[1] BP. Statistical review of world energy 2020 69th ed[R]. London: B P P L C, 2020: 14-49.
[2] 刘朝全,姜学峰. 2019年国内外油气行业发展报告[M]. 北京:石油工业出版社,2020.

Liu Chaoquan, Jiang Xuefeng. Development report of oil and gas industry at home and abroad in 2019[M]. Beijing: Petroleum Industry Press, 2020.
[3] 朱超,夏志远,王传武,等. 致密油储层甜点地震预测[J]. 吉林大学学报(地球科学版),2015,45(2):602-610.

Zhu Chao, Xia Zhiyuan, Wang Chuanwu, et al. Seismic prediction for sweet spot reservoir of tight oil[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(2): 602-610.
[4] Zhou H T, Li D Y, Liu X T, et al. Sweet spot prediction in tight sandstone reservoir based on well-bore rock physical simulation[J]. Petroleum Science, 2019, 16(6): 1285-1300.
[5] 周福建,苏航,梁星原,等. 致密油储集层高效缝网改造与提高采收率一体化技术[J]. 石油勘探与开发,2019,46(5):1007-1014.

Zhou Fujian, Su Hang, Liang Xingyuan, et al. Integrated hydraulic fracturing techniques to enhance oil recovery from tight rocks[J]. Petroleum Exploration and Development, 2019, 46(5): 1007-1014.
[6] Saravanan A, Kumar P S, Vardhan K H, et al. A review on systematic approach for microbial enhanced oil recovery technologies: Opportunities and challenges[J]. Journal of Cleaner Production, 2020, 258: 120777.
[7] Duan Y P, Feng M S, Zhong X Y, et al. Thermodynamic simulation of carbonate cements-water-carbon dioxide equilibrium in sandstone for prediction of precipitation/dissolution of carbonate cements[J]. PLoS One, 2016, 11(12): e0167035.
[8] Moore C H. Carbonate reservoirs: Porosity evolution and diagenesis in a sequence stratigraphic framework[M]. Amsterdam: Elsevier, 2001: 1-425.
[9] 赵彦彦,郑永飞. 碳酸盐沉积物的成岩作用[J]. 岩石学报,2011,27(2):501-519.

Zhao Yanyan, Zheng Yongfei. Diagenesis of carbonate sediments[J]. Acta Petrologica Sinica, 2011, 27(2): 501-519.
[10] García-Ruiz J M, Otálora F. Crystal growth in geology: Patterns on the rocks[M]// Nishinaga T. Handbook of crystal growth fundamentals 2nd ed. Amsterdam: Elsevier, 2015: 1-39.
[11] Chagneau A, Claret F, Enzmann F, et al. Mineral precipitation-induced porosity reduction and its effect on transport parameters in diffusion-controlled porous media[J]. Geochemical Transactions, 2015, 16: 13.
[12] Morse J W, Zullig J J, Bernstein L D, et al. Chemistry of calcium carbonate-rich shallow water sediments in the Bahamas[J]. American Journal of Science, 1985, 285(2): 147-185.
[13] Steefel C I, Druhan J L, Maher K. Modeling coupled chemical and isotopic equilibration rates[J]. Procedia Earth and Planetary Science, 2014, 10: 208-217.
[14] Anovitz L M, Cole D R. Characterization and analysis of porosity and pore structures[J]. Reviews in Mineralogy and Geochemistry, 2015, 80(1): 61-164.
[15] 杨正明,姜汉桥,李树铁,等. 低渗气藏微观孔隙结构特征参数研究:以苏里格和迪那低渗气藏为例[J]. 石油天然气学报(江汉石油学院学报),2007,29(6):108-110,119.

Yang Zhengming, Jiang Hanqiao, Li Shutie, et al. Characteristic parameters of microscopic pore structures of low permeability gas reservoirs: By using Sulige and Dina low permeability gas reservoirs for example[J]. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 2007, 29(6): 108-110, 119.
[16] 王瑞飞,沈平平,宋子齐,等. 特低渗透砂岩油藏储层微观孔喉特征[J]. 石油学报,2009,30(4):560-563,569.

Wang Ruifei, Shen Pingping, Song Ziqi, et al. Characteristics of micro-pore throat in ultra-low permeability sandstone reservoir[J]. Acta Petrolei Sinica, 2009, 30(4): 560-563, 569.
[17] Chilingar G V, Bissell H J, Wolf K H. Diagenesis of carbonate rocks[J]. Developments in Sedimentology, 1967, 8: 179-322.
[18] Heald M T, Anderegg R C. Differential cementation in the Tuscarora sandstone [virginia-west virginia][J]. Journal of Sedimentary Research, 1960, 30(4): 568-577.
[19] Ehrenberg S N. Preservation of anomalously high porosity in deeply buried sandstones by grain-coating chlorite: Examples from the Norwegian continental shelf[J]. AAPG Bulletin, 1993, 77(7): 1260-1286.
[20] Bloch S, Lander R H, Bonnell L. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability[J]. AAPG Bulletin, 2002, 86(2): 301-328.
[21] 田建锋,喻建,张庆洲. 孔隙衬里绿泥石的成因及对储层性能的影响[J]. 吉林大学学报(地球科学版),2014,44(3):741-748.

Tian Jianfeng, Yu Jian, Zhang Qingzhou. The pore-lining chlorite formation mechanism and its contribution to reservoir quality[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(3): 741-748.
[22] Wilkinson M. Does the nucleation of clay minerals control the rate of diagenesis in sandstones?[J]. Clay Minerals, 2015, 50(3): 275-281.
[23] 黄尚瑜,宋焕荣. 碳酸盐岩的溶蚀与环境温度[J]. 中国岩溶,1987,6(4):287-296.

Huang Shangyu, Song Huanrong. The corrosion of carbonates and environment temperature[J]. Carsologica Sinica, 1987, 6(4): 287-296.
[24] 蒋小琼, 王恕一, 范明, 等. 埋藏成岩环境碳酸盐岩溶蚀作用模拟实验研究[J]. 石油实验地质, 2008, 30(6): 643-646.

Jiang Xiaoqiong, Wang Shuyi, Fan Ming, et al. Study of simulation experiment for carbonate rocks dissolution in burial diagenetic environment[J]. Petroleum Geology and Experiment, 2008, 30(6): 643-646.
[25] 王炜,黄康俊,鲍征宇,等. 不同类型鲕粒灰岩储集层溶解动力学特征[J]. 石油勘探与开发,2011,38(4):495-502.

Wang Wei, Huang Kangjun, Bao Zhengyu, et al. Dissolution kinetics of different types of oolitic limestones in northeastern Sichuan Basin[J]. Petroleum Exploration and Development, 2011, 38(4): 495-502.
[26] 杨俊杰,黄思静,张文正,等. 表生和埋藏成岩作用的温压条件下不同组成碳酸盐岩溶蚀成岩过程的实验模拟[J]. 沉积学报,1995,13(4):49-54.

Yang Junjie, Huang Sijing, Zhang Wenzheng, et al. Experimental simulation of dissolution for carbonate with different composition under the conditions from epigenesis to burial diagenesis environment[J]. Acta Sedimentologica Sinica, 1995, 13(4): 49-54.
[27] Pokrovsky O S, Golubev S V, Schott J, et al. Dissolution kinetics of calcite, dolomite and magnesite at 25℃ and 0 to 50 atm pCO2 [J]. Chemical Geology, 2005, 217(3/4): 239-255.
[28] 于志超,杨思玉,刘立,等. 饱和CO2地层水驱过程中的水—岩相互作用实验[J]. 石油学报,2012,33(6):1032-1042.

Yu Zhichao, Yang Siyu, Liu Li, et al. An experimental study on water-rock interaction during water flooding in formations saturated with CO2 [J]. Acta Petrolei Sinica, 2012, 33(6): 1032-1042.
[29] Prieto M. Thermodynamics of solid solution-aqueous solution systems[J]. Reviews in Mineralogy and Geochemistry, 2009, 70 (1): 47-85.
[30] Minde M W, Zimmermann U, Madland M V, et al. Mineral replacement in long-term flooded porous carbonate rocks[J]. Geochimica et Cosmochimica Acta, 2020, 268: 485-508.
[31] Amorós J L. La gran aventura del cristal[D]. Madrid: Universidad Complutense, 1978.
[32] Scheel H J. Historical introduction[M]//Hurle D T J. Handbook of crystal growth. Amsterdam: Elsevier, 1993: 3-41.
[33] Lowitz T. Bemerkungen über das krystallisiren der salze, und anzeige eines sichern mittels, regelmässige krystallen zu erhalten[J]. Chemische Annalen, 1795, 1: 3-11.
[34] Rouelle G F. Sur le sel marin (premiere partie.) de la crystallization du sel marin[J]. Mémoires de l’Académie Royale des Sciences, 1745: 57-79.
[35] Frankenheim M L. Die lehre von der cohäsion, umfassend die elasticität der gase, die elasticität und cohärenz der flüssigen und festen körper und die krystallkunde[M]. Breslau: August Schultz und Comp., 1835: 1-345.
[36] Elwell D, Scheel H J. Crystal growth from high-temperature solutions[M]. London: Academic Press, 1975: 1-50.
[37] Scheel H J. Historical aspects of crystal growth technology[J]. Journal of Crystal Growth, 2000, 211(1/2/3/4): 1-12.
[38] Kossel W. Zur Theorie des kristallwachstums[J]. Nachrichten der Gesselschaft der Wissenschaften Göttingen, Mathematisch-Physikalische Klasse, 1927, 2: 135-143.
[39] Stranski I N, Krastanow L. Zur theorie der orientierten ausscheidung von ionenkristallen aufeinander[J]. Monatshefte für Chemie, 1937, 71(1): 351-364.
[40] Bauer V E. Phänomenologische theorie der kristallabscheidung an oberflächen. II[J]. Zeitschrift für Kristallographie-Crystalline Materials, 1958, 110(1/2/3/4/5/6): 395-431.
[41] García-Ruiz J M, Otálora F. Crystal growth in geology: Patterns on the rocks[M]//Rudolph P. Handbook of crystal growth. Amsterdam: Elsevier, 2015: 1-39.
[42] Sunagawa I. Crystals: Growth, morphology and perfection[M]. Cambridge: Cambridge University Press, 2005: 1-295.
[43] Edwards K J, Becker K, Colwell F. The deep, dark energy biosphere: Intraterrestrial life on earth[J]. Annual Review of Earth and Planetary Sciences, 2012, 40: 551-568.
[44] Emmanuel S, Ague J J, Walderhaug O. Interfacial energy effects and the evolution of pore size distributions during quartz precipitation in sandstone[J]. Geochimica et Cosmochimica Acta, 2010, 74(12): 3539-3552.
[45] Stack A G, Fernandez-Martinez A, Allard L F, et al. Pore-size-dependent calcium carbonate precipitation controlled by surface chemistry[J]. Environmental Science & Technology, 2014, 48(11): 6177-6183.
[46] Borgia A, Pruess K, Kneafsey T J, et al. Numerical simulation of salt precipitation in the fractures of a CO2-enhanced geothermal system[J]. Geothermics, 2012, 44: 13-22.
[47] Hedges L O, Whitelam S. Patterning a surface so as to speed nucleation from solution[J]. Soft Matter, 2012, 8(33): 8624-8635.
[48] Freeze R A, Cherry J A. Groundwater[M]. Englewood Cliffs: Prentice-Hall, 1979: 15-75.
[49] Yu W W, Qu L H, Guo W Z, et al. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals[J]. Chemistry of Materials, 2003, 15(14): 2854-2860.
[50] Zheng H M, Smith R K, Jun Y W, et al. Observation of single colloidal platinum nanocrystal growth trajectories[J]. Science, 2009, 324(5932): 1309-1312.
[51] Jasieniak J, Smith L, Van Embden J, et al. Re-examination of the size-dependent absorption properties of CdSe quantum dots[J]. The Journal of Physical Chemistry C, 2009, 113(45): 19468-19474.
[52] Clarkson C R, Freeman M, He L, et al. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis[J]. Fuel, 2012, 95: 371-385.
[53] Swift A M, Anovitz L M, Sheets J M, et al. Relationship between mineralogy and porosity in seals relevant to geologic CO2 sequestration[J]. Environmental Geoscience, 2014, 21(2): 39-57.
[54] Wang H W, Anovitz L M, Burg A, et al. Multi-scale characterization of pore evolution in a combustion metamorphic complex, Hatrurim Basin, Israel: Combining (ultra) small-angle neutron scattering and image analysis[J]. Geochimica et Cosmochimica Acta, 2013, 121: 339-362.
[55] Anovitz L M, Cole D R, Jackson A J, et al. Effect of quartz overgrowth precipitation on the multiscale porosity of sandstone: A (U)SANS and imaging analysis[J]. Geochimica et Cosmochimica Acta, 2015, 158: 199-222.
[56] Thanh N T K, Maclean N, Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution[J]. Chemical Reviews, 2014, 114(15): 7610-7630.
[57] 陆杰,王静康. 反应结晶(沉淀)研究进展[J]. 化学工程,1999,27(4):24-27.

Lu Jie, Wang Jingkang. Research progress of reactive crystallization (precipitation)[J]. Chemical Engineering (China), 1999, 27(4): 24-27.
[58] De Yoreo J J, Vekilov P G. Principles of crystal nucleation and growth[J]. Reviews in Mineralogy and Geochemistry, 2003, 54(1): 57-93.
[59] Godinho J R A, Stack A G. Growth kinetics and morphology of barite crystals derived from face-specific growth rates[J]. Crystal Growth & Design, 2015, 15(5): 2064-2071.
[60] Fernández-Martinez A. Physics of natural nanoparticles-water interfaces: Chemical reactivity and environmental implications[D]. Mineralogy: Université de Grenoble, 2009: 75-110.
[61] Singer D M, Guo H, Davis J A. U(VI) and Sr(II) batch sorption and diffusion kinetics into mesoporous silica (MCM-41)[J]. Chemical Geology, 2014, 390: 152-163.
[62] Putnis A, Mauthe G. The effect of pore size on cementation in porous rocks[J]. Geofluids, 2001, 1(1): 37-41.
[63] James R O, Parks G A. Characterization of aqueous colloids by their electrical double-layer and intrinsic surface chemical properties[M]//Matijević E. Surface and colloid science. Boston: Springer, 1982: 119-216.
[64] Kubicki J D, Sofo J O, Skelton A A, et al. A New hypothesis for the dissolution mechanism of silicates[J]. The Journal of Physical Chemistry C, 2012, 116(33): 17479-17491.
[65] Bracco J N, Stack A G, Steefel C I. Upscaling calcite growth rates from the mesoscale to the macroscale[J]. Environmental Science & Technology, 2013, 47(13): 7555-7562.
[66] Gebrehiwet T A, Redden G D, Fujita Y, et al. The effect of the CO3 2- to Ca2+ ion activity ratio on calcite precipitation kinetics and Sr2+ partitioning[J]. Geochemical Transactions, 2012, 13: 1.
[67] Stack A G. Next generation models of carbonate mineral growth and dissolution[J]. Greenhouse Gases: Science and Technology, 2014, 4(3): 278-288.
[68] Molins S, Trebotich D, Steefel C I, et al. An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation[J]. Water Resources Research, 2012, 48(3): W03527.
[69] Liu C X, Shang J Y, Kerisit S, et al. Scale-dependent rates of uranyl surface complexation reaction in sediments[J]. Geochimica et Cosmochimica Acta, 2013, 105: 326-341.
[70] Xiong Y, Tan X C, Dong G D, et al. Diagenetic differentiation in the Ordovician Majiagou Formation, Ordos Basin, China: Facies, geochemical and reservoir heterogeneity constraints[J]. Journal of Petroleum Science and Engineering, 2020, 191: 107179.