[1] 秦勇,申建,沈玉林. 叠置含气系统共采兼容性:煤系“三气”及深部煤层气开采中的共性地质问题[J]. 煤炭学报,2016,41(1):14-23.

Qin Yong, Shen Jian, Shen Yulin. Joint mining compatibility of superposed gas-bearing systems: A general geological problem for extraction of three natural gases and deep CBM in coal series[J]. Journal of China Coal Society, 2016, 41(1): 14-23.
[2] 沈玉林,秦勇,申建,等. 鄂尔多斯盆地东缘上古生界煤系叠置含气系统发育的沉积控制机理[J]. 天然气工业,2017,37(11):29-35.

Shen Yulin, Qin Yong, Shen Jian, et al. Sedimentary control mechanism of the superimposed gas bearing system development in the Upper Palaeozoic coal measures along the eastern margin of the Ordos Basin[J]. Natural Gas Industry, 2017, 37(11): 29-35.
[3] 申建,秦勇,张兵,等. 鄂尔多斯盆地东缘临兴区块煤系叠置含气系统及其兼容性[J]. 煤炭学报,2018,43(6):1614-1619.

Shen Jian, Qin Yong, Zhang Bing, et al. Superimposing gas-bearing system in coal measures and its compatibility in Linxing block, east Ordos Basin[J]. Journal of China Coal Society, 2018, 43(6): 1614-1619.
[4] Shen Y L, Qin Y, Wang G G X, et al. Sedimentary control on the formation of a multi-superimposed gas system in the development of key layers in the sequence framework[J]. Marine and Petroleum Geology, 2017, 88: 268-281.
[5] 宋立军,赵靖舟. 中国煤层气盆地改造作用及其类型分析[J]. 地质学报,2009,83(6):868-874.

Song Lijun, Zhao Jingzhou. Alteration of coalbed methane basin in China and their classification[J]. Acta Geologica Sinica, 2009, 83(6): 868-874.
[6] 杨兆彪,秦勇,高弟,等. 煤层群条件下的煤层气成藏特征[J]. 煤田地质与勘探,2011,39(5):22-26.

Yang Zhaobiao, Qin Yong, Gao Di, et al. Coalbed methane (CBM) reservoir-forming character under conditions of coal seam groups[J]. Coal Geology & Exploration, 2011, 39(5): 22-26.
[7] 邵龙义,侯海海,唐跃,等. 中国煤层气勘探开发战略接替区优选[J]. 天然气工业,2015,35(3):1-11.

Shao Longyi, Hou Haihai, Tang Yue, et al. Selection of strategic relay areas of CBM exploration and development in China[J]. Natural Gas Industry, 2015, 35(3): 1-11.
[8] 黄华州,桑树勋,苗耀,等. 煤层气井合层排采控制方法[J]. 煤炭学报,2014,39(增刊2):422-431.

Huang Huazhou, Sang Shuxun, Miao Yao, et al. Drainage control of single vertical well with multi-hydraulic fracturing layers for coalbed methane development[J]. Journal of China Coal Society, 2014, 39(Suppl. 2): 422-431.
[9] 朱志敏,韩军,路爱平,等. 阜新盆地白垩系沙海组煤层气系统[J]. 沉积学报,2008,26(3):426-434.

Zhu Zhimin, Han Jun, Lu Aiping, et al. Coalbed methane system of cretaceous Shahai Formation in Fuxin Basin[J]. Acta Sedimentologica Sinica, 2008, 26(3): 426-434.
[10] 张奥博,汤达祯,唐淑玲,等. 准噶尔盆地南缘沉积控制下含煤层气系统构成研究[J]. 煤炭科学技术,2019,47(1):255-264.

Zhang Aobo, Tang Dazhen, Tang Shuling, et al. Study on composition of coalbed methane system under sedimentary control in southern margin of Junggar Basin[J]. Coal Science and Technology, 2019, 47(1): 255-264.
[11] 魏迎春,项歆璇,王安民,等. 不同矿化度水对煤储层吸附性能的影响[J]. 煤炭学报,2019,44(9):2833-2839.

Wei Yingchun, Xiang Xinxuan, Wang Anmin, et al. Influence of water with different salinity on the adsorption performance of coal reservoir[J]. Journal of China Coal Society, 2019, 44(9): 2833-2839.
[12] 黄华州,桑树勋,宋化发,等. 多压裂层煤层气井合层排采工艺控制指标体系研究[C]//2013年煤层气学术研讨会论文集. 杭州:中国煤炭学会,中国石油学会,煤层气产业技术创新战略联盟,2013:411-419. [

Huang Huazhou, Sang Shuxun, Song Huafa, et al. Research on control index for multi-hydraulic fracturing layers drainage in coalbed methane development[C]//Proceedings of the 2013 Coalbed Methane Symposium. Hangzhou: China Coal Society, China Petroleum Society, Coalbed Methane Industry Technology Innovation Strategic Alliance, 2013: 411-419.]
[13] 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.

Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29.
[14] 桑树勋,秦勇,范炳恒,等. 层序地层学在陆相盆地煤层气资源评价中的应用研究[J]. 煤炭学报,2002,27(2):113-118.

Sang Shuxun, Qin Yong, Fan Bingheng, et al. Study on sequence stratigraphy applied to coalbed methane resource assessment[J]. Journal of China Coal Society, 2002, 27(2): 113-118.
[15] 沈玉林,秦勇,郭英海,等. “多层叠置独立含煤层气系统”形成的沉积控制因素[J]. 地球科学:中国地质大学学报,2012,37(3):573-579.

Shen Yulin, Qin Yong, Guo Yinghai, et al. Sedimentary controlling factor of unattached multiple superimposed coalbed-methane system formation[J]. Earth Science:Journal of China University of Geosciences, 2012, 37(3): 573-579.
[16] 郭晨,夏玉成,卢玲玲,等. 黔西比德—三塘盆地多层叠置独立含煤层气系统发育规律与控制机理[J]. 天然气地球科学,2017,28(4):622-632.

Guo Chen, Xia Yucheng, Lu Lingling, et al. Development features and mechanism of multi-layer superimposed independent CBM systems in Bide-Santang Basin, western Guizhou, South China[J]. Natural Gas Geoscience, 2017, 28(4): 622-632.
[17] 邵龙义,王学天,鲁静,等. 再论中国含煤岩系沉积学研究进展及发展趋势[J]. 沉积学报,2017,35(5):1016-1031.

Shao Longyi, Wang Xuetian, Lu Jing, et al. A reappraisal on development and prospect of coal sedimentology in China[J]. Acta Sedimentologica Sinica, 2017, 35(5): 1016-1031.
[18] Shen Y L, Qin Y, Guo Y H, et al. Characteristics and sedimentary control of a coalbed methane-bearing system in lopingian (Late permian) coal-bearing strata of western Guizhou province[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 8-17.
[19] Chen S D, Tang D Z, Tao S, et al. In-situ stress, stress-dependent permeability, pore pressure and gas-bearing system in multiple coal seams in the Panguan area, western Guizhou, China[J]. Journal of Natural Gas Science and Engineering, 2018, 49: 110-122.
[20] 秦勇,吴建光,张争光,等. 基于排采初期生产特征的煤层气合采地质条件分析[J]. 煤炭学报,2020,45(1):241-257.

Qin Yong, Wu Jianguang, Zhang Zhengguang, et al. Analysis of geological conditions for coalbed methane co-production based on production characteristics in early stage of drainage[J]. Journal of China Coal Society, 2020, 45(1): 241-257.
[21] 闫剑飞,吴志国,王宇林. 辽宁铁法盆地含煤岩系层序地层分析[J]. 四川地质学报,2007,27(3):157-161.

Yan Jianfei, Wu Zhiguo, Wang Yulin. Sequence stratigraphic analysis of coal measures strata in the Tiefa Basin, Liaoning[J]. Acta Geologica Sichuan, 2007, 27(3): 157-161.
[22] Wang G, Qin Y, Xie Y W, et al. The division and geologic controlling factors of a vertical superimposed coalbed methane system in the northern Gujiao blocks, China[J]. Journal of Natural Gas Science and Engineering, 2015, 24: 379-389.
[23] 秦勇,熊孟辉,易同生,等. 论多层叠置独立含煤层气系统:以贵州织金—纳雍煤田水公河向斜为例[J]. 地质论评,2008,54(1):65-70.

Qin Yong, Xiong Menghui, Yi Tongsheng, et al. On unattached multiple superposed coalbed⁃methane system: In a case of the Shuigonghe syncline, Zhijin⁃Nayong coalfield, Guizhou[J]. Geological Review, 2008, 54(1): 65-70.
[24] 秦勇. 中国煤系气共生成藏作用研究进展[J]. 天然气工业,2018,38(4):26-36.

Qin Yong. Research progress of symbiotic accumulation of coal measure gas in China[J]. Natural Gas Industry, 2018, 38(4): 26-36.
[25] 杨兆彪,秦勇,张争光,等. 基于聚类分析的多煤层煤层气产层组合选择[J]. 煤炭学报,2018,43(6):1641-1646.

Yang Zhaobiao, Qin Yong, Zhang Zhengguang, et al. Production layer combination selection for coalbed methane development in multi-coal seams based on cluster analysis[J]. Journal of China Coal Society, 2018, 43(6): 1641-1646.
[26] Guo C, Qin Y, Wu C F, et al. Hydrogeological control and productivity modes of coalbed methane commingled production in multi-seam areas: A case study of the Bide–Santang Basin, western Guizhou, South China[J]. Journal of Petroleum Science and Engineering, 2020, 189: 107039.
[27] Wang G, Qin Y, Xie Y W, et al. Coalbed methane system potential evaluation and favourable area prediction of Gujiao blocks, Xishan coalfield, based on multi-level fuzzy mathematical analysis[J]. Journal of Petroleum Science and Engineering, 2018, 160: 136-151.