[1] Novigatsky A N, Lisitzin A P. Concentration, composition, and fluxes of dispersed sedimentary material in the snow and ice cover of the polar arctic[J]. Oceanology, 2019, 59(3): 406-410.
[2] Dethleff D. Entrainment and export of Laptev Sea ice sediments, Siberian Arctic[J]. Journal of Geophysical Research: Oceans, 2005, 110(C7): C07009.
[3] Osadchiev A A, Pisareva M N, Spivak E A, et al. Freshwater transport between the Kara, Laptev, and East-Siberian seas[J]. Scientific Reports, 2020, 10(1): 13041.
[4] Phillips R L, Grantz A. Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: Implications for the configuration of Late Quaternary oceanic and atmospheric circulation in the Arctic[J]. Marine Geology, 2001, 172(1/2): 91-115.
[5] Viscosi-Shirley C, Pisias N, Mammone K. Sediment source strength, transport pathways and accumulation patterns on the Siberian-Arctic's Chukchi and Laptev shelves[J]. Continental Shelf Research, 2003, 23(11/12/13): 1201-1225.
[6] Darby D A. Sources of sediment found in sea ice from the western Arctic Ocean, new insights into processes of entrainment and drift patterns[J]. Journal of Geophysical Research: Oceans, 2003, 108(C8): 3257.
[7] Middleton G V. Hydraulic interpretation of sand size distributions[J]. The Journal of Geology, 1976, 84(4): 405-426.
[8] Flemming B W. The influence of grain-size analysis methods and sediment mixing on curve shapes and textural parameters: Implications for sediment trend analysis[J]. Sedimentary Geology, 2007, 202(3): 425-435.
[9] Vogt C. Bulk mineralogy in surface sediments from the eastern central Arctic Ocean[M]//Stein R; Ivanov G I; Levitan M A, et al. Surface-sediment composition and sedimentary processes in the central Arctic Ocean and along the Eurasian Continental Margin. Bremerhaven: Alfred-Wegener-Institut für Polar- und Meeresforschung, 1996: 159-171.
[10] Dong L S, Shi X F, Liu Y G, et al. Mineralogical study of surface sediments in the western Arctic Ocean and their implications for material sources[J]. Advances in Polar Science, 2014, 25(3): 192-203.
[11] Wang R, Biskaborn B K, Ramisch A, et al. Modern modes of provenance and dispersal of terrigenous sediments in the North Pacific and Bering Sea: Implications and perspectives for palaeoenvironmental reconstructions[J]. Geo-Marine Letters, 2016, 36(4): 259-270.
[12] Kobayashi D, Yamamoto M, Irino T, et al. Distribution of detrital minerals and sediment color in western Arctic Ocean and northern Bering Sea sediments: Changes in the provenance of western Arctic Ocean sediments since the last glacial Period[J]. Polar Science, 2016, 10(4): 519-531.
[13] Vogt C, Knies J, Spielhagen R F, et al. Detailed mineralogical evidence for two nearly identical glacial/deglacial cycles and Atlantic water advection to the Arctic Ocean during the last 90,000 years[J]. Global and Planetary Change, 2001, 31(1/2/3/4): 23-44.
[14] Fagel N, Not C, Gueibe J, et al. Late Quaternary evolution of sediment provenances in the Central Arctic Ocean: Mineral assemblage, trace element composition and Nd and Pb isotope fingerprints of detrital fraction from the northern Mendeleev Ridge[J]. Quaternary Science Reviews, 2014, 92: 140-154.
[15] Gamboa A, Montero-Serrano J C, St-Onge G, et al. Mineralogical, geochemical, and magnetic signatures of surface sediments from the Canadian Beaufort Shelf and Amundsen Gulf (Canadian Arctic)[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(2): 488-512.
[16] Ortiz J D, Polyak L, Grebmeier J M, et al. Provenance of Holocene sediment on the Chukchi-Alaskan margin based on combined diffuse spectral reflectance and quantitative X-Ray Diffraction analysis[J]. Global and Planetary Change, 2009, 68(1/2): 73-84.
[17] 马礼敦. X射线粉末衍射的新起点:Rietveld全谱拟合[J]. 物理学进展,1996,16(2):115-135.

Ma Lidun. New starting of X ray powder diffraction rietveld whole pattern fitting[J]. Progress in Physics, 1996, 16(2): 115-135.
[18] 国家海洋局极地专项办公室. 北极海域海洋地质考察[M]. 北京:海洋出版社,2016:1-12.

Polar Special Office of the State Oceanic Administration. Arctic marine geological investigation[M]. Beijing: China Ocean Press, 2016: 1-12.
[19] Darby D A, Ortiz J, Polyak L, et al. The role of currents and sea ice in both slowly deposited central Arctic and rapidly deposited Chukchi-Alaskan margin sediments[J]. Global and Planetary Change, 2009, 68(1/2): 58-72.
[20] Ganelin V G, Biakov A S. The Permian biostratigraphy of the Kolyma-Omolon region, northeast Asia[J]. Journal of Asian Earth Sciences, 2006, 26(3/4): 225-234.
[21] Parfenov L M. Tectonics of the Verkhoyansk-Kolyma Mesozoides in the context of plate tectonics[J]. Tectonophysics, 1991, 199(2/3/4): 319-342.
[22] Sharma M, Basu A R, Nesterenko G V. Nd-Sr isotopes, petrochemistry, and origin of the Siberian flood basalts, USSR[J]. Geochimica et Cosmochimica Acta, 1991, 55(4): 1183-1192.
[23] Tikhomirov P L, Akinin V V, Ispolatov V O, et al. The Okhotsk-Chukotka volcanic belt: Age of its northern part according to new Ar-Ar and U-Pb geochronological data[J]. Stratigraphy and Geological Correlation, 2006, 14(5): 524-537.
[24] Hartmann J, Moosdorf N. The new global lithological map database GLiM: A representation of rock properties at the Earth surface[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(12): Q12004.
[25] Zhang S X, Jowett D M S, Barnes C R. Hirnantian (Ordovician) through Wenlock (Silurian) conodont biostratigraphy, bioevents, and integration with graptolite biozones, Cape Phillips Formation slope facies, Cornwallis Island, Canadian Arctic Islands[J]. Canadian Journal of Earth Sciences, 2017, 54(9): 936-960.
[26] Macdonald R W, Harner T, Fyfe J, et al. The influence of global change on contaminant pathways to, within, and from the Arctic[M]. Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP), 2003: xii+65.
[27] Asahara Y, Takeuchi F, Nagashima K, et al. Provenance of terrigenous detritus of the surface sediments in the Bering and Chukchi Seas as derived from Sr and Nd isotopes: Implications for recent climate change in the Arctic regions[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2012, 61-64: 155-171.
[28] Gordeev V V, Martin J M, Sidorov I S, et al. A reassessment of the Eurasian River input of water, sediment, major elements, and nutrients to the Arctic Ocean[J]. American Journal of Science, 1996, 296(6): 664-691.
[29] Suchet P A, Probst J L, Ludwig W. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans[J]. Global Biogeochemical Cycles, 2003, 17(2): 1038.
[30] Holmes R M, McClelland J W, Peterson B J, et al. A circumpolar perspective on fluvial sediment flux to the Arctic ocean[J]. Global Biogeochemical Cycles, 2002, 16(4): 1098.
[31] Are F, Reimnitz E. An overview of the Lena River delta setting: Geology, tectonics, geomorphology, and hydrology[J]. Journal of Coastal Research, 2000, 16(4): 1083-1093.
[32] Burn C R, Kokelj S V. The environment and permafrost of the Mackenzie Delta area[J]. Permafrost and Periglacial Processes, 2009, 20(2): 83-105.
[33] Brabets T P, Wang B, Meade R H. Environmental and hydrologic overview of the Yukon River Basin, Alaska and Canada[R]. Anchorage: U.S. Geological Survey, 2000: 106-106.
[34] Roach A T, Aagaard K, Pease C H, et al. Direct measurements of transport and water properties through the Bering Strait[J]. Journal of Geophysical Research: Oceans, 1995, 100(C9): 18443-18457.
[35] Weingartner T J, Danielson S, Sasaki Y, et al. The Siberian coastal current: A wind- and buoyancy-forced Arctic coastal current[J]. Journal of Geophysical Research: Oceans, 1999, 104(C12): 29697-29713.
[36] Nagashima K, Asahara Y, Takeuchi F, et al. Contribution of detrital materials from the Yukon River to the continental shelf sediments of the Bering Sea based on the electron spin resonance signal intensity and crystallinity of quartz[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2012, 61-64: 145-154.
[37] Watanabe E, Onodera J, Harada N, et al. Enhanced role of eddies in the Arctic marine biological pump[J]. Nature Communications, 2014, 5: 3950.
[38] 黄继武,李周. 多晶材料X射线衍射:实验原理、方法与应用[M]. 北京:冶金工业出版社,2012:1-117.

Huang Jiwu, Li Zhou. Experimental principles, methods and applications of X-ray diffraction for polycrystalline materials[M]. Beijing: Metallurgical Industry Press, 2012: 1-117.
[39] Ikuta D, Kawame N, Banno S, et al. First in situ X-ray identification of coesite and retrograde quartz on a glass thin section of an ultrahigh-pressure metamorphic rock and their crystal structure details[J]. American Mineralogist, 2007, 92(1): 57-63.
[40] Fitz Gerald J D, Parise J B, MacKinnon I D R. Average structure of an An48 plagioclase from the Hogarth ranges[J]. American Mineralogist, 1986, 71(11/12): 1399-1408.
[41] Ribbe P H. The structure of a strained intermediate microcline in cryptoperthitic association with twinned plagioclase[J]. American Mineralogist, 1979, 64(3/4): 402-408.
[42] Brigatti M F, Frigieri P, Poppi L. Crystal chemistry of Mg-, Fe-bearing muscovites-2M1 [J]. American Mineralogist, 1998, 83(7/8): 775-785.
[43] Zanazzi P F, Montagnoli M, Nazzareni S, et al. Structural effects of pressure on monoclinic chlorite: A single-crystal study[J]. American Mineralogist, 2007, 92(4): 655-661.
[44] Steinfink H, Sans F J. Refinement of the crystal structure of dolomite[J]. American Mineralogist, 1959, 44(5/6): 679-682.
[45] Peacor D R. Refinement of the crystal structure of a pyroxene of formula MⅠ MⅡ (Si1.5Al0.5)O6 1 [J]. American Mineralogist, 1967, 52(1/2): 31-41.
[46] Oberti R, Ungaretti L, Cannillo E, et al. The mechanism of Cl incorporation in amphibole[J]. American Mineralogist, 1993, 78(7/8): 746-752.
[47] 李秋玲. 北极东西伯利亚陆架沉积物特征及物源分析[D]. 青岛:自然资源部第一海洋研究所,2020.

Li Qiuling. Sediment characteristics and provenance analysis of the east siberian arctic shelf[D]. Qingdao: The First Institute of Oceanography, MNR, 2020.
[48] Peregovich B, Hoops E, Rachold V. Sediment transport to the Laptev Sea (Siberian Arctic) during the Holocene: Evidence from the heavy mineral composition of fluvial and marine sediments[J]. Boreas, 1999, 28(1): 205-214.
[49] 陈志华. 北冰洋西部沉积物地球化学特征及环境指示意义[D]. 青岛:中国海洋大学,2004.

Chen Zhihua. Geochemistry of sediments in the western arctic ocean and implications of spatial and temporal changes of sedimentary environments[D]. Qingdao: Ocean University of China, 2004.
[50] Kyzs’michev A B, Soloviev A V, Gonikberg V E, et al. Mesozoic syncollision siliciclastic sediments of the Bols’shoi Lyakhov Island (New Siberian Islands)[J]. Stratigraphy and Geological Correlation, 2006, 14(1): 30-48.
[51] Viscosi-Shirley C, Mammone K, Pisias N, et al. Clay mineralogy and multi-element chemistry of surface sediments on the Siberian-Arctic shelf: Implications for sediment provenance and grain size sorting[J]. Continental Shelf Research, 2003, 23(11/12/13): 1175-1200.
[52] Eicken H, Kolatschek J, Freitag J, et al. A key source area and constraints on entrainment for basin-scale sediment transport by Arctic sea ice[J]. Geophysical Research Letters, 2000, 27(13): 1919-1922.
[53] Darby D A, Myers W B, Jakobsson M, et al. Modern dirty sea ice characteristics and sources: The role of anchor ice[J]. Journal of Geophysical Research: Oceans, 2011, 116(C9): C09008.
[54] Byers F M. Geology of umnak and bogoslof islands, aleutian islands, alaska[R]. Washington: United States Government Printing Office, 1959: 267-369.
[55] 汪卫国,戴霜,陈莉莉,等. 白令海和西北冰洋表层沉积物磁化率特征初步研究[J]. 海洋学报,2014,36(9):121-131.

Wang Weiguo, Dai Shuang, Chen Lili, et al. Magnetic susceptibility characteristics of surface sediments in Bering Sea and western Arctic Ocean: Preliminary results[J]. Acta Oceanologica Sinica, 2014, 36(9): 121-131.
[56] 赵蒙维,汪卫国,方建勇,等. 白令海北部悬浮体含量分布及其颗粒组分特征[J]. 海洋学报,2016,38(1):82-93.

Zhao Mengwei, Wang Weiguo, Fang Jianyong, et al. The distribution and composition of suspended particles in the northern Bering Sea[J]. Acta Oceanologica Sinica, 2016, 38(1): 82-93.
[57] Naidu A S, Han M W, Mowatt T C, et al. Clay minerals as indicators of sources of terrigenous sediments, their transportation and deposition: Bering Basin, Russian-Alaskan Arctic[J]. Marine Geology, 1995, 127(12/3/4): 87-104.
[58] Darby D A, Naidu A S, Mowatt T C, et al. Sediment composition and sedimentary processes in the Arctic Ocean[M]//Herman Y. The arctic seas: Climatology, oceanography, geology, and biology. Boston: Springer, 1989: 657-720.
[59] Eberl D D. Quantitative mineralogy of the Yukon River system: Changes with reach and season, and determining sediment provenance[J]. American Mineralogist, 2004, 89(11/12): 1784-1794.
[60] Zhang T L, Wang R J, Xiao W S, et al. Characteristics of terrigenous components of Amerasian Arctic Ocean surface sediments: Implications for reconstructing provenance and transport modes[J]. Marine Geology, 2021, 437: 106497.
[61] Wang W G, Yang J C, Zhao M W, et al. Spatial variation in grain-size population of surface sediments from northern Bering Sea and western Arctic Ocean: Implications for provenance and depositional mechanisms[J]. Advances in Polar Science, 2020, 31(3): 192-204.
[62] Stein R, Matthießen J, Frank N, et al. Towards a better (litho-) stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean)[J]. Polarforschung, 2010, 79(2): 97-121.
[63] 董红梅,宋友桂. 黏土矿物在古环境重建中的应用[J]. 海洋地质与第四纪地质,2009,29(6):119-130.

Dong Hongmei, Song Yougui. Clay mineralogy and its application to paleo-environmental reconstruction[J]. Marine Geology & Quaternary Geology, 2009, 29(6): 119-130.
[64] Nesbitt H W, Markovics G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(8): 1653-1670.
[65] Moros M, McManus J F, Rasmussen T, et al. Quartz content and the quartz-to-plagioclase ratio determined by X-ray diffraction: A proxy for ice rafting in the northern North Atlantic?[J]. Earth and Planetary Science Letters, 2004, 218(3/4): 389-401.