[1] James N P. Carbonates in a cold ocean; the evolving paradigm[R]. Calgary, Canada: Department of Geological Sciences Geological Engineering, Queen's University, 2016.
[2] 吴因业,朱如凯,罗平,等. 沉积学与层序地层学研究新进展:第18届国际沉积学大会综述[J]. 沉积学报,2011,29(1):199-206.

Wu Yinye, Zhu Rukai, Luo Ping, et al. Advance on sedimentology and sequence stratigraphy: A summary from 18th International Sedimentology Congress[J]. Acta Sedimentologica Sinica, 2011, 29(1): 199-206.
[3] 鲜本忠,朱筱敏,岳大力,等. 沉积学研究热点与进展:第19届国际沉积学大会综述[J]. 古地理学报,2014,16(6):816-826.

Xian Benzhong, Zhu Xiaomin, Yue Dali, et al. Current hot topics and advances of sedimentology: A summary from 19th International Sedimentological Congress[J]. Journal of Palaeogeography, 2014, 16(6): 816-826.
[4] 朱筱敏,谈明轩,董艳蕾,等. 当今沉积学研究热点讨论:第20届国际沉积学大会评述[J]. 沉积学报,2019,37(1):1-16.

Zhu Xiaomin, Tan Mingxuan, Dong Yanlei, et al. Current hot topics of sedimentology: Comment on the 20th International Sedimentological Congress[J]. Acta Sedimentologica Sinica, 2019, 37(1): 1-16.
[5] Pedley H M, Carannante G. Cool-water carbonates: Depositional systems and palaeoenvironmental controls[M]. London: Geological Society Special Publications, 2006: 1-365.
[6] James N P, Bone Y. Provenance of Holocene calcareous beach-dune sediments, western Eyre Peninsula, Great Australian Bight, Australia[J]. Sedimentary Geology, 2017, 357: 83-98.
[7] Melis R, Salvi G. Foraminifer and ostracod occurrence in a cool-water carbonate factory of the cape Adare (Ross Sea, Antarctica): A key lecture for the climatic and oceanographic variations in the last 30,000 years[J]. Geosciences, 2020, 10(10): 413.
[8] 贾承造,张杰,沈安江,等. 非暖水碳酸盐岩:沉积学进展与油气勘探新领域[J]. 石油学报,2017,38(3):241-254.

Jia Chengzao, Zhang Jie, Shen Anjiang, et al. Non-tropical carbonate: Progress in sedimentology and new field of petroleum exploration[J]. Acta Petrolei Sinica, 2017, 38(3): 241-254.
[9] Reijmer J J G. Marine carbonate factories: Review and update[J]. Sedimentology, 2021, 68(5): 1729-1796.
[10] Fielding C R, Frank T D, Isbell J L. The Late Paleozoic ice age:A review of current understanding and synthesis of global climate patterns[M]. Boulder: Geological Society of America, 2008: 343-354.
[11] Haig D W, Mory A J, McCartain E, et al. Late Artinskian-Early Kungurian (Early Permian) warming and maximum marine flooding in the East Gondwana interior rift, Timor and western Australia, and comparisons across East Gondwana[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468: 88-121.
[12] Fielding C R, Frank T D, Birgenheier L P, et al. Stratigraphic imprint of the Late Palaeozoic Ice Age in eastern Australia: A record of alternating glacial and nonglacial climate regime[J]. Journal of the Geological Society, 2008, 165(1): 129-140.
[13] Arefifard S. Guadalupian cool versus warm water deposits in central Iran: A record of the Capitanian Kamura event[J]. Geological Magazine, 2019, 156(3): 430-446.
[14] 宋金民,江青春,刘树根,等. 四川盆地中二叠统茅口组一段含海泡石层系古环境与沉积格局指示意义[J]. 石油学报,2024,45(6):914-931.

Song Jinmin, Jiang Qingchun, Liu Shugen, et al. Paleoenvironment and sedimentary significances of sepiolite-containing succession in the First member of Middle Permian Maokou Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2024, 45(6): 914-931.
[15] Scotese C R, Song H J, Mills B J W, et al. Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years[J]. Earth-Science Reviews, 2021, 215: 103503.
[16] Sun S, Chen A Q, Ogg J G, et al. Continental weathering indices recorded in low-latitude carbonates unveil the P3 glacial of the Late Paleozoic Ice Age[J]. Global and Planetary Change, 2023, 220: 103994.
[17] 范建平,宋金民,刘树根,等. 四川盆地中二叠统茅一段灰岩—泥质灰岩韵律层古温度演化及驱动机制[J]. 石油实验地质,2023,45(4):726-738.

Fan Jianping, Song Jinmin, Liu Shugen, et al. Paleotemperature evolution and its driving mechanism during the formation of limestone-marl alternations in First member of Middle Permian Maokou Formation in Sichuan Basin[J]. Petroleum Geology Experiment, 2023, 45(4): 726-738.
[18] Lei H, Jiang Q C, Huang W H, et al. Middle Permian astronomically forced upwelling in the Yangtze carbonate platform: Implications for organic matter preservation and benthic biomass[J]. Marine and Petroleum Geology, 2024, 160: 106575.
[19] 宋金民,王佳蕊,刘树根,等. 含海泡石层系泥质灰岩中自生黏土矿物的类型、组成与成岩演化过程:以川东地区中二叠统茅口组茅一段为例[J]. 石油勘探与开发,2024,51(2):311-322.

Song Jinmin, Wang Jiarui, Liu Shugen, et al. Types, composition and diagenetic evolution of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata: A case study of Mao-1 member of Middle Permian Maokou Formation, eastern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2024, 51(2): 311-322.
[20] 李明隆,谭秀成,杨雨,等. 四川盆地及其邻区下二叠统栖霞阶层序—岩相古地理特征及油气地质意义[J]. 石油勘探与开发,2022,49(6):1119-1131.

Li Minglong, Tan Xiucheng, Yang Yu, et al. Sequence-lithofacies paleogeographic characteristics and petroleum geological significance of Lower Permian Qixia Stage in Sichuan Basin and its adjacent areas, SW China[J]. Petroleum Exploration and Development, 2022, 49(6): 1119-1131.
[21] 王东,刘宏,唐松,等. 川中二叠系长兴组层序格架内台内滩沉积构型与分布规律[J]. 石油勘探与开发,2023,50(2):346-359.

Wang Dong, Liu Hong, Tang Song, et al. Sedimentary architecture and distribution of intra-platform shoal in sequence framework of Permian Changxing Formation in central Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(2): 346-359.
[22] 宋金民,刘树根,李智武,等. 四川盆地中二叠统油气成藏模式与有利勘探区分布[J]. 天然气工业,2023,43(11):54-71.

Song Jinmin, Liu Shugen, Li Zhiwu, et al. Accumulation model and favorable exploration area distribution of the Middle Permian oil and gas in the Sichuan Basin[J]. Natural Gas Industry, 2023, 43(11): 54-71.
[23] 李毕松,苏建龙,蒲勇,等. 四川盆地元坝地区二叠系茅口组相控岩溶刻画及预测[J]. 岩性油气藏,2024,36(1):69-77.

Li Bisong, Su Jianlong, Pu Yong, et al. Facies-controlled karst characterization and effective reservoir prediction of Permian Maokou Formation in Yuanba area, Sichuan Basin[J]. Lithologic Reservoirs, 2024, 36(1): 69-77.
[24] 雍茹男,孙诗,陈安清,等. 上扬子北缘晚二叠世吴家坪期海洋氧化还原环境重建[J]. 沉积学报,2024,42(6):2066-2078.

Yong Runan, Sun Shi, Chen Anqing, et al. Reconstruction of ocean redox environment during the Late Permian Wuchiapingian, northern margin of Upper Yangtze[J]. Acta Sedimentologica Sinica, 2024, 42(6): 2066-2078.
[25] 戴永定,蒋协光,赵生才,等. 生物化石钙质结构的分类与演化(连载)[J]. 地质科学,1977,12(3):219-235.

Dai Yongding, Jiang Xieguang, Zhao Shengcai, et al. Classification and evolution of calcareous skeletal textures of fossil organisms[J]. Scientia Geologica Sinica, 1977, 12(3): 219-235.
[26] 邵龙义,窦建伟,张鹏飞. 西南地区晚二叠世氧、碳稳定同位素的古地理意义[J]. 地球化学,1996,25(6):575-581.

Shao Longyi, Dou Jianwei, Zhang Pengfei. Paleogeographic significances of carbon an oxygen isotopes in Late Permian rocks of Southwest China[J]. Geochimica, 1996, 25(6): 575-581.
[27] Hastings D W, Russell A D, Emerson S R. Foraminiferal magnesium in Globeriginoides sacculifer as a paleotemperature proxy[J]. Paleoceanography, 1998, 13(2): 161-169.
[28] Friedman I, O'neil J R. Compilation of stable isotope fractionation factors of geochemical interest[R]. Washington: U.S. Geological Survey Professional Paper, 1977: 440.
[29] Foster G L, Royer D L, Lunt D J. Future climate forcing potentially without precedent in the last 420 million years[J]. Nature Communications, 2017, 8: 14845.
[30] Wang Y, Passey B, Roy R, et al. Clumped isotope thermometry of modern and fossil snail shells from the Himalayan-Tibetan Plateau: Implications for paleoclimate and paleoelevation reconstructions[J]. GSA Bulletin, 2021, 133(7/8): 1370-1380.
[31] Wacker U, Fiebig J, Tödter J, et al. Empirical calibration of theclumped isotope paleothermometer using calcites of various origins[J]. Geochimica et Cosmochimica Acta, 2014, 141: 127-144.
[32] Henkes G A, Passey B H, Crossman E L, et al. Temperature limits for preservation of primary calcite clumped isotope paleotemperatures[J]. Geochimica et Cosmochimica Acta, 2014, 139: 362-382.
[33] Hemingway J D, Henkes G A. A disordered kinetic model for clumped isotope bond reordering in carbonates[J]. Earth and Planetary Science Letters, 2021, 566: 116962.
[34] Passey B H, Henkes G A. Carbonate clumped isotope bond reordering and geospeedometry[J]. Earth and Planetary Science Letters, 2012, 351-352: 223-236.
[35] Stolper D A, Eiler J M. The kinetics of solid-state isotope-exchange reactions for clumped isotopes: A study of inorganic calcites and apatites from natural and experimental samples[J]. American Journal of Science, 2015, 315(5): 363-411.
[36] 赵彦彦,李三忠,李达,等. 碳酸盐(岩)的稀土元素特征及其古环境指示意义[J]. 大地构造与成矿学,2019,43(1):141-167.

Zhao Yanyan, Li Sanzhong, Li Da, et al. Rare earth element geochemistry of carbonate and its paleoenvironmental implications[J]. Geotectonica et Metallogenia, 2019, 43(1): 141-167.
[37] 毛瑞勇,张杰,冷济高,等. 岑巩页岩气区块牛蹄塘组黑色页岩稀土元素地球化学特征及沉积环境分析[J]. 矿物岩石,2016,36(4):66-73.

Mao Ruiyong, Zhang Jie, Leng Jigao, et al. Geochemical characteristics of rare earth elements and depositional environments of the Niutitang Formation black shale in Cen′Gong shale gas block[J]. Journal of Mineralogy and Petrology, 2016, 36(4): 66-73.
[38] 郑方顺,宋国学. 铕异常在地质学中的应用[J]. 岩石学报,2023,39(9):2832-2856.

Zheng Fangshun, Song Guoxue. Application of Eu anomaly in geology[J]. Acta Petrologica Sinica, 2023, 39(9): 2832-2856.
[39] 吴育平,刘成林,龚宏伟,等. 湘西下寒武统牛蹄塘组地球化学特征及其对沉积—构造环境的响应[J]. 地质与勘探,2021,57(5):1065-1076.

Wu Yuping, Liu Chenglin, Gong Hongwei, et al. Geochemical characteristics and sedimentary tectonic setting of the Lower Cambrian Niutitang Formation in western Hunan province[J]. Geology and Exploration, 2021, 57(5): 1065-1076.
[40] 王永达,杨石岭,沈冰,等. 地球深部过程与极热和极冷事件[J]. 科学通报,2024,69(2):215-229.

Wang Yongda, Yang Shiling, Shen Bing, et al. Links between deep Earth processes and hyperthermal and extreme cooling events[J]. Chinese Science Bulletin, 2024, 69(2): 215-229.
[41] 陈明思,张本健,李智武,等. 四川盆地及周缘震旦系灯影组岩性—碳同位素地层划分及意义[J]. 古地理学报,2023,25(6):1347-1363.

Chen Mingsi, Zhang Benjian, Li Zhiwu, et al. Lithol and carbon isotopic stratigraphic division and its sighificance of the Sinian Dengying Formation in Sichuan Basin and surrounding area[J]. Journal of Palaeogeography, 2023, 25(6): 1347-1363.
[42] 杨虎城,林良彪,余瑜,等. 川西南天全地区中二叠统碳酸盐岩地球化学特征及其古环境意义[J]. 矿物岩石,2022,42(2):47-59.

Yang Hucheng, Lin Liangbiao, Yu Yu, et al. Geochemical characteristics and paleo-environmental significance of Middle Permian carbonate rocks in Tianquan area, southwestern Sichuan province, China[J]. Mineralogy and Petrology, 2022, 42(2): 47-59.
[43] 马明,陈国俊,吕成福,等. 珠江口盆地白云凹陷始新统—下渐新统沉积环境与泥岩物源[J]. 石油学报,2016,37(5):610-621.

Ma Ming, Chen Guojun, Chengfu Lü, et al. Eocene-Low Oligocene sedimentary environment and mudstone provenance in Baiyun Sag, Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2016, 37(5): 610-621.
[44] 秦何星,陈雷,卢畅,等. 上扬子南缘五峰组—龙马溪组页岩地球化学特征及其对风化、物源与构造背景的指示[J]. 地质论评,2024,70(4):1314-1334.

Qin Hexing, Chen Lei, Lu Chang, et al. Geochemical characteristics of the Wufeng-Longmaxi Formations shale in the southern margin of the Upper Yangtze area: Implications for weathering, provenance and tectonic setting[J]. Geological Review, 2024, 70(4): 1314-1334.
[45] 邓敏,程锦翔,唐勇,等. 准噶尔盆地东部双井子地区上石炭统泥岩地球化学特征及其地质意义[J]. 地质论评,2024,70(4):1512-1532.

Deng Min, Cheng Jinxiang, Tang Yong, et al. Geochemical characteristics and geological significance of Upper Carboniferous mudstone in Shuangjingzi area, eastern Junggar Basin, Xinjiang[J]. Geological Review, 2024, 70(4): 1512-1532.
[46] 冯明友,伍鹏程,鄢晓荣,等. 四川峨边震旦系灯影组三段泥页岩地球化学特征及地质意义[J]. 矿物岩石地球化学通报,2017,36(3):493-501.

Feng Mingyou, Wu Pengcheng, Yan Xiaorong, et al. Geochemistry and significance of shale in the Third member of the Precambrian Dengying Formation, Ebian of southwestern Sichuan[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(3): 493-501.
[47] Song H, Wignall B P, Song H, et al. Seawater temperature and dissolved oxygen over the past 500 million years[J]. Journal of Earth Science, 2019, 30(2): 236-243.]
[48] Vérard C, Veizer J. On plate tectonics and ocean temperatures[J]. Geology, 2019, 47(9): 881-885.]
[49] Grossman E L, Joachimski M M. Ocean temperatures through the Phanerozoic reassessed[J]. Scientific Reports, 2022, 12(1): 8938-8938.]
[50] 刘树根,文龙,宋金民,等. 四川盆地中二叠统构造—沉积分异与油气勘探[J]. 成都理工大学学报(自然科学版),2022,49(4):385-413.

Liu Shugen, Wen Long, Song Jinmin, et al. Sedimentary topography and tectonic differentiation on the Middle Permian platform and hydrocarbon exploration in Sichuan Basin, SW China[J]. Journal of Chengdu University of Technology (Science Technology Edition), 2022, 49(4): 385-413.