[1] Parker G. Interaction between basic research and applied engineering: A personal perspective[J]. Journal of Hydraulic Research, 1996, 34(3): 291-316.
[2] Fildani A, Normark W R, Kostic S, et al. Channel formation by flow stripping: Large-scale scour features along the Monterey East Channel and their relation to sediment waves[J]. Sedimentology, 2006, 53(6): 1265-1287.
[3] Dietrich P, Ghienne J F, Normandeau A, et al. Upslope-migrating Bedforms in a Proglacial Sandur Delta: Cyclic steps from river-derived underflows?[J]. Journal of Sedimentary Research, 2016, 86(1): 112-122.
[4] Hughes Clarke J E. First wide-angle view of channelized turbidity currents links migrating cyclic steps to flow characteristics[J]. Nature Communications, 2016, 7: 11896.
[5] Normandeau A, Lajeunesse P, Poiré A G, et al. Morphological expression of bedforms formed by supercritical sediment density flows on four fjord-lake deltas of the south-eastern Canadian Shield (eastern Canada)[J]. Sedimentology, 2016, 63(7): 2106-2129.
[6] Hage S, Cartigny M J B, Clare M A, et al. How to recognize crescentic bedforms formed by supercritical turbidity currents in the geologic record: Insights from active submarine channels[J]. Geology, 2018, 46(6): 563-566.
[7] Okazaki H, Isaji S, Kurozumi T. Sedimentary facies related to supercritical-flow bedforms in foreset slopes of a Gilbert-type delta (Middle Pleistocene, central Japan)[J]. Sedimentary Geology, 2020, 399: 105613.
[8] Englert R G, Hubbard S M, Cartigny M J B, et al. Quantifying the three-dimensional stratigraphic expression of cyclic steps by integrating seafloor and deep-water outcrop observations[J]. Sedimentology, 2021, 68(4): 1465-1501.
[9] Tan C P, Plink-Björklund P. Morphodynamics of supercritical flow in a linked river and delta system, Daihai Lake, northern China[J]. Sedimentology, 2021, 68(4): 1606-1639.
[10] Heiniö P, Davies R J. Trails of depressions and sediment waves along submarine channels on the continental margin of Espirito Santo Basin, Brazil[J]. GSA Bulletin, 2009, 121(5/6): 698-711.
[11] Normark W R, Paull C K, Caress D W, et al. Fine-scale relief related to Late Holocene channel shifting within the floor of the Upper Redondo Fan, offshore southern California[J]. Sedimentology, 2009, 56(6): 1690-1704,
[12] Straub K M, Mohrig D. Constructional canyons built by sheet-like turbidity currents: Observations from offshore Brunei Darussalam[J]. Journal of Sedimentary Research, 2009, 79(1): 24-39.
[13] Duarte J C, Terrinha P, Rosas F M, et al. Crescent-shaped morphotectonic features in the gulf of Cadiz (offshore SW Iberia)[J]. Marine Geology, 2010, 271(3/4): 236-249.
[14] Covault J A, Kostic S, Paull C K, et al. Submarine channel initiation, filling and maintenance from sea-floor geomorphology and morphodynamic modelling of cyclic steps[J]. Sedimentology, 2014, 61(4): 1031-1054.
[15] Zhong G F, Cartigny M J B, Kuang Z G, et al. Cyclic steps along the South Taiwan Shoal and West Penghu submarine canyons on the northeastern continental slope of the South China Sea[J]. GSA Bulletin, 2015, 127(5/6): 804-824.
[16] Li L, Gong C L. Gradual transition from net erosional to net depositional cyclic steps along the submarine distributary channel thalweg in the Rio Muni Basin: A joint 3-D seismic and numerical approach[J]. Journal of Geophysical Research: Earth Surface, 2018, 123(9): 2087-2106.
[17] Fildani A, Hubbard S M, Covault J A, et al. Erosion at inception of deep-sea channels[J]. Marine and Petroleum Geology, 2013, 41: 48-61.
[18] Kostic S, Casalbore D, Chiocci F, et al. Role of upper-flow-regime bedforms emplaced by sediment gravity flows in the evolution of deltas[J]. Journal of Marine Science & Engineering, 2019, 7(1):5.
[19] Armitage D A, McHargue T, Fildani A, et al. Postavulsion channel evolution: Niger Delta continental slope[J]. AAPG Bulletin, 2012, 96(5): 823-843.
[20] Maier K L, Fildani A, Paull C K, et al. The elusive character of discontinuous deep-water channels: New insights from Lucia Chica channel system, offshore California[J]. Geology, 2011, 39(4): 327-330.
[21] Maier K L, Fildani A, Paull C K, et al. Deep-sea channel evolution and stratigraphic architecture from inception to abandonment from high-resolution autonomous underwater vehicle surveys offshore central California[J]. Sedimentology, 2013, 60(4): 935-960.
[22] Maier K L, Paull C K, Caress D W, et al. Submarine-fan development revealed by integrated high-resolution datasets from La Jolla Fan, offshore California, U.S.A.[J]. Journal of Sedimentary Research, 2020, 90(5): 468-479.
[23] Gong C L, Chen L Q, West L. Asymmetrical, inversely graded, upstream-migrating cyclic steps in marine settings: Late Miocene-Early Pliocene Fish Creek-Vallecito Basin, southern California[J]. Sedimentary Geology, 2017, 360: 35-46.
[24] Wang W W, Wang D W, Sun J, et al. Evolution of deepwater turbidite bedforms in the Huaguang channel-lobe transition zone revealed by 3D seismic data in the Qiongdongnan Basin, South China Sea[J]. Geomorphology, 2020, 370: 107412.
[25] Maselli V, Micallef A, Normandeau A, et al. Active faulting controls bedform development on a deep-water fan[J]. Geology, 2021, 49(12): 1495-1500.
[26] Casalbore D, Clare M A, Pope E L, et al. Bedforms on the submarine flanks of insular volcanoes: New insights gained from high resolution seafloor surveys[J]. Sedimentology, 2021, 68(4): 1400-1438.
[27] Lang J, Sievers J, Loewer M, et al. 3D architecture of cyclic-step and antidune deposits in glacigenic subaqueous fan and delta settings: Integrating outcrop and ground-penetrating radar data[J]. Sedimentary Geology, 2017, 362: 83-100.
[28] Lang J, Le Heron D P, van den Berg J H, et al. Bedforms and sedimentary structures related to supercritical flows in glacigenic settings[J]. Sedimentology, 2021, 68(4): 1539-1579.
[29] Fricke A T, Sheets B A, Nittrouer C A, et al. An examination of froude-supercritical flows and cyclic steps on a subaqueous lacustrine delta, Lake Chelan, Washington, U.S.A.[J]. Journal of Sedimentary Research, 2015, 85(7): 754-767.
[30] Normark W R, Piper D J W, Posamentier H, et al. Variability in form and growth of sediment waves on turbidite channel levees[J]. Marine Geology, 2002, 192(1/2/3): 23-58.
[31] Spinewine B, Sequeiros O E, Garcia M H, et al. Experiments on wedge-shaped deep sea sedimentary deposits in minibasins and/or on channel levees emplaced by turbidity currents. Part II. Morphodynamic evolution of the wedge and of the associated bedforms[J]. Journal of Sedimentary Research, 2009, 79(8): 608-628.
[32] Fedele J J, Hoyal D, Barnaal Z, et al. Bedforms created by gravity flows[M]//Budd D A, Hajek E A, Purkis S J. Autogenic dynamics and self-organization in sedimentary systems. Tulsa: SEPM Special Publication, 2016, 106: 95-121.
[33] Komar P D. Hydraulic jumps in turbidity currents[J]. GSA Bulletin, 1971, 82(6): 1477-1488.
[34] Komar P D. Supercritical flow in density currents: A discussion[J]. Journal of Sedimentary Petrology, 1975, 45: 747-749.
[35] Hand B M. Supercritical flow in density currents[J]. Journal of Sedimentary Research, 1974, 44(3): 637-648.
[36] Cartigny M J B, Postma G, van den Berg J H, et al. A comparative study of sediment waves and cyclic steps based on geometries, internal structures and numerical modeling[J]. Marine Geology, 2011, 280(1/2/3/4): 40-56.
[37] Kostic S. Modeling of submarine cyclic steps: Controls on their formation, migration, and architecture[J]. Geosphere, 2011, 7(2): 294-304.
[38] Kostic S, Parker G. The response of turbidity currents to a canyon-fan transition: Internal hydraulic jumps and depositional signatures[J]. Journal of Hydraulic Research, 2006, 44(5): 631-653.
[39] Kostic S. Upper flow regime bedforms on levees and continental slopes: Turbidity current flow dynamics in response to fine-grained sediment waves[J]. Geosphere, 2014, 10(6): 1094-1103.
[40] Fox P J, Heezen B C, Harian A M. Abyssal anti-dunes[J]. Nature, 1968, 220(5166): 470-472.
[41] Smith D P, Kvitek R, Iampietro P J, et al. Twenty-nine months of geomorphic change in Upper Monterey Canyon (2002-2005)[J]. Marine Geology, 2007, 236(1/2): 79-94.
[42] Paull C K, Ussler III W, Caress D W, et al. Origins of large crescent-shaped bedforms within the axial channel of Monterey Canyon, offshore California[J]. Geosphere, 2010, 6(6): 755-774.
[43] Fildani A, Kostic S, Covault J A, et al. Exploring a new breadth of cyclic steps on distal submarine fans[J]. Sedimentology, 2021, 68(4): 1378-1399.
[44] Walker R G. Upper flow regime bed forms in turbidites of the Hatch Formation, Devonian of New York State[J]. Journal of Sedimentary Research, 1967, 37(4): 1052-1058.
[45] Schmincke H U, Fisher R V, Waters A C. Antidune and chute and pool structures in the base surge deposits of the Laacher See area, Germany[J]. Sedimentology, 1973, 20(4): 553-574.
[46] Postma G, Cartigny M, Kleverlaan K. Structureless, coarse-tail graded Bouma Ta formed by internal hydraulic jump of the turbidity current?[J]. Sedimentary Geology, 2009, 219(1/2/3/4): 1-6.
[47] Postma G, Kleverlaan K, Cartigny M J B. Recognition of cyclic steps in sandy and gravelly turbidite sequences, and consequences for the Bouma facies model[J]. Sedimentology, 2014, 61(7): 2268-2290.
[48] West L M, Perillo M M, Olariu C, et al. Multi-event organization of deepwater sediments into bedforms: Long-lived, large-scale antidunes preserved in deepwater slopes[J]. Geology, 2019, 47(5): 391-394.
[49] Postma G, Lang J, Hoyal D C, et al. Reconstruction of bedform dynamics controlled by supercritical flow in the channel-lobe transition zone of a deep-water delta (Sant Llorenç del Munt, north-east Spain, Eocene)[J]. Sedimentology, 2021, 68(4): 1674-1697.
[50] Slootman A, Vellinga A J, Moscariello A, et al. The depositional signature of high-aggradation chute-and-pool bedforms: The build-and-fill structure[J]. Sedimentology, 2021, 68(4): 1640-1673.
[51] Zhong G F, Peng X T. Transport and accumulation of plastic litter in submarine canyons—the role of gravity flows[J]. Geology, 2021, 49(5): 581-586.
[52] Li S, Li W, Alves T M, et al. Large-scale scours formed by supercritical turbidity currents along the full length of a submarine canyon, northeast South China Sea[J]. Marine Geology, 2020, 424: 106158.
[53] Lu Y T, Shi B Q, Maselli V, et al. Different types of gravity-driven flow deposits and associated bedforms in the Upper Bengal Fan, offshore Myanmar[J]. Marine Geology, 2021, 441: 106609.
[54] 程琳燕,李磊,高毅凡,等. 琼东南盆地陵水凹陷海底周期阶坎底形的特征及成因[J]. 海洋地质与第四纪地质,2022,42(1):37-44.

Cheng Linyan, Li Lei, Gao Yifan, et al. The characteristics and genesis of bottom cyclic steps in the Lingshui Sag of Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 37-44.
[55] 张春生,刘忠保,施冬,等. 涌流型浊流形成及发展的实验模拟[J]. 沉积学报,2002,20(1):25-29.

Zhang Chunsheng, Liu Zhongbao, Shi Dong, et al. The simulation experiment of surge-type turbidity current formation and development[J]. Acta Sedimentologica Sinica, 2002, 20(1): 25-29.
[56] 刘忠保,龚文平,王新海,等. 洪水型浊流砂体形成及分布的沉积模拟实验[J]. 石油与天然气地质,2008,29(1):26-30,37.

Liu Zhongbao, Gong Wenping, Wang Xinhai, et al. Sedimentation simulation tests on formation and distribution of flood turbidity sandbodies[J]. Oil & Gas Geology, 2008, 29(1): 26-30, 37.
[57] 姜涛,解习农,汤苏林,等. 浊流成因海底沉积波形成机理及其数值模拟[J]. 科学通报,2007,52(16):1945-1950.

Jiang Tao, Xie Xinong, Tang Sulin, et al. Numerical simulation on the evolution of sediment waves caused by turbidity currents[J]. Chinese Science Bulletin, 2007, 52(16): 1945-1950.
[58] Jiang T, Xie X N, Wang Z F. Seismic features and origin of sediment waves in the Qiongdongnan Basin, northern South China Sea[J]. Marine Geophysical Research, 2013, 34(3): 281-294.
[59] Hu P, Li Y. Numerical modeling of the propagation and morphological changes of turbidity currents using a cost-saving strategy of solution updating[J]. International Journal of Sediment Research, 2020, 35(6): 587-599.
[60] 王越,孙永福,修宗祥,等. 海底峡谷内浊流流动与沉积特征数值模拟研究[J]. 海洋学报,2020,42(11):75-87.

Wang Yue, Sun Yongfu, Xiu Zongxiang, et al. Numerical simulation of turbidity current and sediment characteristics in submarine canyons[J]. Haiyang Xuebao, 2020, 42(11): 75-87.
[61] 郭彦英,黄河清. 海底浊流在坡道转换处的流动及沉积的数值模拟[J]. 沉积学报,2013,31(6):994-1000.

Guo Yanying, Huang Heqing. Numerical simulation of the flow and deposition of turbidity currents with different slope changes[J]. Acta Sedimentologica Sinica, 2013, 31(6): 994-1000.
[62] Ge Z Y, Nemec W, Vellinga A J, et al. How is a turbidite actually deposited?[J]. Science Advances, 2022, 8(3): eabl9124.
[63] 王大伟,白宏新,吴时国. 浊流及其相关的深水底形研究进展[J]. 地球科学进展,2018,33(1):52-65.

Wang Dawei, Bai Hongxin, Wu Shiguo. The research progress of turbidity currents and related deep-water bedforms[J]. Advances in Earth Science, 2018, 33(1): 52-65.
[64] 王大伟,孙悦,司少文,等. 海底周期阶坎研究进展与挑战[J]. 地球科学进展,2020,35(9):890-901.

Wang Dawei, Sun Yue, Si Shaowen, et al. Research progress and challenges of submarine cyclic steps[J]. Advances in Earth Science, 2020, 35(9): 890-901.
[65] Simons D B, Richardson E V, Nordin Jr C F. Sedimentary structures generated by flow in alluvial channels[M]//Middleton G V. Primary sedimentary structures and their hydrodynamic interpretation. Tulsa: SEPM Special Publication, 1965, 12: 34-52.
[66] Gilbert G K. The transportation of débris by running water[R]. Washington: US Geological Survey, 1914: 1-263.
[67] Davis W M. Structure and origin of glacial sand phtins[J]. GSA Bulletin, 1890, 1(1): 195-202.
[68] Ricci-Lucchi F, Amorosi A. Bedding and internal structures[M]//Middleton G V, Church M J, Coniglio M, et al. Encyclopedia of sediments and sedimentary rocks. Dordrecht, Netherlands: Springer, 1978: 53-59.
[69] Nichols G. Sedimentology and stratigraphy[M]. 2nd ed. Chichester: Wiley-Blackwell, 2009: 50-58.
[70] Cartigny M J B, Ventra D, Postma G, et al. Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions: New insights from flume experiments[J]. Sedimentology, 2014, 61(3): 712-748.
[71] Chow V T. Open-channel hydraulics[M]. New York: McGraw-Hill, 1959: 393-438.
[72] Weirich F H. Field evidence for hydraulic jumps in subaqueous sediment gravity flows[J]. Nature, 1988, 332(6165): 626-629.
[73] Slootman A, Cartigny M J B. Cyclic steps: Review and aggradation-based classification[J]. Earth-Science Reviews, 2020, 201: 102949.
[74] Kennedy J F. Stationary waves and antidunes in alluvial channels[R]. Pasadena: California Institute of Technology, 1961: 1-145.
[75] Kennedy J F. The mechanics of dunes and antidunes in erodible-bed channels[J]. Journal of Fluid Mechanics, 1963, 16(4): 521-544.
[76] Middleton G V. Antidune cross-bedding in a large flume[J]. Journal of Sedimentary Research, 1965, 35(4): 922-927.
[77] Allen J R L. Sedimentary structures: Their character and physical basis[M]. Amsterdam: Elsevier Scientific Pub. Co., 1982: 383-417.
[78] Alexander J, Bridge J S, Cheel R J, et al. Bedforms and associated sedimentary structures formed under supercritical water flows over aggrading sand beds[J]. Sedimentology, 2001, 48(1): 133-152.
[79] 陈景山. 沉积构造[M]//冯增昭,王英华,刘焕杰,等. 中国沉积学. 北京:石油工业出版社,1994:269-301.

Chen Jingshan. Sedimentary structures[M]//Feng Zengzhao, Wang Yinghua, Liu Huanjie, et al. Sedimentology in China. Beijing: Petroleum Industry Press, 1994: 269-301.
[80] Jopling A V, Richardson E V. Backset bedding developed in shooting flow in laboratory experiments[J]. Journal of Sedimentary Research, 1966, 36(3): 821-825.
[81] Ono K, Plink-Björklund P. Froude supercritical flow bedforms in deepwater slope channels? Field examples in conglomerates, sandstones and fine-grained deposits[J]. Sedimentology, 2018, 65(3): 639-669.
[82] Winterwerp J C, Bakker W T, Mastbergen D R, et al. Hyperconcentrated sand-water mixture flows over erodible bed[J]. Journal of Hydraulic Engineering, 1992, 118(11): 1508-1525.
[83] 钟广法. 超临界浊流沉积学研究进展[C]//第十六届全国古地理学及沉积学学术会议论文摘要集. 西安:中国矿物岩石地球化学学会岩相古地理专业委员会,2021:207-208.

Zhong Guangfa. Advances in supercritical turbidity current sedimentology[C]//Abstract volume of the 16th National Paleogeography and Sedimentology Conference. Xi’an: Chinese Society for Mineralogy, Petrology and Geochemistry, 2021: 207-208.
[84] Vellinga A J, Cartigny M J B, Eggenhuisen J T, et al. Morphodynamics and depositional signature of low-aggradation cyclic steps: New insights from a depth-resolved numerical model[J]. Sedimentology, 2018, 65(2): 540-560.
[85] Taki K, Parker G. Transportational cyclic steps created by flow over an erodible bed. Part 1. Experiments[J]. Journal of Hydraulic Research, 2005, 43(5): 488-501.
[86] Slootman A, De Boer P L, Cartigny M J B, et al. Evolution of a carbonate delta generated by gateway-funnelling of episodic currents[J]. Sedimentology, 2019, 66(4): 1302-1340.
[87] Yokokawa M, Hasegawa K, Kanbayashi S, et al. Formative conditions and sedimentary structures of sandy 3D antidunes: An application of the gravel step-pool model to fine-grained sand in an experimental flume[J]. Earth Surface Processes and Landforms, 2010, 35(14): 1720-1729.
[88] Kostic S, Sequeiros O, Spinewine B, et al. Cyclic steps: A phenomenon of supercritical shallow flow from the high mountains to the bottom of the ocean[J]. Journal of Hydro-Environment Research, 2010, 3(4): 167-172.
[89] Parker G, Izumi N. Purely erosional cyclic and solitary steps created by flow over a cohesive bed[J]. Journal of Fluid Mechanics, 2000, 419: 203-238.
[90] Ono K, Plink-Björklund P, Eggenhuisen J T, et al. Froude supercritical flow processes and sedimentary structures: New insights from experiments with a wide range of grain sizes[J]. Sedimentology, 2021, 68(4): 1328-1357.
[91] Sequeiros O E. Estimating turbidity current conditions from channel morphology: A Froude number approach[J]. Journal of Geophysical Research, 2012, 117(C4): C04003.
[92] Skipper K. Antidune cross‐stratification in a turbidite sequence, Cloridorme Formation, Gaspé, Quebec[J]. Sedimentology, 1971, 17(1/2): 51-68.
[93] Ventra D, Cartigny M J B, Bijkerk J F, et al. Supercritical-flow structures on a Late Carboniferous delta front: Sedimentologic and paleoclimatic significance[J]. Geology, 2015, 43(8): 731-734.
[94] Cornard P H, Pickering K T. Supercritical-flow deposits and their distribution in a submarine channel system, Middle Eocene, Ainsa Basin, Spanish Pyrenees[J]. Journal of Sedimentary Research, 2019, 89(6): 576-597.
[95] Kuang Z G, Zhong G F, Wang L L, et al. Channel-related sediment waves on the eastern slope offshore Dongsha Islands, northern South China Sea[J]. Journal of Asian Earth Sciences, 2014, 79: 540-551.
[96] 钟广法,朱本铎,王嘹亮. 南海浊流地貌[J]. 科技导报,2020,38(18):75-82.

Zhong Guangfa, Zhu Benduo, Wang Liaoliang. Turbidity current related landforms in the South China Sea[J]. Science & Technology Review, 2020, 38(18): 75-82.
[97] Baas J H. Ripple, ripple mark, ripple structure[M]//Middleton G V, Church M J, Coniglio M, et al. Encyclopedia of sediments and sedimentary rocks. Dordrecht, Netherlands: Springer, 1978: 565-568.
[98] Recking A, Bacchi V, Naaim M, et al. Antidunes on steep slopes[J]. Journal of Geophysical Research, 2009, 114(F4): F04025.
[99] Symons W O, Sumner E J, Talling P J, et al. Large-scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flows[J]. Marine Geology, 2016, 371: 130-148.
[100] Covault J A, Kostic S, Paull C K, et al. Cyclic Steps and related supercritical bedforms: Building blocks of deep-water depositional systems, western North America[J]. Marine Geology, 2017, 393: 4-20.
[101] Migeon S, Savoye B, Faugeres J C. Quaternary development of migrating sediment waves in the Var deep-sea fan: Distribution, growth pattern, and implication for levee evolution[J]. Sedimentary Geology, 2000, 133(3/4): 265-293.
[102] Nakajima T, Satoh M. The formation of large mudwaves by turbidity currents on the levees of the Toyama deep-sea channel, Japan Sea[J]. Sedimentology, 2001, 48(2): 435-463.
[103] Mulder T, Razin P, Faugeres J C. Hummocky cross-stratification-like structures in deep-sea turbidites: Upper Cretaceous Basque basins (western Pyrenees, France)[J]. Sedimentology, 2009, 56(4): 997-1015.
[104] Rust B R, Gibling M R. Three-dimensional antidunes as HCS mimics in a fluvial sandstone: The Pennsylvanian South Bar Formation near Sydney, Nova Scotia[J]. Journal of Sedimentary Research, 1990, 60(4): 540-548.
[105] Yagishita K, Taira A. Grain fabric of a laboratory antidune[J]. Sedimentology, 1989, 36(6): 1001-1005.
[106] Yagishita K, Ashi J, Ninomiya S, et al. Two types of plane beds under upper-flow-regime in flume experiments: Evidence from grain fabric[J]. Sedimentary Geology, 2004, 163(3/4): 229-236.
[107] Fisher R V. Flow transformations in sediment gravity flows[J]. Geology, 1993, 11(5): 273-274.
[108] van den Berg J H, Lang J. Sedimentary structure of inferred cyclic-step bedforms in submarine volcaniclastic slope deposits, Cuatro Calas, south-east Spain[J]. Sedimentology, 2021, 68(4): 1439-1464.
[109] Xu J P. Normalized velocity profiles of field-measured turbidity currents[J]. Geology, 2010, 38(6): 563-566.
[110] Paull C K, Caress D W, Ussler W, et al. High-resolution bathymetry of the axial channels within Monterey and Soquel submarine canyons, offshore central California[J]. Geosphere, 2011, 7(5): 1077-1101.