nanobacteria-like structures, avoiding cell entombment[J]. Geology, 2008, 36(8): 663-666.
[38] 由雪莲,孙枢,朱井泉,等. 微生物白云岩模式研究进展[J]. 地学前缘,2011,18(4):52-64.

You Xuelian, Sun Shu, Zhu Jingquan, et al. Progress in the study of microbial dolomite model[J]. Earth Science Frontiers, 2012, 18(4): 52-64.
[39] 韩作振,陈吉涛,迟乃杰,等. 微生物碳酸盐岩研究:回顾与展望[J]. 海洋地质与第四纪地质,2009,29(4):29-38.

Han Zuozhen, Chen Jitao, Chi Naijie, et al. Microbial carbonates: A review and perspectives[J]. Marine Geology & Quaternary Geology, 2009, 29(4): 29-38.
[40] 杨孝群,李忠. 微生物碳酸盐岩沉积学研究进展:基于第33届国际沉积学会议的综述[J]. 沉积学报,2018,36(4):639-650.

Yang Xiaoqun, Li Zhong. Research progress in sedimentology of microbial carbonate rocks: A review based on the 33rd international sedimentological congress[J]. Acta Sedimentologica Sinica, 2018, 36(4): 639-650.
[41] 李红,柳益群. “白云石(岩)问题”与湖相白云岩研究[J]. 沉积学报,2013,31(2):302-314.

Li Hong, Liu Yiqun. “Dolomite problem” and research of ancient lacustrine dolostones[J]. Acta Sedimentologica Sinica, 2013, 31(2): 302-314.
[42] 杨华,王宝清. 微生物白云石模式评述[J]. 海相油气地质,2012,17(2):1-7.

Yang Hua, Wang Baoqing. Microbial dolomite models: An overview[J]. Marine Origin Petroleum Geology, 2012, 17(2): 1-7.
[43] Bhaskar P V, Bhosle N B. Microbial extracellular polymeric substances in marine biogeochemical processes[J]. Current Science, 2005, 88(1): 45-53.
[44] Konhauser K O. Diversity of bacterial iron mineralization[J]. Earth-Science Reviews, 1998, 43(3/4): 91-121.
[45] Sánchez-Navas A, Martín-Algarra A, Nieto F. Bacterially-mediated authigenesis of clays in phosphate stromatolites[J]. Sedimentology, 1998, 45(3): 519-533.
[46] Léveillé R J, Fyfe W S, Longstaffe F J. Geomicrobiology of carbonate-silicate microbialites from Hawaiian basaltic sea caves[J]. Chemical Geology, 2000, 169(3/4): 339-355.
[47] Decho A W, Visscher P T, Reid R M. Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(1/2): 71-86.
[48] Coughlin R T, Tonsager S, McGroarty E J. Quantitation of metal cations bound to membranes and extracted lipopolysaccharide of Escherichia coli[J]. Biochemistry, 1983, 22(8): 2002-2007.
[49] 王浩. 四川盆地西部雷口坡组四段微生物碳酸盐岩储层特征及其主控因素[D]. 成都:成都理工大学,2018.

Wang Hao. The characteristics and main controlling factors of the Fourth member of Middle Triassic Leikoupo Formation microbialite reservoir in the western Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2018.