[1] Hartley A J, Weissmann G S, Nichols G J, et al. Large distributive fluvial systems: Characteristics, distribution, and controls on development[J]. Journal of Sedimentary Research, 2010, 80(2): 167-183.
[2] Weissmann G S, Hartley A J, Nichols G J, et al. Fluvial form in modern continental sedimentary basins: Distributive fluvial systems[J]. Geology, 2010, 38(1): 39-42.
[3] 张昌民,胡威,朱锐,等. 分支河流体系的概念及其对油气勘探开发的意义[J]. 岩性油气藏,2017,29(3):1-9.

Zhang Changmin, Hu Wei, Zhu Rui, et al. Concept of distributive fluvial system and its significance to oil and gas exploration and development[J]. Lithologic Reservoirs, 2017, 29(3): 1-9.
[4] 张祥辉,张昌民,冯文杰,等. 苏干湖盆地周缘分支河流体系的几何形态及影响因素分析[J]. 地质学报,2019,93(11):2947-2959.

Zhang Xianghui, Zhang Changmin, Feng Wenjie, et al. Geometry and control factors of distributive fluvial system around the Sugan Lake Basin[J]. Acta Geologica Sinica, 2019, 93(11): 2947-2959.
[5] Weissmann G S, Hartley A J, Nichols G J, et al. Alluvial facies distributions in continental sedimentary basins—distributive fluvial systems[M]//Davidson S K, Leleu S, North C P. From river to rock record: The preservation of fluvial sediments and their subsequent interpretation. SEPM Society for Sedimentary Geology, 2011: 327-355.
[6] Davidson S K, Hartley A J, Weissmann G S, et al. Geomorphic elements on modern distributive fluvial systems[J]. Geomorphology, 2013, 180-181: 82-95.
[7] Hartley A J, Weissmann G S, Bhattacharayya P, et al. Soil development on modern distributive fluvial systems: Preliminary observations with implications for interpretation of paleosols in the rock record[M]//Driese S G, Nordt L C. New frontiers in paleopedology and terrestrial paleoclimatology: Paleosols and soil surface analog systems. SEPM (Society for Sedimentary Geology), 2013: 149-158.
[8] Weissmann G S, Hartley A J, Scuderi L A, et al. Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record: A review[J]. Geomorphology, 2015, 250: 187-219.
[9] Buehler H A, Weissmann G S, Scuderi L A, et al. Spatial and temporal evolution of an avulsion on the Taquari River distributive fluvial system from satellite image analysis[J]. Journal of Sedimentary Research, 2011, 81(8): 630-640.
[10] Nyberg B, Buckley S J, Howell J A, et al. Geometric attribute and shape characterization of modern depositional elements: A quantitative GIS method for empirical analysis[J]. Computers & Geosciences, 2015, 82: 191-204.
[11] Bilmes A, Veiga G D. Linking mid-scale distributive fluvial systems to drainage basin area: Geomorphological and sedimentological evidence from the endorheic Gastre Basin, Argentina[M]//Ventra D, Clarke L E. Geology and geomorphology of alluvial and fluvial fans: Terrestrial and planetary perspectives. Geological Society, London, Special Publications, 2018: 265-279.
[12] Davidson S K, Hartley A J. A quantitative approach to linking drainage area and distributive-fluvial-system area in modern and ancient endorheic basins[J]. Journal of Sedimentary Research, 2014, 84(11): 1005-1020.
[13] Hartley A J, Weissmann G S, Scuderi L. Controls on the apex location of large deltas[J]. Journal of the Geological Society, 2017, 174(1): 10-13.
[14] Sahu S, Saha D, Dayal S. Sone megafan: A non-Himalayan megafan of craton origin on the southern margin of the middle Ganga Basin, India[J]. Geomorphology, 2015, 250: 349-369.
[15] 张昌民,朱锐,赵康,等. 从端点走向连续:河流沉积模式研究进展述评[J]. 沉积学报,2017,35(5):926-944.

Zhang Changmin, Zhu Rui, Zhao Kang, et al. From end member to continuum: Review of fluvial facies model research[J]. Acta Sedimentologica Sinica, 2017, 35(5): 926-944.
[16] McGlue M M, Smith P H, Zani H, et al. An integrated sedimentary systems analysis of the RíO Bermejo (Argentina): Megafan character in the overfilled southern Chaco Foreland Basin[J]. Journal of Sedimentary Research, 2016, 86(12): 1359-1377.
[17] 肖安成,杨树锋,李曰俊,等. 塔里木盆地巴楚—柯坪地区新生代断裂系统[J]. 石油与天然气地质,2005,26(1):78-85.

Xiao Ancheng, Yang Shufeng, Li Yuejun, et al. A studying of Cenozoic fracture systems in Bachu-Kalpin area, Tarim Basin[J]. Oil & Gas Geology, 2005, 26(1): 78-85.
[18] 杨庚,郭华. 塔里木盆地西北缘柯坪逆冲构造带与巴楚隆起的叠加关系[J]. 铀矿地质,2003,19(1):1-7.

Yang Geng, Guo Hua. Superposed relationship between Kalping thrust belt and Bachu uplift, northwest Tarim[J]. Uranium Geology, 2003, 19(1): 1-7.
[19] Turner S A, Cosgrove J W, Liu J G. Controls on lateral structural variability along the Keping Shan Thrust Belt, SW Tien Shan Foreland, China[J]. Geological Society, London, Special Publications, 2010, 348(1): 71-85.
[20] 王平在,何登发,雷振宇,等. 中国中西部前陆冲断带构造特征[J]. 石油学报,2002,23(3):11-17.

Wang Pingzai, He Dengfa, Lei Zhengyu, et al. Tectonic features of foreland thrust belts in central and western China[J]. Acta Petrolei Sinica, 2002, 23(3): 11-17.
[21] 肖安成,贾承造,杨树锋,等. 中国南天山西部冲断褶皱系前缘区的运动学特征[J]. 沉积学报,2000,18(3):439-444.

Xiao Ancheng, Jia Chengzao, Yang Shufeng, et al. The kinematics characters of the thrust-fold belts western front regions in southern Tianshan, China[J]. Acta Sedimentologica Sinica, 2000, 18(3): 439-444.
[22] 肖安成,杨树锋,李曰俊,等. 塔里木盆地巴楚隆起断裂系统主要形成时代的新认识[J]. 地质科学,2005,40(2):291-302.

Xiao Ancheng, Yang Shufeng, Li Yuejun, et al. Main period for creation of fracture system in the Bachu uplift, Tarim Basin[J]. Chinese Journal of Geology, 2005, 40(2): 291-302.
[23] 肖安成,杨树锋,王清华,等. 塔里木盆地巴楚—柯坪地区南北向断裂系统的空间对应性研究[J]. 地质科学,2002,37(增刊1):64-72.

Xiao Ancheng, Yang Shufeng, Wang Qinghua, et al. Corresponding relation of S-N-striking fault systems in the Bachu-Kalpin area, Tarim Basin[J]. Chinese Journal of Geology, 2002, 37(Suppl.1): 64-72.
[24] 周新源,苗继军. 塔里木盆地西北缘前陆冲断带构造分段特征及勘探方向[J]. 大地构造与成矿学,2009,33(1):10-18.

Zhou Xinyuan, Miao Jijun. The tectonic segmentation and hydrocarbon exploration of the foreland thrust belt in the northwestern Tarim Basin[J]. Geotectonica et Metallogenia, 2009, 33(1): 10-18.
[25] Dong S W, Gao R, Yin A, et al. What drove continued continent-continent convergence after ocean closure? Insights from high-resolution seismic-reflection profiling across the Daba Shan in central China[J]. Geology, 2013, 41(6): 671-674.
[26] 何文渊,李江海,钱祥麟,等. 塔里木盆地柯坪断隆断裂构造分析[J]. 中国地质,2002,29(1):37-43.

He Wenyuan, Li Jianghai, Qian Xianglin, et al. Analysis of fault structures in the Kalpin fault uplift, Tarim Basin[J]. Geology in China, 2002, 29(1): 37-43.
[27] 孙家振. 前陆盆地逆冲断层类型与形成机制:以鄂尔多斯地块西缘和塔里木盆地北缘为例[J]. 石油与天然气地质,1991,12(4):406-416.

Sun Jiazhen. Types and formation mechanism of the thrusts in foreland basins[J]. Oil & Gas Geology, 1991, 12(4): 406-416.
[28] Yang X P, Ran Y K, Cheng J W, et al. Measurement of terrace deformation and crustal shortening of some renascent fold zones within Kalpin nappe structure[J]. Science in China Series D: Earth Sciences, 2007, 50(1): 33-42.
[29] 汤良杰,邱海峻,云露,等. 塔里木盆地北缘—南天山造山带盆—山耦合和构造转换[J]. 地学前缘,2012,12(5):195-204.

Tang Liangjie, Qiu Haijun, Yun Lu, et al. Analysis of basin mountain coupling and transition of the northern Tarim Basin - southern Tianshan Orogenic Belt[J]. Earth Science Frontiers, 2012, 12(5): 195-204.
[30] 苗继军. 塔里木盆地西北缘南天山前陆冲断带构造特征与含油气性[D]. 北京:中国石油勘探开发研究院,2005.

Miao Jijun. The structural and petroliferous characteristics of the South Tian Shan foreland fold thrust belt in the northwestern Tarim Basin, West China[D]. Beijing: Research Institute of Petroleum Exploration and Development, 2005.
[31] 王国林,李曰俊,孙建华,等. 塔里木盆地西北缘柯坪冲断带构造变形特征[J]. 地质科学,2009,44(1):50-62.

Wang Guolin, Li Yuejun, Sun Jianhua, et al. Structural deformation characteristics of the Kalpin thrust belt, NW Tarim[J]. Chinese Journal of Geology, 2009, 44(1): 50-62.
[32] 杨庚,石昕,贾承造,等. 塔里木盆地西北缘柯坪—巴楚地区皮羌断裂与色力布亚断裂空间关系[J]. 铀矿地质,2008,24(4):201-207.

Yang Geng, Shi Xin, Jia Chengzao, et al. Spatial relationship between Piqiang fault and Selibuya fault in Keping-Bachu district, northwest Tarim Basin[J]. Uranium Geology, 2008, 24(4): 201-207.
[33] Chang J, Li D, Min K, et al. Cenozoic deformation of the Kalpin fold-and-thrust belt, southern Chinese Tian Shan: New insights from low-T thermochronology and sandbox modeling[J]. Tectonophysics, 2019, 766: 416-432.
[34] 马德明,陈江力,曾昌民,等. 塔里木盆地西北缘柯坪冲断带的构造变形特征[J]. 地质力学学报,2007,13(4):340-347.

Ma Deming, Chen Jiangli, Zeng Changmin, et al. Structural deformation characteristics of the Kalpin thrust belt on the northwestern margin of the Tarim Basin[J]. Journal of Geomechanics, 2007, 13(4): 340-347.
[35] 王进伟,张忠平. 新疆塔里木盆地柯坪断隆构造演化与铀成矿特征[J]. 现代矿业,2017(7):127-130,135.

Wang Jinwei, Zhang Zhongping. Tectonic evolution and uranium metallogenic characteristics of Keping Uplift in Tarim Basin, Xinjiang[J]. Modern Mining, 2017(7): 127-130, 135.
[36] 高振家,吴绍祖,李永安,等. 新疆阿克苏—柯坪地区震旦纪-寒武纪地层研究[J]. 科学通报,1981(12):741-743.

Gao Zhenjia, Wu Shaozu, Li Yongan, et al. Sinian-Cambrian stratigraphy of Aksu-Keping area, Xinjiang[J]. Chinese Science Bulletin, 1981(12): 741-743.
[37] Turner S A. Late Neoproterozoic to Early Palaeozoic evolution and hydrocarbon prospectivity of the NW Tarim Basin, China[J]. Geological Society, London, Special Publications, 2012, 366(1): 163-175.
[38] 钟梁旋子,傅恒. 塔里木盆地柯坪塔格组沉积格局与演化[J]. 四川文理学院学报,2012,22(5):66-68.

Zhong Liangxuanzi, Fu Heng. Depositional framework and evolution of Kepingtage Formation in Tarim Basin[J]. Sichuan University of Arts and Science Journal, 2012, 22(5): 66-68.
[39] 严宇红,沈永平,李宇安,等. 新疆天山南麓柯坪河水文特性与洪水分析[J]. 冰川冻土,2007,29(5):824-829.

Yan Yuhong, Shen Yongping, Li Yu’an, et al. Hydrological feature and flood analysis in Keping River on south slope of Tianshan Mountains, Xinjiang[J]. Journal of Glaciology and Geocryology, 2007, 29(5): 824-829.
[40] 宁新伟. 新疆柯坪县水资源承载能力分析[J]. 地下水,2010,32(4):155,168.

Ning Xinwei. Analysis of water resources carrying capacity in Keping, Xinjiang[J]. Underground Water, 2010, 32(4): 155, 168.
[41] Zani H, Assine M L, McGlue M M. Remote sensing analysis of depositional landforms in alluvial settings: Method development and application to the Taquari megafan, Pantanal (Brazil)[J]. Geomorphology, 2012, 161-162: 82-92.
[42] Gulliford A R, Flint S S, Hodgson D M. Crevasse splay processes and deposits in an ancient distributive fluvial system: The Lower Beaufort Group, South Africa[J]. Sedimentary Geology, 2017, 358: 1-18.