[1] Bachu S, Adams J J.Sequestration of CO2 in geological media in response to climate change: Capacity of deep saline aquifers to sequester CO2 in solution[J]. Energy Conversion and Management, 2003, 44(20): 3151-3175.
[2] 李小春,刘延峰,白冰,等. 中国深部咸水含水层CO2储存优先区域选择[J]. 岩石力学与工程学报,2006,25(5):963-968.[Li Xiaochun, Liu Yanfeng, Bai Bing, et al. Ranking and screening of CO2 saline aquifer storage zones in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 963-968.]
[3] 郭建强,张森琦,刁玉杰,等. 深部咸水层CO2地质储存工程场地选址技术方法[J]. 吉林大学学报:地球科学版,2011,41(4):1084-1091.[Guo Jianqiang, Zhang Senqi, Diao Yujie, et al. Site selection method of CO2 geological storage in deep saline aquifers[J]. Journal of Jilin University: Earth Science Edition, 2011, 41(4): 1084-1091.]
[4] Winter E M, Bergman P D.Availability of depleted oil and gas reservoirs for disposal of carbon dioxide in the United States[J]. Energy Conversion and Management, 1993, 34(9//10/11): 1177-1187.
[5] Bachu S, Shaw J.Evaluation of the CO2 sequestration capacity in Alberta's oil and gas reservoirs at depletion and the effect of underlying aquifers[J]. Journal of Canadian Petroleum Technology, 2003, 42(9): 51-61.
[6] Credoz A, Bildstein O, Jullien M,et al. Experimental and modeling study of geochemical reactivity between clayey cap rocks and CO2 in geological storage conditions[J]. Energy Procedia, 2009, 1(1): 3445-3452.
[7] 李小春,小出仁,大隅多加志. 二氧化碳地中隔离技术及其岩石力学问题[J]. 岩石力学与工程学报,2003,22(6):989-994.[Li Xiaochun, Hitoshi K, Takashi O. CO2 aquifer storage and the related rock mechanics issues[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(6): 989-994.]
[8] 宋新民,杨思玉. 国内外CCS技术现状与中国主动应对策略[J]. 油气藏评价与开发,2011,1(1/2):25-30.[Song Xinmin, Yang Siyu. Current situation of CCS technology at home and abroad and the positive strategy that China should adopt toward it[J]. Reservoir Evaluation and Development, 2011, 1(1/2): 25-30.]
[9] IPCC. IPCC Special Report on Carbon Dioxide Capture and Storage[M].Geneva: WMO/UNDP, 2006, 3: 1-112; 5: 1-133.
[10] Torpa T A, Gale J.Demonstrating storage of CO2 in geological reservoirs: the Sleipner and SACS projects[J]. Energy, 2004, 29(9/10): 1361-1369.
[11] Moritis G.CO2 sequestration adds new dimension to oil, gas production[J]. Oil and Gas Journal, 2003, 101(9): 71-83.
[12] 曲建升,曾静静. 二氧化碳捕获与封存:技术、实践与法律——国际推广二氧化碳捕获与封存工作的法律问题分析[J]. 世界科技研究与发展,2007,29(6):78-83.[Qu Jiansheng, Zeng Jingjing. Carbon dioxide capture and storage: technology, demonstration, and legal aspects——an analysis on the legal related issues of international CCS efforts[J]. World Sci-tech R & D, 2007, 29(6): 78-83.]
[13] 郑晓鹏. 海上天然气田伴生CO2的海上捕集及回注技术[J]. 中国造船,2007,48(增刊):297-302.[Zheng Xiaopeng. Study on offshore associated CO2 capture and injection technology[J]. Shipbuilding of China, 2007, 48(Suppl.): 297-302.]
[14] 张鸿翔,李小春,魏宁. 二氧化碳捕获与封存的主要技术环节与问题分析[J]. 地球科学进展,2010,25(3):335-340.[Zhang Hongxiang, Li Xiaochun, Wei Ning. The major technology track and analysis about carbon dioxide capture and storage[J]. Advances in Earth Science, 2010, 25(3): 335-340.]
[15] 张卫东,张栋,田克忠. 碳捕集与封存技术的现状与未来[J]. 中外能源,2009,14(11):7-14.[Zhang Weidong, Zhang Dong, Tian Kezhong. Carbon capture and sequestration technology[J]. Sino-Global Energy, 2009, 14(11): 7-14.]
[16] Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 1988, 67(1/2): 119-139.
[17] 董林森,刘立,曲希玉,等. CO2矿物捕获能力的研究进展[J]. 地球科学进展,2010,25(9):941-949.[Dong Linsen, Liu Li, Qu Xiyu, et al. Research progress of ability of mineral trapping of CO2[J]. Advances in Earth Science, 2010, 25(9): 941-949.]
[18] Pettijohn F J. Sedimentary Rocks[M]. New York: Harper & Row, 1957: 224-242.
[19] Bock B, McLennan S M, Hanson G N.Geochemistry and provenance of the Middle Ordovician Austin Glen Member (Normanskill Formation) and the Taconian Orogeny in New England[J]. Sedimentology, 1998, 45(4): 635-655.
[20] Haskin L A, Haskin M A, Frey F A, et al. Relative and absolute terrestrial abundances of the rare earths[M]// Ahrens L H. Origin and Distribution of the Elements. Oxford: Pergamon, 1968: 889-911.
[21] 王清晨,从柏林. 大别山超高压变质岩的地球动力学意义[J]. 中国科学(D辑):地球科学,1996,26(3):271-276.[Wang Qingchen, Cong Bolin. Geodynamic significance of ultrahigh pressure metamorphic rocks of Dabie Mountain[J]. Science China (Seri. D):Earth Sciences, 1996, 26(3): 271-276.]
[22] 赵振华. 微量元素地球化学原理[M]. 北京:科学出版社,1997: 199-204.[Zhao Zhenhua. Principle of Trace Element Geochemistry[M]. Beijing: Science Press, 1997: 199-204.]
[23] 张英利,王宗起,闫臻,等. 库鲁克塔格地区新元古代贝义西组的构造环境:来自碎屑岩地球化学的证据[J]. 岩石学报,2011,27(6):1785-1796.[Zhang Yingli, Wang Zongqi, Yan Zhen, et al. Tectonic setting of Neoproterozoic Beiyixi Formation in Quruqtagh area, Xinjiang: Evidence from geochemistry of clastic rocks[J]. Acta Petrologica Sinica, 2011, 27(6): 1785-1796.]
[24] 毛光周,刘池洋. 地球化学在物源及沉积背景分析中的应用[J]. 地球科学与环境学报,2011,33(4):337-348.[Mao Guangzhou, Liu Chiyang. Application of geochemistry in provenance and depositional setting analysis[J]. Journal of Earth Sciences and Environment, 2011, 33(4): 337-348.]
[25] 童胜琪,刘志飞, Phon Le K,等. 红河盆地的化学风化作用:主要和微量元素地球化学记录[J]. 矿物岩石地球化学通报,2006,25(3):219-225.[Tong Shengqi, Liu Zhifei, Phon Le K, et al. Chemical weathering in the Red River Basin: records of major and trace elemental geochemistry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2006, 25(3): 219-225.]
[26] 张鑫,张金亮. 东营凹陷南坡沙河街组四段砂岩地球化学特征[J]. 地质科学,2007,42(2):303-318.[Zhang Xin, Zhang Jinliang. Sedimento-geochemical features of sandstones from the fourth member, Shahejie Formation in the southern slope of Dongying sag [J]. Chinese Journal of Geology, 2007, 42(2): 303-318.]
[27] Bachu S. Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change[J]. Energy Conversion and Management, 2000, 41(9): 953-970.
[28] 高玉巧,刘立,曲希玉. CO2与砂岩相互作用机理与形成的自生矿物组合[J]. 新疆石油地质,2007,28(5):579-584.[Gao Yuqiao, Liu Li, Qu Xiyu. Mechanism of CO2-sandstone interaction and authigenic mineral assemblage[J]. Xinjiang Petroleum Geology, 2007, 28(5): 579-584.]
[29] Berg A, Banwart S A.Carbon dioxide mediated dissolution of Ca-feldspar: implications for silicate weathering[J]. Chemical Geology, 2000, 163(1/2/3/4): 25-42.
[30] Xu Tianfu, Apps J A, Pruess K. Mineral sequestration of carbon dioxide in a sandstone–shale system[J]. Chemical Geology, 2005, 217(3/4): 295-318.
[31] Gunter W D, Perkins E H, McCann T J.Aquifer disposal of CO2-rich gases: Reaction design for added capacity[J]. Energy Conversion and Management, 1993, 34(9/10/11): 941-948.
[32] 黄可可,黄思静,佟宏鹏,等. 长石溶解过程的热力学计算及其在碎屑岩储层研究中的意义[J]. 地质通报,2009,28(4):474-482.[Huang Keke, Huang Sijing, Tong Hongpeng, et al. The thermodynamic calculations of feldspar dissolution and significance of the study of clastic reservoirs[J]. Geological Bulletin of China, 2009, 28(4): 474-482.]
[33] 高玉巧,刘立,杨会东,等. 松辽盆地孤店二氧化碳气田片钠铝石的特征及成因[J]. 石油学报,2007,28(4):62-67.[Gao Yuqiao, Liu Li, Yang Huidong, et al. Characteristics and origin of dawsonite in Gudian carbon dioxide gas field of Songliao Basin[J]. Acta Petrolei Sinica, 2007, 28(4): 62-67.]
[34] 刘立,高玉巧,曲希玉,等. 海拉尔盆地乌尔逊凹陷无机CO2气储层的岩石学与碳氧同位素特征[J]. 岩石学报,2006,22(8):2229-2236.[Liu Li, Gao Yuqiao, Qu Xiyu, et al. Petrology and carbon oxygen isotope of inorganic CO2 gas reservoir in Wuerxun depression, Hailaer Basin[J]. Acta Petrologica Sinica, 2006, 22(8): 2229-2236.]
[35] 高玉巧,刘立. 海拉尔盆地乌尔逊凹陷无机CO2与油气充注的时间记录[J]. 沉积学报,2007,25(4):574-582.[Gao Yuqiao, Liu Li. Time recording of inorganic CO2 and petroleum infilling in Wuerxun depression, Hailaer Basin[J]. Acta Sedimentologica Sinica, 2007, 25(4): 574-582.]
[36] 赵爽,杜江峰,刘立,等. 东海盆地丽水凹陷古新统明月峰组含片钠铝石砂岩的自生矿物特征与成岩共生序列[J]. 矿物岩石,2013,33(2):85-93.[Zhao Shuang, Du Jiangfeng, Liu Li, et al. Characteristics of authigenic minerals and paragenetic sequence of dawsonite-bearing sandstones from the Mingyuefeng Formation of Paleocene in Lishui Sag, East China Sea Basin[J]. Journal of Mineralogy and Petrology, 2013, 33(2): 85-93.]
[37] Baker J C, Bai G P, Hamilton P J,et al. Continental-scale magmatic carbon dioxide seepage recorded by dawsonite in the Bowen-Gunnedah-Sydney Basin System, Eastern Australia[J]. Journal of Sedimentary Research, 1995, 65(3): 522-530.