[1] Sepkoski J J. Patterns of Phanerozoic extinction: A perspective from global data bases[M]//Walliser O H. Global events and event stratigraphy in the Phanerozoic. Berlin, Heidelberg: Springer, 1996: 53-80.
[2] McGhee G R, Clapham M E, Sheehan P M, et al. A new ecological-severity ranking of major Phanerozoic biodiversity crises[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 370: 260-270.
[3] Pálfy J, Smith P L. Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism[J]. Geology, 2000, 28(8): 747-750.
[4] Hesselbo S P, Robinson S A, Surlyk F, et al. Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation: A link to initiation of massive volcanism?[J]. Geology, 2002, 30(3): 251-254.
[5] Lucas S G, Tanner L H. Tetrapod biostratigraphy and biochronology of the Triassic-Jurassic transition on the southern Colorado Plateau, USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 244(1/2/3/4): 242-256.
[6] Akikuni K, Hori R S, Vajda V, et al. Stratigraphy of Triassic-Jurassic boundary sequences from the Kawhia coast and Awakino gorge, Murihiku Terrane, New Zealand[J]. Stratigraphy, 2010, 7(1): 7-24.
[7] de Lamotte D F, Fourdan B, Leleu S, et al. Style of rifting and the stages of Pangea breakup[J]. Tectonics, 2015, 34(5): 1009-1029.
[8] McElwain J C, Beerling D J, Woodward F I. Fossil plants and global warming at the Triassic-Jurassic boundary[J]. Science, 1999, 285(5432): 1386-1390.
[9] Retallack G J. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles[J]. Nature, 2001, 411(6835): 287-290.
[10] Beerling D J, Berner R A. Biogeochemical constraints on the Triassic-Jurassic boundary carbon cycle event[J]. Global Biogeochemical Cycles, 2002, 16(3): 1036.
[11] Steinthorsdottir M, Jeram A J, McElwain J C. Extremely elevated CO2 concentrations at the Triassic/Jurassic boundary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(3/4): 418-432.
[12] Hallam A. A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 167(1/2): 23-37.
[13] Lindström S, Erlström M. The Late Rhaetian transgression in southern Sweden: Regional (and global) recognition and relation to the Triassic-Jurassic boundary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 241(3/4): 339-372.
[14] Hallam A, Wignall P B. Mass extinctions and sea-level changes[J]. Earth-Science Reviews, 1999, 48(4): 217-250.
[15] Pálfy J, Demény A, Hass J, et al. Carbon isotope anomaly and other geochemical changes at the Triassic-Jurassic boundary from a marine section in Hungary[J]. Geology, 2001, 29(11): 1047-1050.
[16] Greene S E, Martindale R C, Ritterbush K A, et al. Recognising ocean acidification in deep time: An evaluation of the evidence for acidification across the Triassic-Jurassic boundary[J]. Earth-Science Reviews, 2012, 113(1/2): 72-93.
[17] Jaraula C M B, Grice K, Twitchett R J, et al. Elevated pCO2 leading to Late Triassic extinction, persistent photic zone euxinia, and rising sea levels[J]. Geology, 2013, 41(9): 955-958.
[18] Hesselbo S P, Robinson S A, Surlyk F. Sea-level change and facies development across potential Triassic-Jurassic boundary horizons, SW Britain[J]. Journal of the Geological Society, 2004, 161(3): 365-379.
[19] Kiessling W, Aberhan M, Brenneis B, et al. Extinction trajectories of benthic organisms across the Triassic-Jurassic boundary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 244(1/2/3/4): 201-222.
[20] van de Schootbrugge B, Tremolada F, Rosenthal Y, et al. End-Triassic calcification crisis and blooms of organic-walled ‘disaster species’[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 244(1/2/3/4): 126-141.
[21] van de Schootbrugge B, Quan T M, Lindström S, et al. Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism[J]. Nature Geoscience, 2009, 2(8): 589-594.
[22] Bonis N R, Ruhl M, Kürschner W M. Climate change driven black shale deposition during the end-Triassic in the western Tethys[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 290(1/2/3/4): 151-159.
[23] Ruhl M, Deenen M H L, Abels H A, et al. Astronomical constraints on the duration of the Early Jurassic Hettangian stage and recovery rates following the end-Triassic mass extinction (St Audrie’s Bay/East Quantoxhead, UK)[J]. Earth and Planetary Science Letters, 2010, 295(1/2): 262-276.
[24] Belcher C M, Mander L, Rein G, et al. Increased fire activity at the Triassic/Jurassic boundary in greenland due to climate-driven floral change[J]. Nature Geoscience, 2010, 3(6): 426-429.
[25] Ruhl M, Kürschner W M, Krystyn L. Triassic-Jurassic organic carbon isotope stratigraphy of key sections in the western Tethys realm (Austria)[J]. Earth and Planetary Science Letters, 2009, 281(3/4): 169-187.
[26] Ruhl M, Bonis N R, Reichart G J, et al. Atmospheric carbon injection linked to end-Triassic mass extinction[J]. Science, 2011, 333(6041): 430-434.
[27] Whiteside J H, Olsen P E, Eglinton T, et al. Compound-specific carbon isotopes from Earth's largest flood basalt eruptions directly linked to the end-Triassic mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(15): 6721-6725.
[28] Bachan A, van de Schootbrugge B, Fiebig J, et al. Carbon cycle dynamics following the end-Triassic mass extinction: Constraints from paired δ 13Ccarb and δ 13Corg records[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(9): Q09008.
[29] van de Schootbrugge B, Wignall P B. A tale of two extinctions: Converging end-Permian and end-Triassic scenarios[J]. Geological Magazine, 2016, 153(2): 332-354.
[30] Guex J, Bartolini A, Atudorei V, et al. High-resolution ammonite and carbon isotope stratigraphy across the Triassic-Jurassic boundary at New York Canyon (Nevada)[J]. Earth and Planetary Science Letters, 2004, 225(1/2): 29-41.
[31] Ward P D, Garrison G H, Haggart J W, et al. Isotopic evidence bearing on Late Triassic extinction events, Queen Charlotte Islands, British Columbia, and implications for the duration and cause of the Triassic/Jurassic mass extinction[J]. Earth and Planetary Science Letters, 2004, 224(3/4): 589-600.
[32] van de Schootbrugge B, Payne J L, Tomasovych A, et al. Carbon cycle perturbation and stabilization in the wake of the Triassic-Jurassic boundary mass-extinction event[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04028.
[33] Tanner L H. Cyclostratigraphic record of the Triassic: A critical examination[J]. Geological Society, London, Special Publications, 2010, 334: 119-137.
[34] Whiteside J H, Grogan D S, Olsen P E, et al. Climatically driven biogeographic provinces of Late Triassic tropical pangea[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(22): 8972-8977.
[35] Hillebrandt A V, Krystyn L, Kürschner W M, et al. The global stratotype sections and point (GSSP) for the base of the Jurassic system at Kuhjoch (Karwendel Mountains, northern Calcareous Alps, Tyrol, Austria)[J]. Episodes, 2013, 36(3): 162-198.
[36] Tanner L H. The Late Triassic world: Earth in a time of transition[M]. Cham: Springer, 2018: 91-125.
[37] Williford K H, Ward P D, Garrison G H, et al. An extended organic carbon-isotope record across the Triassic-Jurassic boundary in the Queen Charlotte Islands, British Columbia, Canada[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 244(1/2/3/4): 290-296.
[38] Marzoli A, Bertrand H, Knight K B, et al. Synchrony of the central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis[J]. Geology, 2004, 32(11): 973-976.
[39] Hesselbo S P, Jenkyns H C, Duarte L V, et al. Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal)[J]. Earth and Planetary Science Letters, 2007, 253(3/4): 455-470.
[40] Deenen M H L, Ruhl M, Bonis N R, et al. A new chronology for the end-Triassic mass extinction[J]. Earth and Planetary Science Letters, 2010, 291(1/2/3/4): 113-125.
[41] Dal Corso J, Mietto P, Newton R J, et al. Discovery of a major negative δ 13C spike in the Carnian (Late Triassic) linked to the eruption of Wrangellia flood basalts[J]. Geology, 2012, 40(1): 79-82.
[42] Davies J H F L, Marzoli A, Bertrand H, et al. End- Triassic mass extinction started by intrusive CAMP activity[J]. Nature Communications, 2017, 8: 15596.
[43] Zaffani M, Jadoul F, Rigo M. A new Rhaetian δ 13Corg record: Carbon cycle disturbances, volcanism, End-Triassic mass Extinction (ETE)[J]. Earth-Science Reviews, 2018, 178: 92-104.
[44] Farquhar G D, O’Leary M H, Berry J A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J]. Australian Journal of Plant Physiology, 1982, 9(2): 121-137.
[45] Farquhar G D, Hubrick K T, Condon A G, et al. Carbon isotope fractionation and plant water-use efficiency[M]//Rundel P W, Ehleringer J R, Nagy K A. Stable isotopes in ecological research. New York: Springer-Verlag, 1989: 21-40.
[46] Jahren A H, Arens N C, Harbeson S A. Prediction of atmospheric δ 13CO2 using fossil plant tissues[J]. Reviews of Geophysics, 2008, 46(1): RG1002.
[47] Lomax B H, Knight C A, Lake J A. An experimental evaluation of the use of C3 δ 13C plant tissue as a proxy for the paleoatmospheric δ 13CO2 signature of air[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(9): Q0AI03.
[48] Benner R, Fogel M L, Sprague E K, et al. Depletion of 13C in lignin and its implications for stable carbon isotope studies[J]. Nature, 1987, 329(6141): 708-710.
[49] Spiker E C, Hatcher P G. The effects of early diagenesis on the chemical and stable carbon isotopic composition of wood[J]. Geochimica et Cosmochimica Acta, 1987, 51(6): 1385-1391.
[50] Mazeas L, Budzinski H, Raymond N. Absence of stable carbon isotope fractionation of saturated and polycyclic aromatic hydrocarbons during aerobic bacterial biodegradation[J]. Organic Geochemistry, 2002, 33(11): 1259-1272.
[51] Morasch B, Richnow H H, Vieth A, et al. Stable isotope fractionation caused by glycyl radical enzymes during bacterial degradation of aromatic compounds[J]. Applied and Environmental Microbiology, 2004, 70(5): 2935-2940.
[52] Hasegawa T. Cenomanian-Turonian carbon isotope events recorded in terrestrial organic matter from northern Japan[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 130(1/2/3/4): 251-273.
[53] Hasegawa T, Pratt L M, Maeda H, et al. Upper Cretaceous stable carbon isotope stratigraphy of terrestrial organic matter from Sakhalin, Russian Far East: A proxy for the isotopic composition of paleoatmospheric CO2 [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 189(1/2): 97-115.
[54] Hesselbo S P, Gröcke D R, Jenkyns H C, et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event[J]. Nature, 2000, 406(6794): 392-395.
[55] Arens N C, Jahren A H, Amundson R. Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide?[J]. Paleobiology, 2000, 26(1): 137-164.
[56] Madden R A, Julian P R. Description of global-scale circulation cells in the tropics with a 40-50 day Period[J]. Journal of the Atmospheric Sciences, 1972, 29(6): 1109-1123.
[57] 沙金庚. 中国侏罗纪年代地层学研究的现状[J]. 地层学杂志,2005,29(2):124-129.

Sha Jingeng. Current situation of the Jurassic chronostratigraphic studies in China[J]. Journal of Stratigraphy, 2005, 29(2): 124-129.
[58] Scotese C R. Paleogeographic map archive[J]. Paleomap Project, 2001.
[59] 王招明,钟瑞,赵培荣,等. 库车前陆盆地露头区油气地质[M]. 北京:石油工业出版社,2004.

Wang Zhaoming, Zhong Rui, Zhao Peirong, et al. Petroleum geology of outcrops areas in Kuche foreland basin[M]. Beijing: Petroleum Industry Press, 2004.
[60] 贾承造. 塔里木盆地构造特征与油气聚集规律[J]. 新疆石油地质,1999,20(3):177-183.

Jia Chengzao. Structural characteristics and oil/gas accumulative regularity in Tarim Basin[J]. Xinjiang Petroleum Geology, 1999, 20(3): 177-183.
[61] 何登发,贾承造,李德生,等. 塔里木多旋回叠合盆地的形成与演化[J]. 石油与天然气地质,2005,26(1):64-77.

He Dengfa, Jia Chengzao, Li Desheng, et al. Formation and evolution of polycyclic superimposed Tarim Basin[J]. Oil & Gas Geology, 2005, 26(1): 64-77.
[62] 李永安,孙东江,郑洁. 新疆及周边古地磁研究与构造演化[J]. 新疆地质,1999,17(3):193-235.

Li Yong’an, Sun Dongjiang, Zheng Jie. Paleomagnetic study and tectonic evolution of Xinjiang and its neighboring regions[J]. Xinjiang Geology, 1999, 17(3): 193-235.
[63] 方大钧,沈忠悦,王朋岩. 塔里木地块古地磁数据表[J]. 浙江大学学报(理学版), 2001,28(1):92-99.

Fang Dajun, Shen Zhongyue, Wang Pengyan. Paleomagnetic data of Tarim block[J]. Journal of Zhejiang University (Science Edition), 2001, 28(1): 92-99.
[64] 邓胜徽,姚益民,叶得泉,等. 中国北方侏罗系(I)地层总述[M]. 北京:石油工业出版社,2003.

Deng Shenghui, Yao Yimin, Ye Dequan, et al. Jurassic system in the north of China (I)[M]. Beijing: Petroleum Industry Press, 2003.
[65] 刘兆生. 塔里木盆地北缘三叠纪孢粉组合[J]. 古生物学报,1999,38(4):474-504.

Liu Zhaosheng. Triassic palynological assemblages from the northern margin in Tarim Basin of Xinjiang, NW China[J]. Acta Palaeontologica Sinica, 1999, 38(4): 474-504.
[66] 刘兆生. 塔里木盆地北缘晚三叠世孢粉组合及三叠系—侏罗系界线[J]. 地层学杂志,1999,23(2):96-106.

Liu Zhaosheng. Palynological assemblage of the Late Triassic Tariqike Fm. and Triassic-Jurassic boundary on the northern margin of the Tarim Basin, Xinjiang[J]. Journal of Stratigraphy, 1999, 23(2): 96-106.
[67] Yang H P, Yan R, Chen H P, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12/13): 1781-1788.
[68] Harmon M E, Krankina O N, Sexton J. Decomposition vectors: A new approach to estimating woody detritus decomposition dynamics[J]. Canadian Journal of Forest Research, 2000, 30(1): 76-84.
[69] Fang Y N, Fang L H, Deng S H, et al. Carbon isotope stratigraphy across the Triassic-Jurassic boundary in the high-latitude terrestrial Junggar Basin, NW China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 577: 110559.
[70] 张新智,方琳浩,吴涛,等. 准噶尔盆地郝家沟剖面三叠纪—侏罗纪之交孢粉组合与古气候[J]. 地质科学,2022,57(4):1-16.

Zhang Xinzhi, Fang Linhao, Wu Tao, et al. Palynological assemblages and palaeoclimate across the Triassic-Jurassic boundary in the Haojiagou section, southern Junggar Basin[J]. Chinese Journal of Geology, 2022, 57(4): 1-16.
[71] Zhang X Y, Lv P Z, Fang L H, et al. Biomarker evidence for deforestation across the Triassic-Jurassic boundary in the high palaeolatitude Junggar Basin, northwest China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 600: 111074.
[72] Hüsing S K, Beniest A, van der Boon A, et al. Astronomically-calibrated magnetostratigraphy of the Lower Jurassic marine successions at St. Audrie's Bay and East Quantoxhead (Hettangian-Sinemurian; Somerset, UK)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 403: 43-56.
[73] Fowell S J, Cornet B, Olsen P E. Geologically rapid Late Triassic extinctions: Palynological evidence from the Newark Supergroup[M]//Klein G O. Pangea: Paleoclimate, tectonics, and sedimentation during accretion, zenith, and breakup of a supercontinent. Geological Society of America, 1994: 197-206.
[74] Olsen P E, Kent D V, Sues H D, et al. Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary[J]. Science, 2002, 296(5571): 1305-1307.
[75] Schaltegger U, Guex J, Bartolini A, et al. Precise U-Pb Age Constraints for end-Triassic mass extinction, its correlation to volcanism and Hettangian post-extinction recovery[J]. Earth and Planetary Science Letters, 2008, 267(1/2): 266-275.
[76] Schoene B, Guex J, Bartolini A, et al. Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level[J]. Geology, 2010, 38(5): 387-390.
[77] Bonis N R, Kürschner W M. Vegetation history, diversity patterns, and climate change across the Triassic/Jurassic boundary[J]. Paleobiology, 2012, 38(2): 240-264.
[78] Ward P D, Garrison G H, Williford K H, et al. The organic carbon isotopic and paleontological record across the Triassic-Jurassic boundary at the candidate GSSP section at Ferguson Hill, Muller Canyon, Nevada, USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 244(1/2/3/4): 281-289.
[79] Hüsing S K, Deenen M H L, Koopmans J G, et al. Magnetostratigraphic dating of the proposed Rhaetian GSSP at Steinbergkogel (Upper Triassic, Austria): Implications for the Late Triassic time scale[J]. Earth and Planetary Science Letters, 2011, 302(1/2): 203-216.
[80] Percival L M E, Ruhl M, Hesselbo S P, et al. Mercury evidence for pulsed volcanism during the end-Triassic mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(30): 7929-7934.
[81] Kent D V, Olsen P E, Muttoni G. Astrochronostratigraphic polarity time scale (APTS) for the Late Triassic and Early Jurassic from continental sediments and correlation with standard marine stages[J]. Earth-Science Reviews, 2017, 166: 153-180.
[82] Sha J G, Vajda V, Pan Y H, et al. Stratigraphy of the Triassic-Jurassic boundary successions of the southern margin of the Junggar Basin, northwestern China[J]. Acta Geologica Semica (English Edition), 2011, 85(2): 421-436.
[83] Sha J G, Olsen P E, Pan Y H, et al. Triassic-Jurassic climate in continental high-latitude Asia was dominated by obliquity-paced variations (Junggar Basin, Ürümqi, China)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(12): 3624-3629.
[84] 卢远征,邓胜徽. 新疆准噶尔盆地南缘郝家沟组和八道湾组底部孢粉组合及三叠系—侏罗系界线[J]. 地质学报,2005,79(1):15-27.

Lu Yuanzheng, Deng Shenghui. Triassic-Jurassic sporopollen assemblages on the southern margin of the Junggar Basin, Xinjiang and the T-J boundary[J]. Acta Geologica Sinica, 2005, 79(1): 15-27.
[85] 卢远征,邓胜徽. 准噶尔盆地南缘三叠纪—侏罗纪之交的古气候[J]. 古地理学报,2009,11(6):652-660.

Lu Yuanzheng, Deng Shenghui. Palaeoclimate around the Triassic-Jurassic boundary in southern margin of Junggar Basin[J]. Journal of Palaeogeography, 2009, 11(6): 652-660.
[86] Shen J, Yin R S, Zhang S, et al. Intensified continental chemical weathering and carbon-cycle perturbations linked to volcanism during the Triassic-Jurassic transition[J]. Nature Communications, 2022, 13(1): 299.
[87] Thibodeau A M, Ritterbush K, Yager J A, et al. Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction[J]. Nature Communications, 2016, 7: 11147.
[88] Blackburn T J, Olsen P E, Bowring S A, et al. Zircon U-Pb geochronology links the end-Triassic extinction with the central Atlantic magmatic province[J]. Science, 2013, 340(6135): 941-945.
[89] Schaller M F, Wright J D, Kent D V. Atmospheric PCO2 associated with the central Atlantic magmatic province[J]. Science, 2011, 331(6023): 1404-1409.
[90] Schaller M F, Wright J D, Kent D V, et al. Rapid Emplacement of the Central Atlantic Magmatic province as a net sink for CO2 [J]. Earth and Planetary Science Letters, 2012, 323-324: 27-39.
[91] Schaefer K, Zhang T J, Bruhwiler L, et al. Amount and timing of permafrost carbon release in response to climate warming[J]. Tellus B: Chemical and Physical Meteorology, 2011, 63(2): 165-180.
[92] Ciais P, Tagliabue A, Cuntz M, et al. Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum[J]. Nature Geoscience, 2012, 5(1): 74-79.