[1] Parrenin F, Rémy F, Ritz C, et al. New modeling of the Vostok ice flow line and implication for the glaciological chronology of the Vostok ice core[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D20): D20102.
[2] Beck J W, Zhou W J, Li C, et al. A 550,000-year record of East Asian monsoon rainfall from 10Be in loess[J]. Science, 2018, 360(6391): 877-881.
[3] Miller K G, Browning J V, Schmelz W J, et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records[J]. Science Advances, 2020, 6(20): eaaz1346.
[4] Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640,000 years and ice age terminations[J]. Nature, 2016, 534(7609): 640-646.
[5] 陈仕涛,汪永进,孔兴功,等. 倒数第三次冰消期亚洲季风气候可能的类Younger Dryas事件[J]. 中国科学(D辑):地球科学,2006,36(5):445-452.

Chen Shitao, Wang Yongjin, Kong Xinggong, et al. A possible Younger Dryas-type event during Asian monsoonal termination 3[J]. Science China (Seri. D): Earth Sciences, 2006, 36(5): 445-452.
[6] Raza W, Ahmad S M, Sarma D S, et al. A 2500 years deglacial record of paleo-vegetation over a cave of southern India as inferred from carbon isotopes of stalagmite[J]. Journal of Earth System Science, 2021, 130(2): 113.
[7] Zhang H W, Cai Y J, Tan L C, et al. Large variations of δ 13C values in stalagmites from southeastern China during historical times: Implications for anthropogenic deforestation[J]. Boreas, 2015, 44(3): 511-525.
[8] Zhang H W, Cheng H, Sinha A, et al. Collapse of the Liangzhu and other Neolithic cultures in the Lower Yangtze region in response to climate change[J]. Science Advances, 2021, 7(48): eabi9275.
[9] 黄俊华,胡超涌,周群峰,等. 长江中游和尚洞石笋的高分辨率同位素、微量元素记录及古气候研究[J]. 沉积学报,2002,20(3):442-446.

Huang Junhua, Hu Chaoyong, Zhou Qunfeng, et al. Study on high-resolution carbon, oxygen isotope and trace element records and paleoclimate from Heshang Cave, the middle reach of the Yangtse River[J]. Acta Sedimentologica Sinica, 2002, 20(3): 442-446.
[10] 张美良,林玉石,覃嘉铭,等. 黔南七星洞石笋古气候变化记录及末次间冰期终止点的确定[J]. 沉积学报,2003,21(3):473-481.

Zhang Meiliang, Lin Yushi, Qin Jiaming, et al. The record of paleoclimatic change and the termination of the last interglacial period from a stalagmite of Qingxin Cave in south Guizhou[J]. Acta Sedimentologica Sinica, 2003, 21(3): 473-481.
[11] 王权,刘殿兵,汪永进,等. 湖北神农架年纹层石笋记录的YD与8.2 ka事件转型模式研究[J]. 沉积学报,2015,33(6):1140-1148.

Wang Quan, Liu Dianbing, Wang Yongjin, et al. Transitional patterns of YD and 8.2 ka event recorded by annually-laminated stalagmites from Qingtian Cave, Mt. Shennongjia[J]. Acta Sedimentologica Sinica, 2015, 33(6): 1140-1148.
[12] 张银环,杨琰,杨勋林,等. 早全新世季风演化的高分辨率石笋δ 18O记录研究:以河南老母洞石笋为例[J]. 沉积学报,2015,33(1):134-141.

Zhang Yinhuan, Yang Yan, Yang Xunlin, et al. Early Holocene monsoon evolution of high-resolution stalagmite δ 18O records: In Henan Laomu Cave[J]. Acta Sedimentologica Sinica, 2015, 33(1): 134-141.
[13] 吴尧,李廷勇,陈朝军,等. 中国石笋微层在古气候重建中的应用研究[J]. 第四纪研究,2020,40(4):1008-1024.

Wu Yao, Li Tingyong, Chen Chaojun, et al. Application of stalagmite laminae in paleoclimate reconstructions of China[J]. Quaternary Sciences, 2020, 40(4): 1008-1024.
[14] 张伟宏,廖泽波,陈仕涛,等. 湖北高分辨率石笋记录的DO18事件特征[J]. 沉积学报,2018,36(4):674-683.

Zhang Weihong, Liao Zebo, Chen Shitao, et al. DO18 event depicted by a high-resolution stalagmite record from Yongxing Cave, Hubei province[J]. Acta Sedimentologica Sinica, 2018, 36(4): 674-683.
[15] 张美良,林玉石,覃嘉铭. 洞穴石笋纹(壳)层层组类型研究[J]. 沉积学报,2002,20(3):435-441.

Zhang Meiliang, Lin Yushi, Qin Jiaming. Study on laminae or lamella groups and types of stalagmite in caves[J]. Acta Sedimentologica Sinica, 2002, 20(3): 435-441.
[16] 张振球,刘殿兵,汪永进,等. 中全新世东亚季风年至10年际气候变率:湖北青天洞5.56~4.84ka B. P. 石笋年层厚度与地球化学证据[J]. 第四纪研究,2014,34(6):1246-1255.

Zhang Zhenqiu, Liu Dianbing, Wang Yongjin, et al. Annual-to decadal-scale variability of Asian monsoon climates during mid-Holocene: Evidence from proxies of annual bands and geochemical behaviors of a speleothem from 5.56 ka B. P. to 4.84 ka B. P. in Qingtian Cave, central China[J]. Quaternary Sciences, 2014, 34(6): 1246-1255.
[17] 王萌,陈仕涛,黄琬淳,等. 石笋灰度和同位素对末次冰期气候事件的响应[J]. 自然资源学报,2020,35(12):3064-3075.

Wang Meng, Chen Shitao, Huang Wanchun, et al. The response of stalagmite gray-level and isotopes to the climatic events during the last glacial Period[J]. Journal of Natural Resources, 2020, 35(12): 3064-3075.
[18] 张美良,林玉石,覃嘉铭. 桂林水南洞石笋的沉积学特征[J]. 沉积学报,1999,17(2):233-239.

Zhang Meiliang, Lin Yushi, Qin Jiaming. Sedimentological characteristics of a stalagmite from Shuinan Cave, Guilin[J]. Acta Sedimentologica Sinica, 1999, 17(2): 233-239.
[19] Franke H W. The theory behind stalagmite shapes[Z]. 1965.
[20] Kaufmann G, Dreybrodt W. Stalagmite growth and palaeo-climate: An inverse approach[J]. Earth and Planetary Science Letters, 2004, 224(3/4): 529-545.
[21] 高滨升,胡超涌. 石笋生长直径的测定及其在古气候重建中的应用[J]. 中国岩溶,2019,38(3):353-360.

Gao Binsheng, Hu Chaoyong. Measurement of a stalagmite diameter and its application for paleoclimate[J]. Carsologica Sinica, 2019, 38(3): 353-360.
[22] Liang Y J, Chen S T, Zhang Z Q, et al. Abrupt monsoonal shifts over the precessional cycles documented in Yongxing Cave in China during the antepenultimate glacial period[J]. Environmental Earth Sciences, 2018, 77(6): 228.
[23] Wang Q, Wang Y J, Zhao K, et al. The transfer of oxygen isotopic signals from precipitation to drip water and modern calcite on the seasonal time scale in Yongxing Cave, central China[J]. Environmental Earth Sciences, 2018, 77(12): 474.
[24] 姜修洋,汪永进,孔兴功,等. 末次间冰期东亚季风气候不稳定的神农架洞穴石笋记录[J]. 沉积学报,2008,26(1):139-143.

Jiang Xiuyang, Wang Yongjin, Kong Xinggong, et al. Climate variability in Shennongjia during the last interglacial inferred from a high-resolution stalagmite record[J]. Acta Sedimentologica Sinica, 2008, 26(1): 139-143.
[25] Muñoz-García M B, Cruz J, Martín-Chivelet J, et al. Comparison of speleothem fabrics and microstratigraphic stacking patterns in calcite stalagmites as indicators of paleoenvironmental change[J]. Quaternary International, 2016, 407: 74-85.
[26] Huang W, Wang Y J, Cheng H, et al. Multi-scale Holocene Asian monsoon variability deduced from a twin-stalagmite record in southwestern China[J]. Quaternary Research, 2016, 86(1): 34-44.
[27] Berger A L. Long-term variations of caloric insolation resulting from the earth’s orbital elements[J]. Quaternary Research, 1978, 9(2): 139-167.
[28] 黄伟,刘殿兵,王璐瑶,等. 洞穴石笋δ 13C在古气候重建研究中的现状与进展[J]. 地球科学进展,2016,31(9):968-983.

Huang Wei, Liu Dianbing, Wang Luyao, et al. Research status and advance in carbon isotope (δ 13C) variation from stalagmite[J]. Advances in Earth Science, 2016, 31(9): 968-983.
[29] 陈剑舜,张伟宏,陈仕涛,等. 小冰期气候的湖北石笋碳同位素记录[J]. 沉积学报,2020,38(3):497-504.

Chen Jianshun, Zhang Weihong, Chen Shitao, et al. Carbon isotope record in stalagmites from Hubei during the little ice age[J]. Acta Sedimentologica Sinica, 2020, 38(3): 497-504.
[30] Dorale J A, González L A, Reagan M K, et al. A high-resolution record of Holocene climate change in speleothem calcite from cold water cave, northeast Iowa[J]. Science, 1992, 258(5088): 1626-1630.
[31] Genty D, Baker A, Massault M, et al. Dead carbon in stalagmites: Carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems[J]. Geochimica et Cosmochimica Acta, 2001, 65(20): 3443-3457.
[32] 覃嘉铭,林玉石,张美良,等. 桂林全新世石笋高分辨率δ 13C记录及其古生态意义[J]. 第四纪研究,2000,20(4):351-358.

Qin Jiaming, Lin Yushi, Zhang Meiliang, et al. High resolution records of δ 13C and their paleoecological significance from stalagmites formed in Holocene Epoch in Guilin[J]. Quaternary Sciences, 2000, 20(4): 351-358.
[33] 李红春,顾德隆, Stott L D,等. 北京石花洞石笋500年来的δ 13C记录与古气候变化及大气CO2浓度变化的关系[J]. 中国岩溶,1997,16(4):285-295.

Li Hongchun, Gu Delong, Stott L D, et al. Interannual-resolution δ 13C record of stalagmites as proxy for the changes in precipitation and atmospheric CO2 in Shihua Cave, Beijing[J]. Carsologica Sinica, 1997, 16(4): 285-295.
[34] Fairchild I J, Smith C L, Baker A, et al. Modification and preservation of environmental signals in speleothems[J]. Earth-Science Reviews, 2006, 75(1/2/3/4): 105-153.
[35] Li T Y, Shen C C, Li H C, et al. Oxygen and carbon isotopic systematics of aragonite speleothems and water in Furong Cave, Chongqing, China[J]. Geochimica et Cosmochimica Acta, 2011, 75(15): 4140-4156.
[36] Lea D W, Pak D K, Spero H J. Climate impact of Late Quaternary equatorial pacific sea surface temperature variations[J]. Science, 2000, 289(5485): 1719-1724.
[37] Dorale J A, Edwards R L, Ito E, et al. Climate and vegetation history of the midcontinent from 75 to 25 ka: A speleothem record from crevice cave, Missouri, USA[J]. Science, 1998, 282(5395): 1871-1874.
[38] Saraswat R, Lea D W, Nigam R, et al. Deglaciation in the tropical Indian Ocean driven by interplay between the regional monsoon and global teleconnections[J]. Earth and Planetary Science Letters, 2013, 375: 166-175.
[39] Fraser N, Kuhnt W, Holbourn A, et al. Precipitation variability within the West Pacific Warm Pool over the past 120ka: Evidence from the Davao Gulf, southern Philippines[J]. Paleoceanography, 2014, 29(11): 1094-1110.
[40] Dreybrodt W. Processes in karst systems: Physics, chemistry, and geology[M]. Berlin, Heidelberg: Springer, 1988: 287.
[41] Duan W H, Cai B G, Tan M, et al. The growth mechanism of the aragonitic stalagmite laminae from Yunnan Xianren Cave, SW China revealed by cave monitoring[J]. Boreas, 2012, 41(1): 113-123.
[42] 潘根兴,曹建华. 表层带岩溶作用:以土壤为媒介的地球表层生态系统过程:以桂林峰丛洼地岩溶系统为例[J]. 中国岩溶,1999,18(4):287-296.

Pan Genxing, Cao Jianhua. Karstification in epikarst zone: The earth surface ecosystem processes taking soil as a medium: Case of the Yaji Karst Experiment Site, Guilin[J]. Carsologica Sinica, 1999, 18(4): 287-296.
[43] 唐灿,周平根. 北京典型溶洞区土壤中的CO2及其对岩溶作用的驱动[J]. 中国岩溶,1999,18(3):213-217.

Tang Can, Zhou Pinggen. The soil CO2 and its driving action on karstification in typical karst area in Beijing[J]. Carsologica Sinica, 1999, 18(3): 213-217.
[44] Shang J Y, Flury M, Chen G, et al. Impact of flow rate, water content, and capillary forces on in situ colloid mobilization during infiltration in unsaturated sediments[J]. Water Resources Research, 2008, 44(6): W06411.
[45] Ayalon A, Bar-Matthews M, Kaufman A. Petrography, strontium, barium and uranium concentrations, and strontium and uranium isotope ratios in speleothems as palaeoclimatic proxies: Soreq Cave, Israel[J]. The Holocene, 1999, 9(6): 715-722.
[46] 汪永进,孔兴功,邵晓华,等. 末次盛冰期百年尺度气候变化的南京石笋记录[J]. 第四纪研究,2002,22(3):243-251.

Wang Yongjin, Kong Xinggong, Shao Xiaohua, et al. Century-scale climatic oscillations during the last glacial maximum recorded in a stalagmite from Nanjing[J]. Quaternary Sciences, 2002, 22(3): 243-251.
[47] 殷自强,刘冬雁,庞重光,等. 全新世气候变化与太阳活动百千年尺度周期分析[J]. 中国海洋大学学报,2017,47(7):112-120.

Yin Ziqiang, Liu Dongyan, Pang Chongguang, et al. The centennial to millennial-scale cycles analysis of Holocene climatic variability and solar activity[J]. Periodical of Ocean University of China, 2017, 47(7): 112-120.
[48] Hodge E J, Richards D A, Smart P L, et al. Effective precipitation in southern Spain (~ 266 to 46 ka) based on a speleothem stable carbon isotope record[J]. Quaternary Research, 2008, 69(3): 447-457.
[49] 曾雅兰,陈仕涛,杨少华,等. 过去640ka亚洲季风变化的多尺度分析[J]. 中国科学(D辑):地球科学,2019,49(5):864-874.

Zeng Yalan, Chen Shitao, Yang Shaohua, et al. Multiscale analysis of Asian monsoon over the past 640 ka[J]. Science China (Seri. D): Earth Sciences, 2019, 49(5): 864-874.
[50] Chapman M R, Shackleton N J. Evidence of 550-year and 1000-year cyclicities in North Atlantic circulation patterns during the Holocene[J]. The Holocene, 2000, 10(3): 287-291.
[51] Wagner G, Beer J, Masarik J, et al. Presence of the solar de Vries cycle (~205 years) during the last Ice Age[J]. Geophysical Research Letters, 2001, 28(2): 303-306.
[52] Ogurtsov M G, Nagovitsyn Y A, Kocharov G E, et al. Long-period cycles of the sun's activity recorded in direct solar data and proxies[J]. Solar Physics, 2002, 211(1/2): 371-394.
[53] Stuiver M, Grootes P M, Braziunas T F. The GISP2 δ 18O climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes[J]. Quaternary Research, 1995, 44(3): 341-354.
[54] 杨少华,陈仕涛,汪永进,等. 基于EEMD方法的全新世亚洲季风石笋氧碳同位素对比研究[J]. 地理研究,2017,36(8):1455-1466.

Yang Shaohua, Chen Shitao, Wang Yongjin, et al. Comparison of oxygen-carbon isotopes from a Holocene stalagmite by EEMD method[J]. Geographical Research, 2017, 36(8): 1455-1466.
[55] Huggett R J. Climate, earth processes, and earth history[M]. New York: Springer-Verlag, 1991.
[56] Wang Z J, Chen S T, Wang Y J, et al. Sixty-year quasi-period of the Asian monsoon around the Last Interglacial derived from an annually resolved stalagmite δ 18O record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 541: 109545.
[57] Nagovitsyn Y A. A nonlinear mathematical model for the solar cyclicity and prospects for reconstructing the solar activity in the past[J]. Astronomy Letters, 1997, 23(6): 742-748.
[58] Liu H Y, Lin Z S, Qi X Z, et al. Possible link between Holocene East Asian monsoon and solar activity obtained from the EMD method[J]. Nonlinear Processes in Geophysics, 2012, 19(4): 421-430.