[1] Ekart D D, Cerling T E, Montanez I P, et al. A 400 million year carbon isotope record of pedogenic carbona: Implications for paleoatomospheric carbon dioxide[J]. American Journal of Science, 1999, 29(10): 805-827.
[2] Joachimski M M, Lai X L, Shen S Z, et al. Climate warming in the latest Permian and the Permian-Triassic mass extinction[J]. Geology, 2012, 40(3): 195-198.
[3] Retallack G J. Permian and Triassic greenhouse crises[J]. Gondwana Research, 2013, 24(1): 90-103.
[4] Chen J, Shen S Z, Li X H, et al. High-resolution SIMS oxygen isotope analysis on conodont apatite from South China and implications for the End-Permian mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 26-38.
[5] Payne J L, Turchyn A V, Paytan A, et al. Calcium isotope constraints on the End-Permian mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19): 8543-8548.
[6] Clarkson M O, Kasemann S A, Wood R A, et al. Ocean acidification and the Permo-Triassic mass extinction[J]. Science, 2015, 348(6231): 229-232.
[7] Song H J, Song H Y, Tong J N, et al. Conodont calcium isotopic evidence for multiple shelf acidification events during the Early Triassic[J]. Chemical Geology, 2021, 562: 120038.
[8] Sephton M A, Looy C V, Brinkhuis H, et al. Catastrophic soil erosion during the End-Permian biotic crisis[J]. Geology, 2005, 33(12): 941-944.
[9] Algeo T J, Chen Z Q, Fraiser M L, et al. Terrestrial–marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(1/2): 1-11.
[10] Wei H Y, Shen J, Schoepfer S D, et al. Environmental controls on marine ecosystem recovery following mass extinctions, with an example from the Early Triassic[J]. Earth-Science Reviews, 2015, 149: 108-135.
[11] Tian L, Tong J N, Bottjer D, et al. Rapid carbonate depositional changes following the Permian-Triassic mass extinction: Sedimentary evidence from South China[J]. Journal of Earth Science, 2015, 26(2): 166-180.
[12] Cao Y, Song H Y, Algeo T J, et al. Intensified chemical weathering during the Permian-Triassic transition recorded in terrestrial and marine successions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 519: 166-177.
[13] 王艳艳. 川西北地区早三叠世早期错时相灰岩特征及其意义[D]. 成都:成都理工大学,2012.

Wang Yanyan. Characters and importances of earliest Triassic anachronistic limestones in northwestern Sichuan area[D]. Chengdu: Chengdu University of Technology, 2012.
[14] Li F, Yan J X, Chen Z Q, et al. Global oolite deposits across the Permian-Triassic boundary: A synthesis and implications for palaeoceanography immediately after the End-Permian biocrisis[J]. Earth-Science Reviews, 2015, 149: 163-180.
[15] 李飞. 二叠纪—三叠纪之交鲕粒结构特征及时空分布对古海洋环境的指示[D]. 武汉:中国地质大学,2016.

Li Fei. The spatial and temporal distributions of ooids and their petrological and geochemical compositions: Implications for paleoceanographic conditions in the Permian-Triassic transition[D]. Wuhan: China University of Geosciences, 2016.
[16] Li F, Gong Q L, Burne R V, et al. Ooid factories operating under hothouse conditions in the earliest Triassic of South China[J]. Global and Planetary Change, 2019, 172: 336-354.
[17] Bathurst R G C. Carbonate sediments and their diagenesis[M]. 2nd ed. Amsterdam: Elsevier Publishing Co., 1975.
[18] Simone L. Ooids: A review[J]. Earth-Science Reviews, 1980, 16: 319-355.
[19] Peryt T. Coated grains[M]. Berlin: Springer-Verlag, 1983.
[20] Tucker M E, Wright V P, Dickson J A D. Carbonate sedimentology[M]. Oxford: Blackwell Science, 1990.
[21] Flügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. Berlin: Springer, 2004.
[22] Hardie L A. Secular variations in Precambrian seawater chemistry and the timing of Precambrian aragonite seas and calcite seas[J]. Geology, 2003, 31(9): 785-788.
[23] Tian L, Bottjer D J, Tong J N, et al. Distribution and size variation of Ooids in the Aftermath of the Permian–Triassic mass extinction[J]. PALAIOS, 2015, 30(9): 714-727.
[24] Trower E J, Lamb M P, Fischer W W. Experimental evidence that ooid size reflects a dynamic equilibrium between rapid precipitation and abrasion rates[J]. Earth and Planetary Science Letters, 2017, 468: 112-118.
[25] Trower E J, Cantine M D, Gomes M L, et al. Active ooid growth driven by sediment transport in a high-energy shoal, little ambergris cay, Turks and Caicos Islands[J]. Journal of Sedimentary Research, 2018, 88(9): 1132-1151.
[26] Sipos A A, Domokos G, Jerolmack D J. Shape evolution of ooids: A geometric model[J]. Scientific Reports, 2018, 8(1): 1758.
[27] Reeder S L, Rankey E C. Interactions between tidal flows and ooid shoals, northern Bahamas[J]. Journal of Sedimentary Research, 2008, 78(3): 175-186.
[28] Rankey E C, Reeder S L. Tidal sands of the Bahamian archipelago[M]//Davis R A Jr, Dalrymple R W. Principles of tidal sedimentology. Dordrecht: Springer, 2011: 537-565.
[29] Summons R E, Bird L R, Gillespie A L, et al. Lipid biomarkers in ooids from different locations and ages: Evidence for a common bacterial flora[J]. Geobiology, 2013, 11(5): 420-436.
[30] 周书欣. 碳酸盐鲕粒的成因与鉴别[J]. 地质地球化学,1982(1):16-19.

Zhou Shuxin. Origin and identification of carbonate oolites[J]. Geochemistry, 1982(1): 16-19.
[31] Zhao D F, Hu G, Wang L C, et al. Sedimentary characteristics and origin of dolomitic ooids of the terminal Ediacaran Dengying Formation at Yulin (Chongqing, South China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 544: 109601.
[32] Beaupré S R, Roberts M L, Burton J R, et al. Rapid, high-resolution 14C chronology of ooids[J]. Geochimica et Cosmochimica Acta, 2015, 159: 126-138.
[33] Li X W, Trower E J, Lehrmann D J, et al. Implications of giant ooids for the carbonate chemistry of Early Triassic seawater[J]. Geology, 2020, 49(2): 156-161.
[34] 罗志立. 峨眉地裂运动和四川盆地天然气勘探实践[J]. 新疆石油地质,2009,30(4):419-424.

Luo Zhili. Emei taphrogenesis and natural gas prospecting in Sichuan Basin[J]. Xinjiang Petroleum Geology, 2009, 30(4): 419-424.
[35] 杜远生,殷鸿福,王治平. 秦岭造山带晚加里东—早海西期的盆地格局与构造演化[J]. 地球科学:中国地质大学学报,1997,22(4):401-405.

Du Yuansheng, Yin Hongfu, Wang Zhiping. The Late Caledonian-early hercynian basin’s framework and tectonic evolution of Qinling Orogenic Belt[J]. Earth Science: Journal of China University of Geosciences, 1997, 22(4): 401-405.
[36] 王兴志,张帆,马青,等. 四川盆地东部晚二叠世—早三叠世飞仙关期礁、滩特征与海平面变化[J]. 沉积学报,2002,20(2):249-254.

Wang Xingzhi, Zhang Fan, Ma Qing, et al. The characteristics of reef and bank and the fluctuation of sea-level in Feixianguan Period of Late Permian-Early Triassic, east Sichuan Basin[J]. Acta Sedimentologica Sinica, 2002, 20(2): 249-254.
[37] 马永生,牟传龙,郭彤楼,等. 四川盆地东北部飞仙关组层序地层与储层分布[J]. 矿物岩石,2005,25(4):73-79.

Ma Yongsheng, Mou Chuanlong, Guo Tonglou, et al. Sequence stratigraphy and reservoir distribution of Feixianguan Formation in northeastern Sichuan[J]. Journal of Mineralogy and Petrology, 2005, 25(4): 73-79.
[38] 马永生,牟传龙,谭钦银,等. 关于开江—梁平海槽的认识[J]. 石油与天然气地质,2006,27(3):326-331.

Ma Yongsheng, Mou Chuanlong, Tan Qinyin, et al. A discussion on Kaijiang-Liangping ocean trough[J]. Oil & Gas Geology, 2006, 27(3): 326-331.
[39] 乔占峰. 川东北地区普光气田飞仙关组层序地层与储层精细研究[D]. 成都:成都理工大学,2008.

Qiao Zhanfeng. The detailed study of the sequence stratigraphy and the reservoir of the Feixianguan Formation in the Puguang gasfield in the northeast of the Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2008.
[40] 刘树根,王一刚,孙玮,等. 拉张槽对四川盆地海相油气分布的控制作用[J]. 成都理工大学学报(自然科学版),2016,43(1):1-23.

Liu Shugen, Wang Yigang, Sun Wei, et al. Control of intracratonic sags on the hydrocarbon accumulations in the marine strata across the Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2016, 43(1): 1-23.
[41] 邢凤存,陆永潮,郭彤楼,等. 碳酸盐岩台地边缘沉积结构差异及其油气勘探意义:以川东北早三叠世飞仙关期台地边缘带为例[J]. 岩石学报,2017,33(4):1305-1316.

Xing Fengcun, Lu Yongchao, Guo Tonglou, et al. Sedimentary texture diversity of different carbonate platform margins and it its significance for petroleum exploration: A case study of carbonate platform margins in Feixianguan Period of the Early Triassic, NE Sichuan Basin, China[J]. Acta Petrologica Sinica, 2017, 33(4): 1305-1316.
[42] 王一刚,刘划一,文应初,等. 川东北飞仙关组鲕滩储层分布规律、勘探方法与远景预测[J]. 天然气工业,2002,22(增刊1):14-19.

Wang Yigang, Liu Huayi, Wen Yingchu, et al. Distribution law, exploration method and prospectiveness prediction of the oolitic beach reservoirs in Feixianguan Formation in northeast Sichuan Basin[J]. Natural Gas Industry, 2002, 22(Suppl.1): 14-19.
[43] 李岩峰,刘殊,曾晓. 川东飞仙关组鲕滩储层地震响应特征及预测[J]. 石油物探,2005,44(3):236-239.

Li Yanfeng, Liu Shu, Zeng Xiao. Seismic response feature and prediction of oolitic beach reservoir of Feixianguan Formation in east Sichuan Basin[J]. Geophysical Prospecting for Petroleum, 2005, 44(3): 236-239.
[44] 马永生,郭旭升,凡睿. 川东北普光气田飞仙关组鲕滩储集层预测[J]. 石油勘探与开发,2005,32(4):60-64.

Ma Yongsheng, Guo Xusheng, Fan Rui. Reservoir prediction of Feixianguan Formation in Puguang gas field, northeast Sichuan province[J]. Petroleum Exploration and Development, 2005, 32(4): 60-64.
[45] 敬朋贵. 川东北地区礁滩相储层预测技术与应用[J]. 石油物探,2007,46(4):363-369.

Jing Penggui. Reservoir prediction technology of reef-flat facies in northeast Sichuan province and its application[J]. Geophysical Prospecting for Petroleum, 2007, 46(4): 363-369.
[46] Ma Y S, Mou C L, Tan Q Y, et al. Reef-bank features and their constraint to reservoirs of natural gas, from Permian Changxing Formation to Triassic Feixianguan Formation in Daxian-Xuanhan area of Sichuan province, South China[J]. Earth Science Frontiers, 2007, 14(1): 182-192.
[47] 牟传龙,马永生,谭钦银,等. 四川通江—南江—巴中地区长兴组—飞仙关组沉积模式[J]. 地质学报,2007,81(6):820-826.

Mou Chuanlong, Ma Yongsheng, Tan Qinyin, et al. Sedimentary model of the Changxing-Feixianguan Formations in the Tongjiang-Nanjiang-Bazhong area, Sichuan[J]. Acta Geologica Sinica, 2007, 81(6): 820-826.
[48] 段金宝,黄仁春,程胜辉,等. 川东北元坝地区长兴期—飞仙关期碳酸盐岩台地沉积体系及演化[J]. 成都理工大学学报(自然科学版),2008,35(6):663-668.

Duan Jinbao, Huang Renchun, Cheng Shenghui, et al. Depositional system and the evolution of carbonate rock platform of Changxing-Feixianguan Period in Yuanba area of northeast Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2008, 35(6): 663-668.
[49] 程锦翔,谭钦银,郭彤楼,等. 川东北元坝地区长兴组—飞仙关组碳酸盐台地边缘沉积特征及演化[J]. 沉积与特提斯地质,2010,30(4):29-37.

Cheng Jinxiang, Tan Qinyin, Guo Tonglou, et al. Sedimentary characteristics and evolution of the carbonate platform-margins in the Changxing Formation-Feixianguan Formation in Yuanba, northeastern Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2010, 30(4): 29-37.
[50] Beukes N J.Ooids and oolites of the proterophytic boomplaas formation, supergroup transvaal, west griqualand, South Africa[M]//Peryt T M. Coated grains. Berlin, Heidelberg: Springer, 1983: 199-214.
[51] Zempolich W G, Baker P A. Experimental and natural mimetic dolomitization of aragonite ooids[J]. Journal of Sedimentary Research, 1993, 63(4): 596-606.
[52] Friedman G M. Comparison of moment measures for sieving and thin-section data in sedimentary petrological studies[J]. Journal of Sedimentary Research, 1962, 32(1): 15-25.
[53] 朱筱敏. 沉积岩石学[M]. 4版. 北京:石油工业出版社,2008.

Zhu Xiaomin. Sedimentary petrology [M]. 4th ed. Beijing: Petroleum Industry Press, 2008.
[54] 杜天澍,徐辉. 碳酸盐岩地层中鲕粒的分类[J]. 石油实验地质,1983,5(4):285-288.

Du Tianshu, Xu Hui. Classification of oolitic grains in carbonate formations[J]. Experiment Petroleum Geology, 1983, 5(4): 285-288.
[55] 王英华,杨承运,张秀莲. 鲕粒的结构变化与成岩作用性质和强度的关系[J]. 沉积学报,1983,1(2):73-83.

Wang Yinghua, Yang Chengyun, Zhang Xiulian. Relationship between the changes of ooidal texture and the property and strength of diagenesis[J]. Acta Sedimentologica Sinica, 1983, 1(2): 73-83.
[56] 张秀莲. 鲕粒在成岩作用中的次生变化及其意义[J]. 大庆石油地质与开发,1984,3(4):377-388.

Zhang Xiulian. Secondary variation of oolitic grains and its significance in the study of diagenesis[J]. Petroleum Geology & Oilfield Development in Daqing, 1984, 3(4): 377-388.
[57] Sumner D Y, Grotzinger J P. Numerical modeling of Ooid size and the problem of Neoproterozoic giant Ooids[J]. Journal of Sedimentary Petrology, 1993, 63(5): 974-982.
[58] 梅冥相. 显生宙罕见的巨鲕及其鲕粒形态多样性的意义:以湖北利川下三叠统大冶组为例[J]. 现代地质,2008,22(5):683-698.

Mei Mingxiang. Implication for the unusual giant oolites of the phanerozoic and their morphological diversity: A case study from the Triassic Daye Formation at the Lichuan section in Hubei province, South China[J]. Geoscience, 2008, 22(5): 683-698.
[59] 李飞,王夏,薛武强,等. 一种新的错时相沉积物:巨鲕及其环境意义[J]. 沉积学报,2010,28(3):585-595.

Li Fei, Wang Xia, Xue Wuqiang, et al. Origin and environmental significance of giant ooids in the Early Triassic: A new kind of anachronistic facies[J]. Acta Sedimentologica Sinica, 2010, 28(3): 585-595.
[60] 代明月,齐永安,陈尧,等. 豫西渑池地区寒武系第三统张夏组的巨鲕及其成因[J]. 古地理学报,2014,16(5):726-734.

Dai Mingyue, Qi Yong’an, Chen Yao, et al. Giant ooids and their genetic analysis from the Zhangxia Formation of Cambrian Series 3 in Mianchi area, western Henan province[J]. Journal of Palaeogeography, 2004, 16(5): 726-734.
[61] 范鸿,姬国锋,时志强,等. 巨鲕成因探讨:来自上扬子地区下寒武统、中泥盆统及下三叠统的证据[J]. 山东科技大学学报(自然科学版),2015,34(6):16-24.

Fan Hong, Ji Guofeng, Shi Zhiqiang, et al. Origin of giant ooids: Evidence from Lower Cambrian, Middle Devonian and Lower Triassic in Upper Yangtze region[J]. Journal of Shandong University of Science and Technology (Natural Science), 2015, 34(6): 16-24.
[62] Li F, Yan J X, Burne R V, et al. Paleo-seawater REE compositions and microbial signatures preserved in laminae of Lower Triassic ooids[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 486: 96-107.
[63] Li F, Yan J X, Algeo T, et al. Paleoceanographic conditions following the end-Permian mass extinction recorded by giant ooids (Moyang, South China)[J]. Global and Planetary Change, 2013, 105: 102-120.
[64] 段雄. 上扬子地区早寒武世及早三叠世巨鲕灰岩对比研究[D]. 成都:成都理工大学,2015.

Duan Xiong. Contrastive research about giant ooids of Early Cambrian and Early Triassic in Upper Yangtz area[D]. Chengdu: Chengdu University of Technology, 2015.
[65] 郭芪恒,金振奎,史书婷,等. 鲕粒粒度特征及其指示意义:以北京西山下苇甸寒武系张夏组剖面为例[J]. 沉积学报,2020,38(4):737-746.

Guo Qiheng, Jin Zhenkui, Shi Shuting, et al. Characteristics of ooid size and its environmental significance: A case study from the Cambrian Zhangxia Formation at Xiaweidian outcrop, Beijing[J]. Acta Sedimentologica Sinica, 2020, 38(4): 737-746.
[66] 赵东方,胡广,张文济,等. 渝北巫溪鱼鳞剖面灯影组鲕粒沉积特征及其地质意义[J]. 地质论评,2018,64(1):191-202.

Zhao Dongfang, Hu Guang, Zhang Wenji, et al. Sedimentary characteristics of ooids of Sinian (Ediacaran) Dengying Formation on the Yulin section in Wuxi, Chongqing, and geological implications[J]. Geological Review, 2018, 64(1): 191-202.
[67] 付坤荣,黄理力,祝怡,等. 塔中地区晚奥陶世碳酸盐台缘与台内沉积差异:定性和定量的碳酸盐岩微相综合分析[J]. 沉积学报,2018,36(1):101-109.

Fu Kunrong, Huang Lili, Zhu Yi, et al. The depositional diversity between platform margin and platform interior on the Late Ordovician carbonate rimmed-platform of Tazhong area: A case study of qualitative and quantitative integrated microfacies analysis[J]. Acta Sedimentologica Sinica, 2018, 36(1): 101-109.