[1] Alexander C R, DeMaster D J, Nittrouer C A. Sediment accumulation in a modern epicontinental-shelf setting: The Yellow Sea[J]. Marine Geology, 1991, 98(1): 51-72.
[2] Yang S Y, Li C X. Elemental composition in the sediments of the Yangtze and the Yellow Rivers and their tracing implication[J]. Progress in Natural Science, 2000, 10(8): 612-618.
[3] Bianchi T S, Allison M A. Large-river delta-front estuaries as natural “recorders” of global environmental change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(20): 8085-8092.
[4] Wang Z B, Li R H, Yang S Y, et al. Comparison of detrital mineral compositions between stream sediments of the Yangtze River (Changjiang) and the Yellow River (Huanghe) and their provenance implication[J]. China Geology, 2019, 2(2): 169-178.
[5] Morton A C. Geochemical studies of detrital heavy minerals and their application to provenance research[J]. Geological Society, London, Special Publications, 1991, 57(1): 31-45.
[6] Crowley S F, Stow D A V, Croudace I W. Mineralogy and geochemistry of Bay of Bengal deep-sea fan sediments, ODP Leg 116: Evidence for an Indian subcontinent contribution to distal fan sedimentation[J]. Geological Society, London, Special Publications, 1998, 131(1): 151-176.
[7] Morton A C, Whitham A G, Fanning C M. Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral, mineral chemical and zircon age data[J]. Sedimentary Geology, 2005, 182(1/2/3/4): 3-28.
[8] Dill H G, Melcher F, Füßl M, et al. Accessory minerals in cassiterite: A tool for provenance and environmental analyses of colluvial–fluvial placer deposits (NE Bavaria, Germany)[J]. Sedimentary Geology, 2006, 191(3/4): 171-189.
[9] Chen J, Wang Z H, Chen Z Y, et al. Diagnostic heavy minerals in Plio-Pleistocene sediments of the Yangtze Coast, China with special reference to the Yangtze River connection into the sea[J]. Geomorphology, 2009, 113(3/4): 129-136.
[10] Sevastjanova I, Hall R, Alderton D. A detrital heavy mineral viewpoint on sediment provenance and tropical weathering in SE Asia[J]. Sedimentary Geology, 2012, 280: 179-194.
[11] Yue W, Jin B F, Zhao B C. Transparent heavy minerals and magnetite geochemical composition of the Yangtze River sediments: Implication for provenance evolution of the Yangtze Delta[J]. Sedimentary Geology, 2018, 364: 42-52.
[12] Sun J M. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2002, 203(3/4): 845-859.
[13] Yang S Y, Wang Z B, Guo Y, et al. Heavy mineral compositions of the Changjiang (Yangtze River) sediments and their provenance-tracing implication[J]. Journal of Asian Earth Sciences, 2009, 35(1): 56-65.
[14] Vezzoli G, Garzanti E, Limonta M, et al. Erosion patterns in the Changjiang (Yangtze River) catchment revealed by bulk-sample versus single-mineral provenance budgets[J]. Geomorphology, 2016, 261: 177-192.
[15] Pan B T, Pang H L, Gao H S, et al. Heavy-mineral analysis and provenance of Yellow River sediments around the China Loess Plateau[J]. Journal of Asian Earth Sciences, 2016, 127: 1-11.
[16] Pang H L, Pan B T, Garzanti E, et al. Mineralogy and geochemistry of modern Yellow River sediments: Implications for weathering and provenance[J]. Chemical Geology, 2018, 488: 76-86.
[17] Best M G. Mantle-derived amphibole within inclusions in alkali-basaltic lavas[J]. Journal of Geophysical Research, 1974, 79(14): 2107-2113.
[18] 牛利锋,张宏福. 南太行山地区中基性侵入岩中角闪石的矿物学及其成因[J]. 大地构造与成矿学,2005,29(2):269-277.

Niu Lifeng, Zhang Hongfu. Mineralogy and petrogenesis of amphiboles from intermediate-mafic intrusions in southern Taihang Mountains[J]. Geotectonica et Metallogenia, 2005, 29(2): 269-277.
[19] Demény A, Harangi S, Vennemann T W, et al. Amphiboles as indicators of mantle source contamination: Combined evaluation of stable H and O isotope compositions and trace element ratios[J]. Lithos, 2012, 152: 141-156.
[20] Krawczynski M J, Grove T L, Behrens H. Amphibole stability in primitive arc magmas: Effects of temperature, H2O content, and oxygen fugacity[J]. Contributions to Mineralogy and Petrology, 2012, 164(2): 317-339.
[21] 陈祖兴,曾志刚,王晓媛,等. 冲绳海槽南部流纹岩中角闪石的化学特征及其对岩石成因的指示[J]. 海洋学报,2017,39(12):74-89.

Chen Zuxing, Zeng Zhigang, Wang Xiaoyuan, et al. Geochemical characteristics of amphiboles in the rhyolite from the southern Okinawa Trough, and its implication for petrogenesis[J]. Haiyang Xuebao, 2017, 39(12): 74-89.
[22] 赵利. 长江、黄河入海沉积角闪石的矿物化学特征及对中国陆架泥质沉积的物源指示意义[D]. 青岛: 中国海洋大学,2014.

Zhao Li. Mineral chemical characteristics of the Yangtze River,Yellow River sediments and provenance implications in the mud area of East China Sea[D]. Qingdao: Ocean University of China, 2014.
[23] 金秉福,岳伟,王昆山. 黄河沉积中角闪石矿物晶体化学特征和成因分析[J]. 海洋学报,2013,35(1):131-143.

Jin Bingfu, Yue Wei, Wang Kunshan. The crystallochemistry characteristics and genetic analysis of amphibole in the sediments of the Huanghe River[J]. Acta Oceanologica Sinica, 2013, 35(1): 131-143.
[24] 金秉福,岳伟,王昆山. 黄河、辽河和鸭绿江沉积角闪石矿物化学特征对比及物源识别[J]. 海洋学报,2014,36(4):11-21.

Jin Bingfu, Yue Wei, Wang Kunshan. Chemical composition of detrital amphibole in the sediments of the Huanghe River, Liaohe River and Yalu River, and its implication for sediment provenance[J]. Acta Oceanologica Sinica, 2014, 36(4): 11-21.
[25] 程天文,赵楚年. 我国主要河流入海径流量、输沙量及对沿岸的影响[J]. 海洋学报,1985,7(4):460-471.

Cheng Tianwen, Zhao Chunian. Chinese major rivers entering the sea, runoff, sediment transport and impact on the coast[J]. Acta Oceanologica Sinica, 1985, 7(4): 460-471.
[26] 水利部黄河水利委员会. 黄河年鉴[M]. 郑州:黄河年鉴社,2018.

The Huanghe River Water Conservancy Commission of Ministry of Water Resources. Annals of the Huanghe River[M]. Zhengzhou: Huanghe River Yearbook Press, 2018.
[27] 薛春汀,周永青,朱雄华. 晚更新世末至公元前7世纪的黄河流向和黄河三角洲[J]. 海洋学报,2004,26(1):48-61.

Xue Chunting, Zhou Yongqing, Zhu Xionghua. The Huanghe River course and delta from end of Late Pleistocene to the 7th century BC[J]. Acta Oceanologica Sinica, 2004, 26(1): 48-61.
[28] 张晓祥,王伟玮,严长清,等. 南宋以来江苏海岸带历史海岸线时空演变研究[J]. 地理科学,2014,34(3):344-351.

Zhang Xiaoxiang, Wang Weiwei, Yan Changqing, et al. Historical coastline spatio-temporal evolution analysis in Jiangsu coastal area during the past 1 000 years[J]. Scientia Geographica Sinica, 2014, 34(3): 344-351.
[29] 刘强,项立辉,张刚,等. 苏北废黄河口表层沉积物分布特征及其控制因素[J]. 海洋地质与第四纪地质,2018,38(1):118-126.

Liu Qiang, Xiang Lihui, Zhang Gang, et al. Distribution pattern of surface sediments around the Abandoned Yellow River Estuary of north Jiangsu province and its controlling factors[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 118-126.
[30] 高文华,高抒,王丹丹,等. 废黄河沉积记录中来自不同河流物质的信息:基于重矿物与地球化学元素分析[J]. 地理科学,2015,35(12):1631-1639.

Gao Wenhua, Gao Shu, Wang Dandan, et al. Sediment source information of different catchments in the sedimentary records of the abandoned Yellow River: Heavy mineral and geochemical analyses[J]. Scientia Geographica Sinica, 2015, 35(12): 1631-1639.
[31] Zhang L, Chen S L, Yi L. The sediment source and transport trends around the abandoned Yellow River Delta, China[J]. Marine Georesources & Geotechnology, 2016, 34(5): 440-449.
[32] 王孟瑶,金秉福,王昕,等. 废黄河口门外砂质海滩粒度和重矿物特征及其成因机理分析[J]. 海洋科学,2019,43(1):50-60.

Wang Mengyao, Jin Bingfu, Wang Xin, et al. Characteristics of grain size and heavy minerals of sandy beach outside the abandoned Yellow River Estuary and its genetic mechanism[J]. Marine Sciences, 2019, 43(1): 50-60.
[33] 孙白云. 黄河、长江和珠江三角洲沉积物中碎屑矿物的组合特征[J]. 海洋地质与第四纪地质,1990,10(3):23-34.

Sun Baiyun. Detrital mineral assemblages in the Huanghe, Changjiang and Zhujiang River delta sediments[J]. Marine Geology & Quaternary Geology, 1990, 10(3): 23-34.
[34] 林晓彤,李巍然,时振波. 黄河物源碎屑沉积物的重矿物特征[J]. 海洋地质与第四纪地质,2003,23(3):17-21.

Lin Xiaotong, Li Weiran, Shi Zhenbo. Characteristics of mineralogy in the clastic sediments from the Yellow River provenance, China[J]. Marine Geology & Quaternary Geology, 2003, 23(3): 17-21.
[35] 王昆山,石学法,蔡善武,等. 黄河口及莱州湾表层沉积物中重矿物分布与来源[J]. 海洋地质与第四纪地质,2010,30(6):1-8.

Wang Kunshan, Shi Xuefa, Cai Shanwu, et al. Distribution and provenance of the surface sediments of the Yellow River mouth and Laizhou Bay deduced from heavy minerals[J]. Marine Geology & Quaternary Geology, 2010, 30(6): 1-8.
[36] 王中波,杨守业,李日辉,等. 黄河水系沉积物碎屑矿物组成及沉积动力环境约束[J]. 海洋地质与第四纪地质,2010,30(4):73-85.

Wang Zhongbo, Yang Shouye, Li Rihui, et al. Detrital mineral composition of the sediments from Huanghe and its hydrodynamic environmental constraints[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 73-85.
[37] Jin B F, Wang M Y, Yue W, et al. Heavy mineral variability in the Yellow River sediments as determined by the multiple-window strategy[J]. Minerals, 2019, 9(2): 85.
[38] 水利部长江水利委员会. 长江泥沙公报-2018[M]. 北京:长江出版社,2019.

The Changjiang Water Conservancy Commission of Ministry of Water Resources. Yangtze River sediment bulletin-2018 [M]. Beijing: Changjiang Press, 2019.
[39] 陈喜昌,蔡彬. 长江流域地貌特征及其环境地质意义[J]. 中国地质,1987(5):11-14.

Chen Xichang, Cai Bin. Geomorphic features and environmental geological significance of the Yangtze River basin[J]. Geology in China, 1987(5): 11-14.
[40] 陈丽蓉. 渤海、黄海、东海沉积物中矿物组合的研究[J]. 海洋科学,1989(2):1-8.

Chen Lirong. A study on mineral assemblages in sediments of the Bohai Sea, the Huanghai Sea and the East China Sea[J]. Marine Science, 1989(2): 1-8.
[41] 王中波,杨守业,李萍,等. 长江水系沉积物碎屑矿物组成及其示踪意义[J]. 沉积学报,2006,24(4):570-578.

Wang Zhongbo, Yang Shouye, Li Ping, et al. Detrital mineral compositions of the Changjiang River sediments and their tracing implications[J]. Acta Sedimentologica Sinica, 2006, 24(4): 570-578.
[42] 王昆山,王国庆,蔡善武,等. 长江水下三角洲沉积物的重矿物分布及组合[J]. 海洋地质与第四纪地质,2007,27(1):7-12.

Wang Kunshan, Wang Guoqing, Cai Shanwu, et al. Heavy mineral characteristics of surface sediments in the subaqueous Yangtze River Delta[J]. Marine Geology & Quaternary Geology, 2007, 27(1): 7-12.
[43] 吕全荣,严肃庄. 长江河口重矿物组合的研究及其意义[J]. 华东师范大学学报(自然科学版),1981(1):73-83.

Quanrong Lü, Yan Suzhuang. A study of the heavy mincral groups in the Chang Jiang estuarine region and their significance[J]. Journal of East China Normal University, 1981(1): 73-83.
[44] 王孟瑶,金秉福,岳伟. 长江口表层沉积物重矿物在不同粒级中的分布与研究意义[J]. 海洋学报,2019,41(11):89-100.

Wang Mengyao, Jin Bingfu, Yue Wei. Patterns of heavy mineral combination in different grain-size categories and their sedimentary significance: A case study for surfical sediments in the Changjiang River Estuary[J]. Haiyang Xuebao, 2019, 41(11): 89-100.
[45] 金秉福,王孟瑶,王昆山,等. 长江口和黄东海沉积物单矿物分选的常用方法和流程[J]. 海洋地质与第四纪地质,2019,39(1):163-174.

Jin Bingfu, Wang Mengyao, Wang Kunshan, et al. Methods of single mineral separation for sediments of the Changjiang Estuary, the Yellow Sea and the East China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 163-174.
[46] Gao J J, Liu J H, Li X G, et al. The determination of 52 elements in marine geological samples by an inductively coupled plasma optical emission spectrometry and an inductively coupled plasma mass spectrometry with a high-pressure closed digestion method[J]. Acta Oceanologica Sinica, 2017, 36(1): 109-117.
[47] Garzanti E, Andò S, Vezzoli G. Grain-size dependence of sediment composition and environmental bias in provenance studies[J]. Earth and Planetary Science Letters, 2009, 277(3/4): 422-432.
[48] Garzanti E, Resentini A, Andò S, et al. Physical controls on sand composition and relative durability of detrital minerals during ultra-long distance littoral and Aeolian transport (Namibia and southern Angola)[J]. Sedimentology, 2015, 62(4): 971-995.
[49] Krippner A, Meinhold G, Morton A C, et al. Grain-size dependence of garnet composition revealed by provenance signatures of modern stream sediments from the western Hohe Tauern (Austria)[J]. Sedimentary Geology, 2015, 321: 25-38.
[50] Hawthorne F C, Oberti R, Harlow G E, et al. Nomenclature of the amphibole supergroup[J]. American Mineralogist, 2012, 97(11/12): 2031-2048.
[51] Oberti R, Cannillo E, Toscani G. How to name amphiboles after the IMA2012 report: Rules of thumb and a new PC program for monoclinic amphiboles[J]. Periodico di Mineralogia, 2012, 81(2): 257-267.
[52] Leake B E, Woolley A R, Birch W D, et al. Nomenclature of amphiboles: Additions and revisions to the International Mineralogical Association’s amphibole nomenclature[J]. Mineralogical Magazine, 2004, 68(1): 209-215.
[53] 王璞,潘兆橹,翁玲宝. 系统矿物学—中册[M]. 北京:地质出版社,1984:330-361.

Wang Pu, Pan Zhaolu, Weng Lingbao. Systematic mineralogy (the second volume)[M]. Beijing: Geology Press, 1984: 330-361.
[54] 刘劲鸿. 角闪石成因矿物族及其应用[J]. 长春地质学院学报,1986(1):41-48.

Liu Jinhong. Genetic classification of hornblendes and its application[J]. Journal of Changchun College of Geology, 1986(1): 41-48.
[55] 薛君治,白学让,陈武. 成因矿物学(修订版)[M]. 2版. 武汉:中国地质大学出版社,1991:27-83.

Xue Junzhi, Bai Xuerang, Chen Wu. Genetic mineralogy (revised edition)[M]. 2nd ed. Wuhan: China University of Geosciences Press, 1991: 27-83.
[56] 刘英俊,曹励明. 元素地球化学导论[M]. 北京:地质出版社,1987:26-80.

Liu Yingjun, Cao Liming. Introduction to element geochemistry[M]. Beijing: Geology Press, 1987: 26-80.
[57] 王中刚,于学元,赵振华,等. 稀土元素地球化学[M]. 北京:科学出版社,1989:33-246.

Wang Zhonggang, Yu Xueyuan, Zhao Zhenhua, et al. Rare earth element geochemistry[M]. Beijing: Science Press, 1989: 33-246.
[58] Oberti R, Cámara F, Ottolini L, et al. Lithium in amphiboles: Detection, quantification, and incorporation mechanisms in the compositional space bridging sodic and BLi-amphiboles[J]. European Journal of Mineralogy, 2003, 15(2): 309-319.
[59] 牟保磊. 元素地球化学[M]. 北京:北京大学出版社,1999:149-180.

Mou Baolei. Element geochemistry[M]. Beijing: Peking University Press, 1999: 149-180.
[60] 梁冬云,李波. 稀有金属矿工艺矿物学[M]. 北京:冶金出版社:2015:16-92.

Liang Dongyun, Li Bo. Rare metal ore technological mineralogy[M]. Beijing: Metallurgy Press, 2015: 16-92.
[61] 叶立金,翟双猛. 磷在硅酸盐矿物与熔体之间分配系数的研究进展[J]. 矿物岩石地球化学通报,2015,34(4):843-848.

Ye Lijin, Zhai Shuangmeng. Research progress on phosphorus partition coefficient between silicate mineral and melt[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(4): 843-848.
[62] Lim D, Choi J Y, Shin H H, et al. Multielement geochemistry of offshore sediments in the southeastern Yellow Sea and implications for sediment origin and dispersal[J]. Quaternary International, 2013, 298: 196-206.
[63] Qiao S Q, Shi X F, Wang G Q, et al. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea[J]. Marine Geology, 2017, 390: 270-281.
[64] 黄国兰,萧航,陈春江,等. 化学质量平衡法在水体污染物源解析中的应用[J]. 环境科学,1999,20(6):14-17.

Huang Guolan, Xiao Hang, Chen Chunjiang, et al. Source apportionment of water pollutants by chemical-mass-balance method[J]. Environmental Science, 1999, 20(6): 14-17.
[65] Kelley D W, Nater E A. Source apportionment of lake bed sediments to watersheds in an Upper Mississippi basin using a chemical mass balance method[J]. CATENA, 2000, 41(4): 277-292.
[66] 肖尚斌,李安春,蒋富清,等. 近2 ka闽浙沿岸泥质沉积物物源分析[J]. 沉积学报,2005,23(2):268-274.

Xiao Shangbin, Li Anchun, Jiang Fuqing, et al. Provenance analysis of mud along the Min-Zhe coast since 2 kaBP[J]. Acta Sedimentologica Sinica, 2005, 23(2): 268-274.
[67] 薛成凤,贾建军,高抒,等. 中小河流对长江水下三角洲远端泥沉积的贡献:以椒江和瓯江为例[J]. 海洋学报,2018,40(5):75-89.

Xue Chengfeng, Jia Jianjun, Gao Shu, et al. The contribution of middle and small rivers to the distal mud of subaqueous Changjiang Delta: Results from Jiaojiang River and Oujiang River[J]. Haiyang Xuebao, 2018, 40(5): 75-89.