[1] 李文渊. 古亚洲洋与古特提斯洋关系初探[J]. 岩石学报,2018,34(8):2201-2210.

Li Wenyuan. The primary discussion on the relationship between Paleo-Asian Ocean and Paleo-Tethys Ocean[J]. Acta Petrologica Sinica, 2018, 34(8): 2201-2210.
[2] 李文渊,张照伟,王亚磊,等. 东昆仑原、古特提斯构造转换与岩浆铜镍钴硫化物矿床成矿作用[J]. 地球科学与环境学报,2022,44(1):1-19.

Li Wenyuan, Zhang Zhaowei, Wang Yalei, et al. Tectonic transformation of Proto- and Paleo-Tethys and the metallization of magmatic Ni-Cu-Co sufide deposits in Kunlun orogen, northwest China[J]. Journal of Earth Sciences and Environment, 2022, 44(1): 1-19.
[3] 王佳兴,蔺梦,刘泽宇,等. 柴北缘超高压变质带变质蛇绿岩组合及其地质意义[J]. 西北地质,2020,53(4):1-10.

Wang Jia- xing, Lin Meng, Liu Zeyu, et al. Petrological study of the meta-ophiolite from the north Qaidam UHP metamorphic belt and its geological implications[J]. Northwestern Geology, 2020, 53(4): 1-10.
[4] 周桂生,张建新,李云帅,等. 柴北缘HP-UHP变质带多期构造热事件的再厘定:鱼卡地区高压变泥质岩锆石和独居石U-Pb定年[J]. 岩石学报,2017,33(12):3801-3814.

Zhou Guisheng, Zhang Jianxin, Li Yunshuai, et al. Redefinition of the polyphase tectonothermal events of the north Qaidaim HP/UHP metamorphic terrane: Evidence from zircon and monazite U-Pb geochronology of the Yuka HP metapelites[J]. Acta Petrologica Sinica, 2017, 33(12): 3801-3814.
[5] 宋述光,牛耀龄,张立飞,等. 大陆造山运动:从大洋俯冲到大陆俯冲、碰撞、折返的时限:以北祁连山、柴北缘为例[J]. 岩石学报,2009,25(9):2067-2077.

Song Shuguang, Niu Yaoling, Zhang Lifei, et al. Time constraints on orogenesis from oceanic subduction to continental subduction, collision, and exhumation: An example from north Qilian and north Qaidam HP-UHP belts[J]. Acta Petrologica Sinica, 2009, 25(9): 2067-2077.
[6] 王毅智,拜永山,陆海莲. 青海天峻南山蛇绿岩的地质特征及其形成环境[J]. 青海地质,2001,21(1):29-35.

Wang Yizhi, Bai Yongshan, Lu Hailian. Geological characteristics of Tianjunnanshan ophiolite in Qinghai and its forming environment[J]. Qinghai Geology, 2001, 21(1): 29-35.
[7] 郭安林,张国伟,强娟,等. 青藏高原东北缘印支期宗务隆造山带[J]. 岩石学报,2009,25(1):1-12.

Guo Anlin, Zhang Guowei, Qiang Juan, et al. Indosinian Zongwulong orogenic belt on the northeastern margin of the Qinghai-Tibet Plateau[J]. Acta Petrologica Sinica, 2009, 25(1): 1-12.
[8] 高万里,王宗秀,李磊磊,等. 青藏高原东北缘宗务隆韧性剪切带 40Ar/39Ar年代学及对印支期造山时限的制约[J]. 中国地质,2021,48(1):149-160.

Gao Wanli, Wang Zongxiu, Li Leilei, et al. 40Ar/39Ar laser dating of the Zongwulong ductile shear zone in northeastern Tibetan Plateau: Constraints on the time of Indosinian orogeny[J]. Geology in China, 2021, 48(1): 149-160.
[9] 李宗星,彭博,马寅生,等. 柴达木盆地石炭系油气调查最新进展[J]. 中国地质调查,2019,6(4):79-87.

Li Zongxing, Peng Bo, Ma Yinsheng, et al. Progress of Carboniferous oil and gas survey in Qaidam Basin[J]. Geological Survey of China, 2019, 6(4): 79-87.
[10] 孙娇鹏,尹成明,陈世悦,等. 柴达木盆地北缘晚石炭世构造环境及物源:以石浅1井为例[J]. 地质通报,2016,35(2/3):302-311.

Sun Jiaopeng, Yin Chengming, Chen Shiyue, et al. An analysis of Late Carboniferous sedimentary tectonic setting and provenance of north Qaidam area: Evidence from well Shi-qian 1[J]. Geological Bulletin of China, 2016, 35(2/3): 302-311.
[11] 施辉,李宗星,彭博,等. 柴东欧南凹陷上石炭统克鲁克组构造背景、物质来源及沉积环境:来自细粒沉积岩元素地球化学的证据[J]. 天然气地球科学,2022,33(10):1554-1570.

Shi Hui, Li Zongxing, Peng Bo, et al. The tectonic setting, material source and paleoenvironment of the Upper Carboniferous Keluke Formation in the Ounan Depression of the eastern Qaidam Basin: Evidence from element geochemistry of fine-grained sedimentary rocks[J]. Natural Gas Geoscience, 2022, 33(10): 1554-1570.
[12] Balaram V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact[J]. Geoscience Frontiers,2019, 10(4): 1285-1303.
[13] 毛光周,刘池洋. 地球化学在物源及沉积背景分析中的应用[J]. 地球科学与环境学报,2011,33(4):337-348.

Mao Guangzhou, Liu Chiyang. Application of geochemistry in provenance and depositional setting analysis[J]. Journal of Earth Sciences and Environment, 2011, 33(4): 337-348.
[14] 杨守业,李从先. REE示踪沉积物物源研究进展[J]. 地球科学进展,1999,14(2):164-167.

Yang Shouye, Li Congxian. Research progress in REE tracer for sediment source[J]. Advance in Earth Sciences, 1999, 14(2): 164-167.
[15] 吴才来,郜源红,吴锁平,等. 柴北缘西段花岗岩锆石SHRIMP U-Pb定年及其岩石地球化学特征[J]. 中国科学:地球科学,2008,38(8):930-949.

Wu Cailai, Gao Yuanhong, Wu Suoping, et al. Zircon SHRIMP U-Pb dating and petrogeochemical characteristics of granites in the western member of the northern margin of Qaidam Basin[J]. Science China: Earth Sciences, 2008, 38(8): 930-949.
[16] 高展,张贵宾. 柴北缘超高压变质带变质泥质岩碎屑锆石年代学研究及其地质意义[J]. 岩石学报,2017,33(6):1775-1788.

Gao Zhan, Zhang Guibin. Geochronology of detrital zircons from metapelite of the north Qaidam UHPM belt and its geological implications[J]. Acta Petrologica Sinica, 2017, 33(6): 1775-1788.
[17] 路增龙,张建新,毛小红,等. 柴北缘欧龙布鲁克地块东段古元古代基性麻粒岩:岩石学、锆石U-Pb年代学和Lu-Hf同位素证据[J]. 岩石学报,2017,33(12):3815-3828.

Lu Zenglong, Zhang Jianxin, Mao Xiaohong, et al. Paleoproterozoic mafic granulite in the eastern Oulongbuluke block of the north Qaidam mountains: Evidence from petrology, zircon U-Pb dating and Hf isotope[J]. Acta Petrologica Sinica, 2017, 33(12): 3815-3828.
[18] 马帅,陈世悦,孙娇鹏,等. 柴达木盆地北缘早古生代沉积—构造事件耦合关系[J]. 沉积学报,2019,37(4):674-689.

Ma Shuai, Chen Shiyue, Sun Jiaopeng, et al. The coupling relationship between Early Paleozoic sedimentary and tectonic events at the northern margin of the Qaidam Basin[J]. Acta Sedimentologica Sinica, 2019, 37(4): 674-689.
[19] 孙娇鹏,陈世悦,刘成林,等. 柴达木盆地东北部晚古生代盆地构造环境:来自碎屑岩地球化学的证据[J]. 地学前缘,2016,23(5):45-55.

Sun Jiaopeng, Chen Shiyue, Liu Chenglin, et al. Tectonic setting of northeastern Qaidam Basin and its evolution during the Late Paleozoic: Evidence from geochemical characte-ristics of detrital rock[J]. Earth Science Frontiers, 2016, 23(5): 45-55.
[20] 王立轩,何世平,庄玉军,等. 青海小赛什腾山地区达肯大坂岩群中新解体出一套变火山岩系[J]. 西北地质,2022,55(1):1-18.

Wang Lixuan, He Shiping, Zhuang Yujun, et al. Discussion on newly disintegrated metavolcanic rock series from the Dakendaban Group in Xiaosaishiteng mountain area, Qinghai province[J]. Northwestern Geology, 2022, 55(1): 1-18.
[21] 彭博,刘成林,祁柯宁,等. 柴达木盆地东部上泥盆统—下石炭统沉积分异特征及其主控因素讨论[J]. 地学前缘,2021,28(1):104-114.

Peng Bo, Liu Chenglin, Qi Kening, et al. Sedimentary differentiation characteristics of and the main factors controlling the Upper Devonian-Lower Carboniferous sediments in the eastern Qaidam Basin[J]. Earth Science Frontiers, 2021, 28(1): 104-114.
[22] 高万里,王宗秀,李磊磊,等. 柴达木盆地北缘小赛什腾山二叠纪花岗岩的发现及其构造意义[J]. 地质学报,2019,93(4):816-829.

Gao Wanli, Wang Zongxiu, Li Leilei, et al. Discovery of the Permian granite in Saishiteng mountain of the northern Qaidam Basin and its tectonic significance[J]. Acta Geologica Sinica, 2019, 93(4): 816-829.
[23] 徐旭明,刘广,梁国庆. 赛什腾山一带火山岩LA-ICP-MS锆石U-Pb年龄及其地球化学特征[J]. 新疆地质,2017,35(3):250-254.

Xu Xuming, Liu Guang, Liang Guoqing. LA-ICP-MS Zircon U-Pb dating and geochemical characteristics of the volcanic rocks in the area of Saishiteng mountain[J]. Xinjiang Geology, 2017, 35(3): 250-254.
[24] 陈世悦,张跃,孙娇鹏,等. 小赛什腾山古生代花岗岩锆石U-Pb定年及地质意义[J]. 矿物学报,2016,36(1):119-124.

Chen Shiyue, Zhang Yue, Sun Jiaopeng, et al. LA-ICP-MS U-Pb dating for Paleozoic granite from Xiaosaishiteng mountain and its geological significance[J]. Acta Mineralogica Sinica, 2016, 36(1): 119-124.
[25] 青海省地质矿产局. 青海省区域地质志[M]. 北京:地质出版社,1991.

Qinghai Bureau of Geology and Mineral Resources. Regional geology of Qinghai province[M]. Beijing: Geological Publishing House, 1991.
[26] 张雄华,黄兴,张孟,等. 中国石炭纪构造—地层区划与地层格架[J]. 地学前缘,2021,28(5):362-379.

Zhang Xionghua, Huang Xing, Zhang Meng, et al. Carboniferous tectonostratigraphic regionalization and stratigraphic framework in China[J]. Earth Science Frontiers, 2021, 28(5): 362-379.
[27] 和政军,许志琴,杨经绥,等. 柴达木盆地北缘小赛什腾山晚古生代放射虫的发现及其意义[J]. 地质通报,2002,21(3):156-157.

He Zhengjun, Xu Zhiqin, Yang Jingsui, et al. Discovery and significance of Late Paleozoic radiolaria in the Xiao Sertent mountains on the north margin of Qaidam Basin[J]. Geological Bulletin of China, 2002, 21(3): 156-157.
[28] 贾志磊,陈万峰,沙鑫,等. 甘肃省南祁连化石沟地区发现中二叠世埃达克质岩:大地构造及成矿意义[J]. 大地构造与成矿学,2017,41(1):222-234.

Jia Zhilei, Chen Wanfeng, Sha Xin, et al. Discovery of Middle Permian adakitic rocks in South Qi-lian area, Gansu and implications for tectonics and Cu (Au) mineralization[J]. Geotectonica et Metallogenia, 2017, 41(1): 222-234.
[29] 国家地质实验测试中心. 岩石和矿石化学分析方法总则及一般规定[S]. 2010.

National Geological Experiment and Test Center. Method for chemical analysis of rocks and ores:General rules and regulations[S]. 2010.
[30] Condie K C. Another look at rare earth elements in shales[J]. Geochimica et Cosmochimica Acta, 1991, 55(9): 2527-2531.
[31] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell, 1985.
[32] Haskin L A, Frey F A. Dispersed and not-so-rare earths[J]. Science, 1966, 152(3720): 299-314.
[33] Pourmand A, Dauphas N, Ireland T J. A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: Revising CI-chondrite and Post-Archean Australian Shale (PAAS) abundances [J]. Chemical Geology. 2012, 291:38-54.
[34] Taylor S R, McLennan S M. The composition and evolution of the continental crust: Rare earth element evidence from sedimentary rocks[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1981, 301(1461): 381-399.
[35] Shimizu H, Masuda A. Cerium in chert as an indication of marine environment of its formation[J]. Nature, 1977, 266(5600): 346-348.
[36] Dai S F, Graham I T, Ward C R. A review of anomalous rare earth elements and yttrium in coal[J]. International Journal of Coal Geology, 2016, 159: 82-95.
[37] Bhatia M R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control[J]. Sedimentary Geology, 1985, 45(1/2): 97-113.
[38] Sun J P, Dong Y P, Ma L C, et al. Devonian to Triassic tectonic evolution and basin transition in the East Kunlun-Qaidam area, northern Tibetan Plateau: Constraints from stratigraphy and detrital zircon U-Pb geochronology[J]. GSA Bulletin, 2022, 134(7/8): 1967-1993.
[39] Blake J M, Peters S C, Johannesson K H. Application of REE geochemical signatures for Mesozoic sediment provenance to the Gettysburg Basin, Pennsylvania[J]. Sedimentary Geology, 2017, 349: 103-111.
[40] 任江波. 海水稀土的Ce负异常特征及其启示[J]. 地质论评,2015,61(增刊1):36-37.

Ren Jiangbo. Ce negative anomaly characteristics of rare earth in seawater and its implications[J]. Geological Review, 2015, 61(Suppl.1): 36-37.
[41] Byrne R H, Kim K H. Rare earth element scavenging in seawater[J]. Geochimica et Cosmochimica Acta, 1990, 54(10): 2645-2656.
[42] Lee J H, Byrne R H. Examination of comparative rare earth element complexation behavior using linear free-energy relationships[J]. Geochimica et Cosmochimica Acta, 1992, 56(3): 1127-1137.
[43] Nakada R, Takahashi Y, Tanimizu M. Cerium stable isotope ratios in ferromanganese deposits and their potential as a paleo-redox proxy[J]. Geochimica et Cosmochimica Acta, 2016, 181: 89-100.
[44] Ling H F, Chen X, Li D, et al. Cerium anomaly variations in Ediacaran–earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater[J]. Precambrian Research, 2013, 225: 110-127.
[45] Elderfield H, Greaves M J. The rare earth elements in seawater[J]. Nature, 1982, 296(5854): 214-219.