[1] Aplin A C, Macquaker J H S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059.
[2] Schieber J, Southard J B, Schimmelmann A. Lenticular shale fabrics resulting from intermittent erosion of water-rich muds-interpreting the rock record in the light of recent flume experiments[J]. Journal of Sedimentary Research, 2010, 80(1): 119-128.
[3] Stow D A V, Piper D J W. Deep-water fine-grained sediments; history, methodology and terminology[J]. Geological Society, London, Special Publications, 1984, 15(1): 3-14.
[4] Stow D A V, Piper D J W. Deep-water fine-grained sediments: Facies models[J]. Geological Society, London, Special Publications, 1984, 15(1): 611-646.
[5] Stow D A V, Alam M, Piper D J W. Sedimentology of the Halifax Formation, Nova Scotia: Lower Palaeozoic fine-grained turbidites[J]. Geological Society, London, Special Publications, 1984, 15(1): 127-144.
[6] Arthur M A, Sageman B B. Marine black shales: Depositional mechanisms and environments of ancient deposits[J]. Annual Review of Earth and Planetary Sciences, 1994, 22: 499-551.
[7] Macquaker J H S, Bentley S J, Bohacs K M. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: Reappraising sediment transport processes operating in ancient mudstone successions[J]. Geology, 2010, 38(10): 947-950.
[8] Schieber J. Mud re-distribution in epicontinental basins: Exploring likely processes[J]. Marine and Petroleum Geology, 2016, 71: 119-133.
[9] Mutti E. Thin-bedded plumites: An overlooked deep-water deposit[J]. Journal of Mediterranean Earth Sciences, 2019, 11: 61-80.
[10] Galy V, France-Lanord C, Beyssac O, et al. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system[J]. Nature, 2007, 450(7168): 407-410.
[11] Yang R C, Jin Z J, van Loon A J, et al. Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, central China: Implications for unconventional petroleum development[J]. AAPG Bulletin, 2017, 101(1): 95-117.
[12] Xian B Z, Wang J H, Gong C L, et al. Classification and sedimentary characteristics of lacustrine hyperpycnal channels: Triassic outcrops in the south Ordos Basin, central China[J]. Sedimentary Geology, 2018, 368: 68-82.
[13] Stow D A V, Shanmugam G. Sequence of structures in fine-grained turbidites: Comparison of recent deep-sea and ancient flysch sediments[J]. Sedimentary Geology, 1980, 25(1/2): 23-42.
[14] Schieber J, Southard J, Thaisen K. Accretion of mudstone beds from migrating floccule ripples[J]. Science, 2007, 318(5857): 1760-1763.
[15] Schieber J, Southard J B. Bedload transport of mud by floccule ripples: Direct observation of ripple migration processes and their implications[J]. Geology, 2009, 37(6): 483-486.
[16] Talling P J, Masson D G, Sumner E J, et al. Subaqueous sediment density flows: Depositional processes and deposit types[J]. Sedimentology, 2012, 59(7): 1937-2003.
[17] 宋明水,向奎,张宇,等. 泥质重力流沉积研究进展及其页岩油气地质意义:以东营凹陷古近系沙河街组三段为例[J]. 沉积学报,2017,35(4):740-751.

Song Mingshui, Xiang Kui, Zhang Yu, et al. Research progresses on muddy gravity flow deposits and their significances on shale oil and gas: A case study from the 3rd oil-member of the Paleogene Shahejie Formation in the Dongying Sag[J]. Acta Sedimentologica Sinica, 2017, 35(4): 740-751.
[18] 杨仁超,尹伟,樊爱萍,等. 鄂尔多斯盆地南部三叠系延长组湖相重力流沉积细粒岩及其油气地质意义[J]. 古地理学报,2017,19(5):791-806.

Yang Renchao, Yin Wei, Fan Aiping, et al. Fine-grained, lacustrine gravity-flow deposits and their hydrocarbon significance in the Triassic Yanchang Formation in southern Ordos Basin[J]. Journal of Palaeogeography, 2017, 19(5): 791-806.
[19] Hovikoski J, Therkelsen J, Nielsen L H, et al. Density-flow deposition in a fresh-water lacustrine rift basin, Paleogene bach long vi graben, vietnam[J]. Journal of Sedimentary Research, 2016, 86(9): 982-1007.
[20] Hizzett J L, Clarke J E H, Sumner E J, et al. Which triggers produce the most erosive, frequent, and longest runout turbidity currents on deltas?[J]. Geophysical Research Letters, 2018, 45(2): 855-863.
[21] Boulesteix K, Poyatos-Moré M, Flint S S, et al. Transport and deposition of mud in deep-water environments: Processes and stratigraphic implications[J]. Sedimentology, 2019, 66(7): 2894-2925.
[22] Hage S, Cartigny M J B, Sumner E J, et al. Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes[J]. Geophysical Research Letters, 2019, 46(20): 11310-11320.
[23] Jazi S D, Wells M G. Dynamics of settling-driven convection beneath a sediment-laden buoyant overflow: Implications for the length-scale of deposition in lakes and the coastal ocean[J]. Sedimentology, 2020, 67(1): 699-720.
[24] Baas J H, Best J L, Peakall J, et al. A phase diagram for turbulent, transitional, and laminar clay suspension flows[J]. Journal of Sedimentary Research, 2009, 79(4): 162-183.
[25] Baas J H, Best J L, Peakall J. Predicting bedforms and primary current stratification in cohesive mixtures of mud and sand[J]. Journal of the Geological Society, 2016, 173(1): 12-45.
[26] Baas J H, Best J L, Peakall J. Comparing the transitional behaviour of kaolinite and bentonite suspension flows[J]. Earth Surface Processes and Landforms, 2016, 41(13): 1911-1921.
[27] Sumner E J, Talling P J, Amy L A. Deposits of flows transitional between turbidity current and debris flow[J]. Geology, 2009, 37(11): 991-994.
[28] Baker M L, Baas J H, Malarkey J, et al. The effect of clay type on the properties of cohesive sediment gravity flows and their deposits[J]. Journal of Sedimentary Research, 2017, 87(11): 1176-1195.
[29] Craig M J, Baas J H, Amos K J, et al. Biomediation of submarine sediment gravity flow dynamics[J]. Geology, 2020, 48(1): 72-76.
[30] Kane I A, Pontén A S M. Submarine transitional flow deposits in the Paleogene gulf of Mexico[J]. Geology, 2012, 40(12): 1119-1122.
[31] Southern S J, Kane I A, Warchoł M J, et al. Hybrid event beds dominated by transitional-flow facies: Character, distribution and significance in the Maastrichtian Springar Formation, north-west Vøring Basin, Norwegian Sea[J]. Sedimentology, 2017, 64(3): 747-776.
[32] Baas J H, Tracey N D, Peakall J. Sole marks reveal deep-marine depositional process and environment: Implications for flow transformation and hybrid-event-bed models[J]. Journal of Sedimentary Research, 2021, 91(9): 986-1009.
[33] 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.

Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29.
[34] 杨田,操应长,田景春. 浅谈陆相湖盆深水重力流沉积研究中的几点认识[J]. 沉积学报,2021,39(1):88-111.

Yang Tian, Cao Yingchang, Tian Jingchun. Discussion on research of deep-water gravity flow deposition in lacustrine basin[J]. Acta Sedimentologica Sinica, 2021, 39(1): 88-111.
[35] 金杰华,操应长,王健,等. 涠西南凹陷陡坡带流一段上亚段异重流沉积新发现[J]. 地学前缘,2019,26(4):250-258.

Jin Jiehua, Cao Yingchang, Wang Jian, et al. New discovery of hyperpycnal flow deposits in the El x1 section of the steep slope belt in the Weixinan Sag[J]. Earth Science Frontiers, 2019, 26(4): 250-258.
[36] 杨希冰,赵彦璞,陆江,等. 北部湾盆地涠西南凹陷C洼湖底扇沉积特征及控制因素分析[J]. 地质科技情报,2019,38(1):18-28.

Yang Xibing, Zhao Yanpu, Lu Jiang, et al. Sedimentary characteristics and controlling factors of sublacustrine fans in Sag C, Weixinan Depression, Beibuwan Basin[J]. Geological Science and Technology Information, 2019, 38(1): 18-28.
[37] 付金华,牛小兵,淡卫东,等. 鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展[J]. 中国石油勘探,2019,24(5):601-614.

Fu Jinhua, Niu Xiaobing, Dan Weidong, et al. The geological characteristics and the progress on exploration and development of shale oil in Chang7 member of Mesozoic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2019, 24(5): 601-614.
[38] 杨仁超,何治亮,邱桂强,等. 鄂尔多斯盆地南部晚三叠世重力流沉积体系[J]. 石油勘探与开发,2014,41(6):661-670.

Yang Renchao, He Zhiliang, Qiu Guiqiang, et al. Late Triassic gravity flow depositional systems in the southern Ordos Basin[J]. Petroleum Exploration and Development, 2014, 41(6): 661-670.
[39] Haughton P, Davis C, McCaffrey W, et al. Hybrid sediment gravity flow deposits: Classification, origin and significance[J]. Marine and Petroleum Geology, 2009, 26(10): 1900-1918.
[40] Baas J H, Best J L, Peakall J. Depositional processes, bedform development and hybrid bed formation in rapidly decelerated cohesive (mud-sand) sediment flows[J]. Sedimentology, 2011, 58(7): 1953-1987.
[41] Baker M L, Baas J H. Mixed sand-mud bedforms produced by transient turbulent flows in the fringe of submarine fans: Indicators of flow transformation[J]. Sedimentology, 2020, 67(5): 2645-2671.
[42] Lowe D R, Guy M. Slurry-flow deposits in the Britannia Formation (Lower Cretaceous), North Sea: A new perspective on the turbidity current and debris flow problem[J]. Sedimentology, 2000, 47(1): 31-70.
[43] Baas J H, Best J L. Turbulence modulation in clay-rich sediment-laden flows and some implications for sediment deposition[J]. Journal of Sedimentary Research, 2002, 72(3): 336-340.
[44] 操应长,杨田,王艳忠,等. 深水碎屑流与浊流混合事件层类型及成因机制[J]. 地学前缘,2017,24(3):234-248.

Cao Yingchang, Yang Tian, Wang Yanzhong, et al. Types and genesis of deep-water hybrid event beds comprising debris flow and turbidity current[J]. Earth Science Frontiers, 2017, 24(3): 234-248.
[45] Yang T, Cao Y, Friis H, et al. Origin and evolution processes of hybrid event beds in the Lower Cretaceous of the Lingshan Island, eastern China[J]. Australian Journal of Earth Sciences, 2018, 65(4): 517-534.
[46] Pierce C S, Haughton P D W, Shannon P M, et al. Variable character and diverse origin of hybrid event beds in a sandy submarine fan system, Pennsylvanian Ross Sandstone Formation, western Ireland[J]. Sedimentology, 2018, 65(3): 952-992.
[47] Talling P J, Amy L A, Wynn R B, et al. Beds comprising debrite sandwiched within co-genetic turbidite: Origin and widespread occurrence in distal depositional environments[J]. Sedimentology, 2004, 51(1): 163-194.
[48] Stow D A V, Huc A Y, Bertran P. Depositional processes of black shales in deep water[J]. Marine and Petroleum Geology, 2001, 18(4): 491-498.
[49] Yawar Z, Schieber J. On the origin of silt laminae in laminated shales[J]. Sedimentary Geology, 2017, 360: 22-34.
[50] Stow D A V, Bowen A J. Origin of lamination in deep sea, fine-grained sediments[J]. Nature, 1978, 274(5669): 324-328.
[51] Blackbourn G A, Thomson M E. Britannia Field, UK North Sea: Petrographic constraints on Lower Cretaceous provenance, facies and the origin of slurry-flow deposits[J]. Petroleum Geoscience, 2000, 6(4): 329-343.
[52] Talling P J, Allin J, Armitage D A, et al. Key future directions for research on turbidity currents and their deposits[J]. Journal of Sedimentary Research, 2015, 85(2): 153-169.
[53] 付金华,李士祥,徐黎明,等. 鄂尔多斯盆地三叠系延长组长7段古沉积环境恢复及意义[J]. 石油勘探与开发,2018,45(6):936-946.

Fu Jinhua, Li Shixiang, Xu Liming, et al. Paleo-sedimentary environmental restoration and its significance of Chang 7 member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(6): 936-946.
[54] Ruebsam W, Pieńkowski G, Schwark L. Toarcian climate and carbon cycle perturbations-its impact on sea-level changes, enhanced mobilization and oxidation of fossil organic matter[J]. Earth and Planetary Science Letters, 2020, 546: 116417.
[55] 蔡进功,曾翔,韦海伦,等. 从水体到沉积物:探寻有机质的沉积过程及其意义[J]. 古地理学报,2019,21(1):49-66.

Cai Jingong, Zeng Xiang, Wei Hailun, et al. From water body to sediments: Exploring the depositional processes of organic matter and their implications[J]. Journal of Palaeogeography (Chinese Edition), 2019, 21(1): 49-66.
[56] Yang R C, Fan A P, Han Z Z, et al. Lithofacies and origin of the Late Triassic muddy gravity-flow deposits in the Ordos Basin, central China[J]. Marine and Petroleum Geology, 2017, 85: 194-219.
[57] Yang T, Cao Y C, Liu K Y, et al. Origin of deep-water fine-grained sediments as revealed from the Lower Cretaceous rifting basin sequence in the Lingshan Island, Yellow Sea, eastern China[J]. Journal of Asian Earth Sciences, 2019, 186: 104065.