[1] Okazaki H, Isaji S, Kurozumi T. Sedimentary facies related to supercritical-flow bedforms in foreset slopes of a Gilbert-type delta (Middle Pleistocene, central Japan)[J]. Sedimentary Geology, 2020, 399: 105613.
[2] Massari F. Supercritical-flow structures (backset-bedded sets and sediment waves) on high-gradient clinoform systems influenced by shallow-marine hydrodynamics[J]. Sedimentary Geology, 2017, 360: 73-95.
[3] Galloway W E. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems[M]. Houston: Houston Geological Society, 1975: 87-98.
[4] Longhitano S G. Sedimentary facies and sequence stratigraphy of coarse-grained Gilbert-type deltas within the Pliocene thrust-top Potenza Basin (southern Apennines, Italy)[J]. Sedimentary Geology, 2008, 210(3/4): 87-110.
[5] Gobo K, Ghinassi M, Nemec W. Gilbert-type deltas recording short-term base-level changes: Delta-brink morphodynamics and related foreset facies[J]. Sedimentology, 2015, 62(7): 1923-1949.
[6] 于兴河,李胜利,李顺利. 三角洲沉积的结构:成因分类与编图方法[J]. 沉积学报,2013,31(5):782-797.

Yu Xinghe, Li Shengli, Li Shunli. Texture: Genetic classifications and mapping methods for deltaic deposits[J]. Acta Sedimentologica Sinica, 2013, 31(5): 782-797.
[7] Nemec W. Deltas-remarks on terminology and classification[M]//Colella A, Prior D B. Coarse-grained deltas. Algiers: The International Association of Sedimentnlogists, 1990: 3-12.
[8] Gilbert G K. The topographic features of lake shores[R]. Reston: U.S. Geological Survey, 1885: 69-123.
[9] Barrell J. Criteria for the recognition of ancient delta deposits[J]. GSA Bulletin, 1912, 23(1): 377-446.
[10] Postma G. Depositional architecture and facies of river and fan deltas: A synthesis[M]//Colella A, Prior D B. Coarse-grained deltas. Algiers: The International Association of Sedimentologists, 1990: 13-27.
[11] 邹才能,赵文智,张兴阳,等. 大型敞流坳陷湖盆浅水三角洲与湖盆中心砂体的形成与分布[J]. 地质学报,2008,82(6):813-825.

Zou Caineng, Zhao Wenzhi, Zhang Xingyang, et al. Formation and distribution of shallow-water deltas and central-basin sandbodies in large open depression lake basins[J]. Acta Geologica Sinica, 2008, 82(6): 813-825.
[12] Fisk H N, Kolb C R, McFarlan E, et al. Sedimentary framework of the modern mississippi delta [Louisiana][J]. Journal of Sedimentary Research, 1954, 24(2): 76-99.
[13] Zhu X M, Zeng H L, Li S L, et al. Sedimentary characteristics and seismic geomorphologic responses of a shallow-water delta in the Qingshankou Formation from the Songliao Basin, China[J]. Marine and Petroleum Geology, 2017, 79: 131-148.
[14] Zou C N, Zhang X Y, Luo P, et al. Shallow-lacustrine sand-rich deltaic depositional cycles and sequence stratigraphy of the Upper Triassic Yanchang Formation, Ordos Basin, China[J]. Basin Research, 2010, 22(1): 108-125.
[15] Postma G, Lang J, Hoyal D C, et al. Reconstruction of bedform dynamics controlled by supercritical flow in the channel-lobe transition zone of a deep-water delta (Sant Llorenç del Munt, north-east Spain, Eocene)[J]. Sedimentology, 2021, 68(4): 1674-1697.
[16] Junior F N A, Steel R J, Olariu C, et al. River-dominated and tide-influenced shelf-edge delta systems: Coarse-grained deltas straddling the Early-Middle Jurassic shelf-slope break and transforming downslope, Lajas-Los Molles formations, Neuquén Basin, Argentina[J]. Sedimentology, 2020, 67(6): 2883-2916.
[17] Porębski S J, Steel R J. Shelf-margin deltas: Their stratigraphic significance and relation to deepwater sands[J]. Earth-Science Reviews, 2003, 62(3/4): 283-326.
[18] Nemec W. Aspects of sediment movement on steep delta slopes[M]//Colella A, Prior D B. Coarse-grained deltas. Algiers: The International Association of Sedimentnlogists, 1990: 29-73.
[19] Bates C C. Rational theory of delta formation[J]. AAPG Bulletin, 1953, 37(9): 2119-2162.
[20] Zavala C, Pan S X. Hyperpycnal flows and hyperpycnites: Origin and distinctive characteristics[J]. Lithologic Reservoirs, 2018, 30(1): 1-18.
[21] 周书欣. 三角洲体系的分类和油气聚集(综述)[J]. 大庆石油学院学报,1980(2):61-75.

Zhou Shuxin. Classification and hydrocarbon accumulation of delta system (review)[J]. Journal of Daqing Petroleum Institute, 1980(2): 61-75.
[22] Holmes A. Principles of physical geology[M]. 2nd ed. London: Thomas Nelson, 1945.
[23] Postma G. Fan delta[M]//Middleton G V, Church M J, Coniglio M, et al. Encyclopedia of sediments and sedimentary rocks. Dordrecht: Springer, 2003: 272-274.
[24] Falk P D, Dorsey R J. Rapid development of gravelly high-density turbidity currents in marine Gilbert-type fan deltas, Loreto Basin, Baja California Sur, Mexico[J]. Sedimentology, 1998, 45(2): 331-349.
[25] Backert N, Ford M, Malartre F. Architecture and sedimentology of the Kerinitis Gilbert-type fan delta, Corinth Rift, Greece[J]. Sedimentology, 2010, 57(2): 543-586.
[26] 张昌民,朱锐,尹太举,等. 扇三角洲沉积学研究进展[J]. 新疆石油地质,2015,36(3):362-368.

Zhang Changmin, Zhu Rui, Yin Taiju, et al. Advances in fan deltaic sedimentology[J]. Xinjiang Petroleum Geology, 2015, 36(3): 362-368.
[27] Blair T C, McPherson J G. Quaternary sedimentology of the Rose Creek fan delta, Walker Lake, Nevada, USA, and implications to fan-delta facies models[J]. Sedimentology, 2008, 55(3): 579-615.
[28] Bowman D. Climatically triggered gilbert-type lacustrine fan deltas, the dead sea area, Israel[M]. International Association of Sedimentologists, 1990: 273-280.
[29] Picard M D. Grove karl gilbert, master of laccoliths and lakes[J]. Rocky Mountain Geology, 2008, 43(1): 111-118.
[30] Cartigny M J B, Ventra D, Postma G, et al. Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions: New insights from flume experiments[J]. Sedimentology, 2014, 61(3): 712-748.
[31] Dietrich P, Ghienne J F, Normandeau A, et al. Upslope-migrating bedforms in a proglacial sandur delta: Cyclic steps from river-derived underflows?[J]. Journal of Sedimentary Research, 2016, 86(2): 113-123.
[32] Lang J, Sievers J, Loewer M, et al. 3D architecture of cyclic-step and antidune deposits in glacigenic subaqueous fan and delta settings: Integrating outcrop and ground-penetrating radar data[J]. Sedimentary Geology, 2017, 362: 83-100.
[33] Cartigny M. Morphodynamics of supercritical high-density turbidity currents[D]. Utrecht: Utrecht University, 2012.
[34] Lang J, Winsemann J. Lateral and vertical facies relationships of bedforms deposited by aggrading supercritical flows: From cyclic steps to humpback dunes[J]. Sedimentary Geology, 2013, 296: 36-54.
[35] Postma G, Cartigny M J B. Supercritical and subcritical turbidity currents and their deposits-A synthesis[J]. Geology, 2014, 42(11): 987-990.
[36] Postma G, Kleverlaan K, Cartigny M J B. Recognition of cyclic steps in sandy and gravelly turbidite sequences, and consequences for the Bouma facies model[J]. Sedimentology, 2014, 61(7): 2268-2290.
[37] Gobo K, Ghinassi M, Nemec W. Reciprocal changes in foreset to bottomset facies in a gilbert-type delta: Response to short-term changes in base level[J]. Journal of Sedimentary Research, 2014, 84(11): 1079-1095.
[38] Cartigny M J B, Eggenhuisen J T, Hansen E W M, et al. Concentration-dependent flow stratification in experimental high-density turbidity currents and their relevance to turbidite facies models[J]. Journal of Sedimentary Research, 2013, 83(12): 1047-1065.
[39] Hiscott R N. Traction-carpet stratification in turbidites: Fact or fiction[J]. Journal of Sedimentary Research, 1994, 64(2a): 204-208.
[40] Postma G, Nemec W, Kleinspehn K L. Large floating clasts in turbidites: A mechanism for their emplacement[J]. Sedimentary Geology, 1988, 58(1): 47-61.
[41] Sohn Y K. On traction-carpet sedimentation[J]. Journal of Sedimentary Research, 1997, 67(3): 502-509.
[42] Postma G. Mass-flow conglomerates in a submarine canyon: Abrioja fan-delta, Pliocene, southeast spain[M]//Koster E H, Steel R J. Sedimentology of gravels and conglomerates. Canadian Society of Petroleum Geologists, 1984: 237-258.
[43] Winsemann J, Lang J, Polom U, et al. Ice-marginal forced regressive deltas in glacial lake basins: Geomorphology, facies variability and large-scale depositional architecture[J]. Boreas, 2018, 47(4): 973-1002.
[44] Zavala C. Hyperpycnal (over density) flows and deposits[J]. Journal of Palaeogeography, 2020, 9: 17.
[45] Bagnold R A. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear[J]. Proceedings of the Royal Society A, Mathematical, Physical and Engineering Sciences, 1954, 225(1160): 49-63.
[46] 金杰华,操应长,王健,等. 深水砂质碎屑流沉积:概念、沉积过程与沉积特征[J]. 地质论评,2019,65(3):689-702.

Jin Jiehua, Cao Yingchang, Wang Jian, et al. Deep-water sandy debris flow deposits: Concepts, sedimentary processes and characteristics[J]. Geological Review, 2019, 65(3): 689-702.
[47] Baas J H, Best J L, Peakall J, et al. A phase diagram for turbulent, transitional, and laminar clay suspension flows[J]. Journal of Sedimentary Research, 2009, 79(4): 162-183.
[48] Barker S P, Haughton P D W, McCaffrey W D, et al. Development of rheological heterogeneity in clay-rich high-density turbidity currents: Aptian britannia sandstone member, U.K. continental shelf[J]. Journal of Sedimentary Research, 2008, 78(2): 45-68.
[49] 操应长,杨田,王艳忠,等. 深水碎屑流与浊流混合事件层类型及成因机制[J]. 地学前缘,2017,24(3):234-248.

Cao Yingchang, Yang Tian, Wang Yanzhong, et al. Types and genesis of deep-water hybrid event beds comprising debris flow and turbidity current[J]. Earth Science Frontiers, 2017, 24(3): 234-248.
[50] Mohrig D, Ellis C, Parker G, et al. Hydroplaning of subaqueous debris flows[J]. GSA Bulletin, 1998, 110(3): 387-394.
[51] Talling P J. Hybrid submarine flows comprising turbidity current and cohesive debris flow: Deposits, theoretical and experimental analyses, and generalized models[J]. Geosphere, 2013, 9(3): 460-488.
[52] Baker M L, Baas J H, Malarkey J, et al. The effect of clay type on the properties of cohesive sediment gravity flows and their deposits[J]. Journal of Sedimentary Research, 2017, 87(11): 1176-1195.
[53] Mulder T, Chapron E. Flood deposits in continental and marine environments: Character and significance[M]//Slatt R M, Zavala C. Sediment transfer from shelf to deep water—revisiting the delivery system. Tulsa: American Association of Petroleum Geologists, 2012: 1-30.
[54] 操应长,杨田,王艳忠,等. 超临界沉积物重力流形成演化及特征[J]. 石油学报,2017,38(6):607-621.

Cao Yingchang, Yang Tian, Wang Yanzhong, et al. Formation, evolution and sedimentary characteristics of supercritical sediment gravity-flow[J]. Acta Petrolei Sinica, 2017, 38(6): 607-621.
[55] Muto T, Yamagishi C, Sekiguchi T, et al. The hydraulic autogenesis of distinct cyclicity in delta foreset bedding: Flume experiments[J]. Journal of Sedimentary Research, 2012, 82(7): 545-558.
[56] Parker G, Garcia M, Fukushima Y, et al. Experiments on turbidity currents over an erodible bed[J]. Journal of Hydraulic Research, 1987, 25(1): 123-147.
[57] Breda A, Mellere D, Massari F, et al. Vertically stacked Gilbert-type deltas of Ventimiglia (NW Italy): The Pliocene record of an overfilled Messinian incised valley[J]. Sedimentary Geology, 2009, 219(1/2/3/4): 58-76.
[58] 杨仁超,金之钧,孙冬胜,等. 鄂尔多斯晚三叠世湖盆异重流沉积新发现[J]. 沉积学报,2015,33(1):10-20.

Yang Renchao, Jin Zhijun, Sun Dongsheng, et al. Discovery of hyperpycnal flow deposits in the Late Triassic lacustrine Ordos Basin[J]. Acta Sedimentologica Sinica, 2015, 33(1): 10-20.
[59] 杨田,操应长,王艳忠,等. 异重流沉积动力学过程及沉积特征[J]. 地质论评,2015,61(1):23-33.

Yang Tian, Cao Yingchang, Wang Yanzhong, et al. Sediment dynamics process and sedimentary characteristics of hyperpycnal flows[J]. Geological Review, 2015, 61(1): 23-33.
[60] 杨田,操应长,田景春. 浅谈陆相湖盆深水重力流沉积研究中的几点认识[J]. 沉积学报,2021,39(1):88-111.

Yang Tian, Cao Yingchang, Tian Jingchun. Discussion on research of deep-water gravity flow deposition in lacustrine basin[J]. Acta Sedimentologica Sinica, 2021, 39(1): 88-111.
[61] Clarke J E H. First wide-angle view of channelized turbidity currents links migrating cyclic steps to flow characteristics[J]. Nature Communications, 2016, 7: 11896.