[1] Eyles N. Earth's glacial record and its tectonic setting[J]. Earth-Science Reviews, 1993, 35(1/2): 1-248.
[2] Powell M G. Geographic range and genus longevity of Late Paleozoic brachiopods[J]. Paleobiology, 2007, 33(4): 530-546.
[3] Bishop J W, Montañez I P, Gulbranson E L, et al. The onset of mid-Carboniferous glacio-eustasy: Sedimentologic and diagenetic constraints, Arrow Canyon, Nevada[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 276(1/2/3/4): 217-243.
[4] Clapham M E, Shen S Z, Bottjer D J. The double mass extinction revisited: Reassessing the severity, selectivity, and causes of the end-Guadalupian biotic crisis (Late Permian)[J]. Paleobiology, 2009, 35(1): 32-50.
[5] Pfefferkorn H W, Alleman V, Iannuzzi R. A greenhouse interval between icehouse times: Climate change, long-distance plant dispersal, and plate motion in the Mississippian (Late Visean-earliest Serpukhovian) of Gondwana[J]. Gondwana Research, 2014, 25(4): 1338-1347.
[6] Metcalfe I, Aung K P. Late Tournaisian conodonts from the Taungnyo group near Loi Kaw, Myanmar (Burma): Implications for Shan Plateau stratigraphy and evolution of the Gondwana-derived Sibumasu Terrane[J]. Gondwana Research, 2014, 26(3/4): 1159-1172.
[7] Qie W K, Algeo T J, Luo G M, et al. Global events of the Late Paleozoic (Early Devonian to Middle Permian): A review[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 531: 109259-109259.
[8] Chen J T, Montañez I P, Zhang S, et al. Marine anoxia linked to abrupt global warming during Earth’s penultimate icehouse[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(19): e2115231119.
[9] Raymond A, Metz C. Ice and its consequences: Glaciation in the Late Ordovician, Late Devonian, Pennsylvanian-Permian, and Cenozoic compared[J]. The Journal of Geology, 2004, 112(6): 655-670.
[10] Isbell J L, Lenaker P A, Askin R A, et al. Reevaluation of the timing and extent of Late Paleozoic glaciation in Gondwana: Role of the transantarctic mountains[J]. Geology, 2003, 31(11): 977-980.
[11] Rosa E L M, Isbell J L. Late Paleozoic glaciation[M]//Alderton D, Elias S A. Encyclopedia of geology. 2nd ed. Amsterdam: Elsevier, 2021: 534-545.
[12] Isbell J L, Miller M F, Babcock L E, et al. Ice-marginal environment and ecosystem prior to initial advance of the Late Palaeozoic ice sheet in the Mount Butters area of the central transantarctic mountains, Antarctica[J]. Sedimentology, 2001, 48(5): 953-970.
[13] Stanley S M. An analysis of the history of marine animal diversity[J]. Paleobiology, 2007, 33(Suppl. 4): 1-55.
[14] Isbell J L, Fraiser M L, Henry L C. Examining the complexity of environmental change during the Late Paleozoic and Early Mesozoic[J]. Palaios, 2008, 23(5): 267-269.
[15] Fielding C R, Frank T D, Isbell J L. The Late Paleozoic ice age: A review of current understanding and synthesis of global climate patterns[M]//Fielding C R, Frank T D, Isbell J L. Resolving the Late Paleozoic ice age in time and space. McLean: Geological Society of America, 2008: 343-354.
[16] Isbell J L, Henry L C, Gulbranson E L, et al. Glacial paradoxes during the Late Paleozoic ice age: Evaluating the equilibrium line altitude as a control on glaciation[J]. Gondwana Research, 2012, 22(1): 1-19.
[17] Barham M, Joachimski M M, Murray J, et al. Diagenetic alteration of the structure and δ18O signature of Palaeozoic fish and conodont apatite: Potential use for corrected isotope signatures in palaeoenvironmental interpretation[J]. Chemical Geology, 2012, 298-299: 11-19.
[18] Roy D K, Roser B P. Climatic control on the composition of Carboniferous-Permian Gondwana sediments, Khalaspir Basin, Bangladesh[J]. Gondwana Research, 2013, 23(3): 1163-1171.
[19] Roy D K, Roser B P. Geochemical evolution of the Tertiary succession of the NW shelf, Bengal Basin, Bangladesh: Implications for provenance, paleoweathering and Himalayan erosion[J]. Journal of Asian Earth Sciences, 2013, 78: 248-262.
[20] Isbell J L, Biakov A S, Vedernikov I L, et al. Permian diamictites in northeastern Asia: Their significance concerning the bipolarity of the Late Paleozoic ice age[J]. Earth-Science Reviews, 2016, 154: 279-300.
[21] 杨兵,夏浩东,杨欣杰,等. 晚古生代冰期研究进展[J]. 地质科技情报,2016,35(2):140-151.

Yang Bing, Xia Haodong, Yang Xinjie, et al. Late Paleozoic ice age: Review of recent progress[J]. Geological Science and Technology Information, 2016, 35(2): 140-151.
[22] Smith L BJr, Read J F. Rapid onset of Late Paleozoic glaciation on Gondwana: Evidence from Upper Mississippian strata of the Midcontinent, United States[J]. Geology, 2000, 28(3): 279-282.
[23] Torsvik T H, Cocks L R M. Gondwana from top to base in space and time[J]. Gondwana Research, 2013, 24(3/4): 999-1030.
[24] Crowley T J, Baum S K. Modeling Late Paleozoic glaciation[J]. Geology, 1992, 20(6): 507-510.
[25] Mii H S, Grossman E L, Yancey T E. Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation[J]. GSA Bulletin, 1999, 111(7): 960-973.
[26] Saltzman M R. Late Paleozoic ice age: Oceanic gateway or pCO2?[J]. Geology, 2003, 31(2): 151-154.
[27] Davies N S, Gibling M R. The sedimentary record of Carboniferous rivers: Continuing influence of land plant evolution on alluvial processes and Palaeozoic ecosystems[J]. Earth-Science Reviews, 2013, 120: 40-79.
[28] Nelsen M P, Dimichele W A, Peters S E, et al. Delayed fungal evolution did not cause the Paleozoic peak in coal production[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(9): 2442-2447.
[29] Goddéris Y, Donnadieu Y, Carretier S, et al. Onset and ending of the Late Palaeozoic ice age triggered by tectonically paced rock weathering[J]. Nature Geoscience, 2017, 10(5): 382-386.
[30] 杨江海,颜佳新,黄燕. 从晚古生代冰室到早中生代温室的气候转变:兼论东特提斯低纬区的沉积记录与响应[J]. 沉积学报,2017,35(5):981-993.

Yang Jianghai, Yan Jiaxin, Huang Yan. The earth’s penultimate icehouse-to-greenhouse climate transition and related sedimentary records in low-latitude regions of eastern Tethys[J]. Acta Sedimentologica Sinica, 2017, 35(5): 981-993.
[31] Chen J T, Sheng Q Y, Hu K Y, et al. Late Mississippian glacio-eustasy recorded in the eastern Paleo-Tethys Ocean (South China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 531: 108873.
[32] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.
[33] Zhu D C, Zhao Z D, Niu Y L, et al. Lhasa Terrane in southern Tibet came from Australia[J]. Geology, 2011, 39(8): 727-730.
[34] Metcalfe I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66: 1-33.
[35] 赵兵,刘登忠,陶晓风,等. 西藏仲巴县昂拉仁错—塔若错一带拉嘎组的地层特征及沉积环境[J]. 地质通报,2006,25(7):800-805.

Zhao Bing, Liu Dengzhong, Tao Xiaofeng, et al. Stratigraphy and sedimentary environment of the Laka Formation in the Ngangla Ringco-Taro Co area, Zhongba county, Tibet, China[J]. Geological Bulletin of China, 2006, 25(7): 800-805.
[36] 张予杰,张以春,庞维华,等. 西藏申扎地区拉嘎组岩相/沉积相分析[J]. 沉积学报,2013,31(2):269-281.

Zhang Yujie, Zhang Yichun, Pang Weihua, et al. The litho/sedimentary facies analysis of Lagar Formation, Xainza area, Tibet[J]. Acta Sedimentologica Sinica, 2013, 31(2): 269-281.
[37] 李跃. 西藏罗仓地区拉嘎组沉积特征及其构造背景探讨[D]. 成都:成都理工大学,2016:1-65.

Li Yue. Sedimentary characteristics and tectonic setting of Laga Formation in Luocang area, Tibet[D]. Chengdu: Chengdu University of Technology, 2016: 1-65.
[38] Wang M, Zeng X W, Xie C M, et al. Dating of detrital zircon grains and fossils from Late Palaeozoic sediments of the Baruo area, Tibet: Constraints on the Late Palaeozoic evolution of the Lhasa Terrane[J]. International Geology Review, 2020, 62(4): 465-478.
[39] 许志琴,杨经绥,李海兵,等. 青藏高原与大陆动力学:地体拼合、碰撞造山及高原隆升的深部驱动力[J]. 中国地质,2006,33(2):221-238.

Xu Zhiqin, Yang Jingsui, Li Haibing, et al. The Qinghai-Tibet Plateau and continental dynamics: A review on terrain tectonics, collisional orogenesis, and processes and mechanisms for the rise of the plateau[J]. Geology in China, 2006, 33(2): 221-238.
[40] 吉林大学地质调查研究院. 中华人民共和国区域地质调查报告:比例尺1:250000申扎县幅[R]. 长春:吉林大学,2003:37-57.

Institute of Geological Survey, Jilin University. Regional geological survey report of the People's Republic of China: 1:250, 000 Xainza County[R]. Changchun: Jilin University, 2003: 37-57.
[41] Li Z Y, Ding L, Lippert P C, et al. Paleomagnetic constraints on the Mesozoic drift of the Lhasa Terrane (Tibet) from Gondwana to Eurasia[J]. Geology, 2016, 44(9): 737-740.
[42] 孙知明,曹勇,李海兵,等. 青藏高原形成和演化的古地磁研究进展综述[J]. 地球学报,2019,40(1):17-36.

Sun Zhiming, Cao Yong, Li Haibing, et al. A review of paleomagnetic study of the formation and evolution of the Tibetan Plateau[J]. Acta Geoscientica Sinica, 2019, 40(1): 17-36.
[43] Audley-Charles M G. Evolution of the southern margin of Tethys (North Australian region) from Early Permian to Late Cretaceous[J]. Geological Society, London, Special Publications, 1988, 37(1): 79-100.
[44] Allègre C J, Courtillot V, Tapponnier P, et al. Structure and evolution of the Himalaya-Tibet orogenic belt[J]. Nature, 1984, 307(5946): 17-22.
[45] Zhang Z M, Dong X, Liu F, et al. The making of Gondwana: Discovery of 650 Ma HP granulites from the North Lhasa, Tibet[J]. Precambrian Research, 2012, 212-213: 107-116.
[46] Chen L R, Xu W C, Zhang H F, et al. Origin and early evolution of the Lhasa Terrane, South Tibet: Constraints from the Bomi Gneiss Complex[J]. Precambrian Research, 2019, 331: 105360.
[47] Guynn J, Kapp P, Gehrels G E, et al. U-Pb geochronology of basement rocks in central Tibet and paleogeographic implications[J]. Journal of Asian Earth Sciences, 2012, 43(1): 23-50.
[48] Zhang Y C, Shi G R, Shen S Z. A review of Permian stratigraphy, palaeobiogeography and palaeogeography of the Qinghai-Tibet Plateau[J]. Gondwana Research, 2013, 24(1): 55-76.
[49] 尹集祥. 青藏高原及邻区冈瓦纳相地层地质学[M]. 北京:地质出版社,1997:1-200.

Yin Jixiang. Stratigraphic geology of Gondwana facies of Qinghai-Xizang (Tibet) Plateau and adjacent areas[M]. Beijing: Geological Publishing House, 1997: 1-200.
[50] 李晓勇,谢国刚,袁建芽,等. 西藏文部—姆错丙尼地区早二叠世拉嘎组:兼述杂砾岩形成环境与成因[J]. 地质通报,2002,11(21):723-727.

Li Xiaoyong, Xie Guogang, Yuan Jianya, et al. Early Permian Raka Formation in the Ombu-Monco Bunnyi area, Tibet-With a discussion of the formation environment and origin of petromictic conglomerate[J]. Geological Bulletin of China, 2002, 11(21): 723-727.
[51] 张予杰,安显银,张以春,等. 西藏申扎地区早二叠世冰海相地层中孢粉化石的发现[J]. 科学通报,2015,60(23):2227-2235.

ZhangYujie, An Xianyin, Zhang Yichun, et al. The discovery of sporopollen fossiles bearing Early Permian glacio-marine sequences of Xainza area, Tibet[J]. Chinese Science Bulletin, 2015, 60(23): 2227-2235.
[52] Miall A D. Lithofacies types and vertical profile models in braided river deposits: A summary[M]//Miall A D. Fluvial sedimentology. Calgary: Canadian Society of Petroleum Geologists, 1978: 597-604.
[53] Eyles N, Eyles C H, Miall A D. Lithofacies types and vertical profile models; an alternative approach to the description and environmental interpretation of glacial diamict and diamictite sequences[J]. Sedimentology, 1983, 30(3): 393-410.
[54] Maizels J. Lithofacies variations within sandur deposits: The role of runoff regime, flow dynamics and sediment supply characte-ristics[J]. Sedimentary Geology, 1993, 85(1/2/3/4): 299-325.
[55] Klingbeil R, Kleineidam S, Asprion U, et al. Relating lithofacies to hydrofacies: Outcrop-based hydrogeological characterisation of Quaternary gravel deposits[J]. Sedimentary Geology, 1999, 129(3/4): 299-310.
[56] 许欢,柳永清,刘燕学,等. 阴山—燕山地区晚侏罗世—早白垩世土城子组地层、沉积特征及盆地构造属性分析[J]. 地学前缘,2011,18(4):88-106.

Xu Huan, Liu Yongqing, Liu Yanxue, et al. Stratigraphy, sedimentology and tectonic background of basin evolution of the Late Jurassic-Early Cretaceous Tuchengzi Formation in Yinshan-Yanshan, North China[J]. Earth Science Frontiers, 2011, 18(4): 88-106.
[57] Zand-Moghadam H, Moussavi-Harami R, Mahboubi A, et al. Lithofacies and sequence stratigraphic analysis of the Upper Jurassic siliciclastics in the eastern Kopet-Dagh Basin, NE Iran[J]. Journal of African Earth Sciences, 2016, 117: 48-61.
[58] Xu H, Liu Y Q, Kuang H W, et al. Sedimentary response to the intracontinental orogenic process: Insight from the anatomy of a small Mesozoic basin in western Yanshan, northern North China[J]. International Geology Review, 2016, 58(12): 1528-1556.
[59] Lee J. Glacial lithofacies and stratigraphy[M]//Menzies J, van der Meer J J M. Past glacial environments. 2nd ed. Amsterdam: Elsevier, 2018: 377-429.
[60] 许欢,柳永清,旷红伟,等. 燕山西部尚义盆地沉积岩区专题地质填图方法与成果[J]. 地质通报,2017,36(11):1893-1918.

Xu Huan, Liu Yongqing, Kuang Hongwei, et al. Methods and results of sedimentary geological mapping of special issues in the Shangyi Basin, western Yanshan Mountain[J]. Geological Bulletin of China, 2017, 36(11): 1893-1918.
[61] 胡求红,张昌民,侯国伟,等. 马尔科夫链分析在东海陆架盆地花港组沉积微相分析中的应用[J]. 地质与资源,2020,29(1):7-20.

Hu Qiuhong, Zhang Changmin, Hou Guowei, et al. Application of Markov Chain analysis in the microfacies recognition of Huagang Formation in the East China sea shelf basin[J]. Geology and Resources, 2020, 29(1): 7-20.
[62] O’Connell B, Dorsey R J, Hasiotis S T, et al. Mixed carbonate-siliciclastic tidal sedimentation in the Miocene to Pliocene Bouse Formation, palaeo‐gulf of California[J]. Sedimentology, 2021, 68(3): 1028-1068.
[63] 赵一波,李胜利,周练武,等. 近源河流相辫状河—曲流河微相转换沉积特征及控制因素:以刘官庄油田馆陶组三段为例[J]. 东北石油大学学报,2022,46(1):14-25.

Zhao Yibo, Li Shengli, Zhou Lianwu, et al. Sedimentary characteristics and controlling factors of microfacies transformation from braided river to meandering river of near source fluvial facies: Taking the third member of Guantao Formation in Liuguanzhuang oilfield as an example[J]. Journal of Northeast Petroleum University, 2022, 46(1): 14-25.
[64] 庞志超,焦悦,袁波,等. 准噶尔盆地南缘二叠—三叠纪原型盆地性质与沉积环境演化[J]. 地质学报,2020,94(6):1813-1838.

Pang Zhichao, Jiao Yue, Yuan Bo, et al. Permian-Triassic depositional environmental evolution and the prototype basin of the southern Junggar Basin[J]. Acta Geologica Sinica, 2020, 94(6): 1813-1838.
[65] 侯乾,牟传龙,郑斌嵩,等. 北祁连西段肃南地区下志留统肮脏沟组河流相的发现及其大地构造意义[J]. 地质论评,2021,67(3):612-624.

Hou Qian, Mou Chuanlong, Zheng Binsong, et al. The discovery and the tectonic significance of fluvial facies of the Lower Silurian Angzanggou Formation in Sunan area of the western section of North Qilian orogen[J]. Geological Review, 2021, 67(3): 612-624.
[66] Wakefield O J W, Hough E, Peatfield A W. Architectural analysis of a Triassic fluvial system: The Sherwood sandstone of the East Midlands Shelf, UK[J]. Sedimentary Geology, 2015, 327: 1-13.
[67] 何维领,李少华,王濡岳,等. 砂质辫状河储层构型特征及沉积演:以山西大同侏罗系云冈组露头为例[J]. 沉积学报,2024,42(5):1699-1710.

He Weiling, Li Shaohua, Wang Ruyue, et al. Sandy braided river architecture characteristics and evolution: A case study from outcrops in the Middle Jurassic Yungang Formation, Datong, Shanxi province[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1699-1710.
[68] 王科,赵俊峰,薛锐,等. 鄂尔多斯盆地延安组河流沉积类型及演变:来自典型露头精细解剖的证据[J]. 沉积学报,2022,40(5):1367-1377.

Wang Ke, Zhao Junfeng, Xue Rui, et al. Fluvial sedimentary types and their evolution in the Yan’an Formation in the Ordos Basin: Evidence from the detailed anatomy of typical outcrops[J]. Acta Sedimentologica Sinica, 2022, 40(5): 1367-1377.
[69] 王文才. 沉积岩的交错层理类型及其环境意义[J]. 矿物岩石,1985,5(4):63-70.

Wang Wencai. The types of cross beddings in sedimentary rocks and its environmental significance[J]. Minerals and Rocks, 1985, 5(4): 63-70.
[70] Khalifa M A, Catuneanu O. Sedimentology of the fluvial and fluvio-marine facies of the Bahariya Formation (Early Cenomanian), Bahariya Oasis, western desert, Egypt[J]. Journal of African Earth Sciences, 2008, 51(2): 89-103.
[71] Desjardins P R, Buatois L A, Limarino C O, et al. Latest Carboniferous-earliest Permian transgressive deposits in the Paganzo Basin of western Argentina: Lithofacies and sequence stratigraphy of a coastal-plain to bay succession[J]. Journal of South American Earth Sciences, 2009, 28(1): 40-53.
[72] 谭程鹏,于兴河,刘蓓蓓,等. 季节性河流体系高流态沉积构造特征:以内蒙古岱海湖半滩子河为例[J]. 古地理学报,2018,20(6):929-940.

Tan Chengpeng, Yu Xinghe, Liu Beibei, et al. Sedimentary structures formed under upper-flow-regime in seasonal river system: A case study of Bantanzi River, Daihai Lake, Inner Mongolia[J]. Journal of Palaeogeography, 2018, 20(6): 929-940.
[73] Harms J C, Southard J B, Walker R G. Structures and sequences in clastic rock[M]. Tulsa: SEPM Society for Sedimentary Geology, 1982: 55.
[74] 刘志飞,王成善,金玮. 可可西里盆地早渐新世雅西措群爬升沙纹层理及其沉积环境意义[J]. 沉积学报,2004,22(4):560-565.

Liu Zhifei, Wang Chengshan, Jin Wei. Climbing-ripple cross-lamination of the Early Oligocene Yaxicuo Group in the Hoh Xil Basin and its significance for depositional environment[J]. Acta Sedimentologica Sinica, 2004, 22(4): 560-565.
[75] 徐希旺,陈世悦,王越,等. 吐哈盆地大河沿地区塔尔朗组细粒沉积岩特征[J]. 沉积学报,2017,35(4):705-713.

Xu Xiwang, Chen Shiyue, Wang Yue, et al. Characteristics of fine-grained sedimentary rocks in Taerlang Formation, Daheyan area, Turpan-Hami Basin[J]. Acta Sedimentologica Sinica, 2017, 35(4): 705-713.
[76] García M, Ercilla G, Alonso B, et al. Sediment lithofacies, processes and sedimentary models in the Central Bransfield Basin, Antarctic Peninsula, since the Last Glacial Maximum[J]. Marine Geology, 2011, 290(1/2/3/4): 1-16.
[77] Eyles N, Lazorek M. Glacial landforms, sediments | glaciogenic lithofacies[M]// Encyclopedia of Quaternary Science (Second Edition). Amsterdam: Elsevier, 2013: 18-29.
[78] Alley R B, Blankenship D D, Rooney S T, et al. Sedimentation beneath ice shelves: The view from ice stream B[J]. Marine Geology, 1989, 85(2/3/4): 101-120.
[79] Hermann E, Barclay K. Basal sliding of ice stream B, West Antarctica[J]. Journal of Glaciology, 1998, 44(147): 223-230.
[80] Chen X S, Kuang H W, Liu Y Q, et al. Revisiting the Nantuo Formation in Shennongjia, South China: A new depositional model and multiple glacial cycles in the Cryogenian[J]. Precambrian Research, 2021, 356: 106132.
[81] 黄秀. 豫西地区中元古代蓟县纪地层沉积特征及沉积古地理研究[D]. 北京:中国地质大学(北京),2009:22.

Huang Xiu. A study on the sedimentary character and paleogeography of the Mesoproterozoic Jixianian Period in western Henan province[D]. Beijing: China University of Geosciences (Beijing), 2009: 22.
[82] Koch Z J, Isbell J L. Processes and products of grounding-line fans from the Permian Pagoda Formation, Antarctica: Insight into glacigenic conditions in polar Gondwana[J]. Gondwana Research, 2013, 24(1): 161-172.
[83] Eyles C H, Eyles N, Miall A D. Models of glaciomarine sedimentation and their application to the interpretation of ancient glacial sequences[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1985, 51(1/2/3/4): 15-84.
[84] 吴崇筠,刘宝珺,王德发,等. 碎屑岩沉积相模式[J]. 石油学报,1981,2(4):1-10.

Wu Chongyun, Liu Baojun, Wang Defa, et al. Patterns of sedimentary facies of clastics in China[J]. Acta Petrolei Sinica, 1981, 2(4): 1-10.
[85] Nemec W, Steel R J. Alluvial and coastal conglomerates: Their significant features and some comments on gravelly mass-flow deposits[M]//Koster E H, Steel R J. Sedimentology of gravels and conglomerates. Calgary: Canadian Society of Petroleum Geologists, 1984: 1-31.
[86] 刘林玉,李红. 沉积学原理[M]. 北京:地质出版社,2016:64-96.

Liu Linyu, Li Hong. Principles of sedimentology[M]. Beijing: Geological Publishing House, 2016: 64-96.
[87] 兰朝利,李继亮,郭永贵. 冲积沉积物搬运和底形研究进展[J]. 地质科技情报,2000,19(2):12-16.

Lan Chaoli, Li Ji-liang, Guo Yonggui. Progress in the alluvial sediment transport and bedforms[J]. Geological Science and Technology Information, 2000, 19(2): 12-16.
[88] Walker R G. Facies models[M]. 2nd ed. Toronto: Geological Association of Canada, 1984: 71-89.
[89] Menzies J. Modern and past glacial environments[M]. Amsterdam: Elsevier, 2002: 206-383.
[90] 姜雪. 海拉尔盆地乌尔逊—贝尔凹陷铜钵庙组—大磨拐河组火山—碎屑沉积岩岩性岩相分析[D]. 长春:吉林大学,2007:55-70.

Jiang Xue. Analysis on lithology-lithofacies of volcaniclastic and sedimentary rock of Tongbomiao Formation-Damoguaihe Formation in Wuerxun-Beier Depressions Hailaer Basin[D]. Changchun: Jilin University, 2007: 55-70.
[91] 王勇,宋国奇,刘惠民,等. 济阳坳陷细粒沉积岩形成环境及沉积构造[J]. 东北石油大学学报,2015,39(3):7-14,31.

Wang Yong, Song Guoqi, Liu Huimin, et al. Formation environment and sedimentary structures of fine-grained sedimentary rock in Jiyang Depression[J]. Journal of Northeast Petroleum University, 2015, 39(3): 7-14, 31.
[92] Blair T C, McPherson J G. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages[J]. Journal of Sedimentary Research, 1994, 64(3a): 450-489.
[93] Miall A D. A review of the braided-river depositional environment[J]. Earth-Science Reviews, 1977, 13(1): 1-62.
[94] Hunter L E, Powell R D, Smith G W. Facies architecture and grounding-line fan processes of morainal banks during the deglaciation of coastal Maine[J]. Geological Society of America Bulletin, 1996, 108(8): 1022-1038.
[95] Hart J K. Identifying fast ice flow from landform assemblages in the geological record: A discussion[J]. Annals of Glaciology, 1999, 28: 59-66.
[96] Myrow P M, Lamb M P, Ewing R C. Rapid sea level rise in the aftermath of a Neoproterozoic snowball earth[J]. Science, 2018, 360(6389): 649-651.
[97] Clapham M E, James N P. Paleoecology of Early-Middle Permian marine communities in eastern Australia: Response to global climate change in the aftermath of the Late Paleozoic ice age[J]. Palaios, 2008, 23(11): 738-750.
[98] Soreghan G S, Montañez I P. Special issue on the Late Paleozoic earth system[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 268(3/4): 123-125.
[99] Berner R A. Atmospheric carbon dioxide levels over Phanerozoic time[J]. Science, 1990, 249(4975): 1382-1386.
[100] Miller K G, Kominz M A, Browning J V, et al. The Phanerozoic record of global sea-level change[J]. Science, 2005, 310(5752): 1293-1298.
[101] Rygel M C, Fielding C R, Frank T D, et al. The magnitude of Late Paleozoic glacioeustatic fluctuations: A synthesis[J]. Journal of Sedimentary Research, 2008, 78(8): 500-511.
[102] Frank T D, Birgenheier L P, Montañez I P, et al. Late Paleozoic climate dynamics revealed by comparison of ice-proximal stratigraphic and ice-distal isotopic records[M]//Fielding C R, Frank T D, Isbell J L. Resolving the Late Paleozoic ice age in time and space. McLean: Geological Society of America, 2008: 178-195.
[103] Chen B, Joachimski M M, Shen S Z, et al. Permian ice volume and palaeoclimate history: Oxygen isotope proxies revisited[J]. Gondwana Research, 2013, 24(1): 77-89.
[104] Dimichele W A, Montañez I P, Poulsen C J, et al. Climate and vegetational regime shifts in the Late Paleozoic ice age earth[J]. Geobiology, 2009, 7(2): 200-226.