[1] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
[2] Zachos J C, Dickens G R, Zeebe R E. An Early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics[J]. Nature, 2008, 451(7176): 279-283.
[3] Zhang Y G, Pagani M, Liu Z H, et al. A 40-million-year history of atmospheric CO2 [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 371(2001): 20130096.
[4] Sun J M, Windley B F. Onset of aridification by 34 Ma across the Eocene-Oligocene transition in Central Asia[J]. Geology, 2015, 43(11): 1015-1018.
[5] Raymo M E, Ruddiman W F. Tectonic forcing of Late Cenozoic climate[J]. Nature, 1992, 359(6391): 117-122.
[6] Chen F H, Chen J H, Huang W, et al. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-Science Reviews, 2019, 192: 337-354.
[7] Sun J M, Windley B F, Zhang Z L, et al. Diachronous seawater retreat from the southwestern margin of the Tarim Basin in the Late Eocene[J]. Journal of Asian Earth Sciences, 2016, 116: 222-231.
[8] Sun J M, Jiang M S. Eocene seawater retreat from the southwest Tarim Basin and implications for Early Cenozoic tectonic evolution in the Pamir Plateau[J]. Tectonophysics, 2013, 588: 27-38.
[9] Chen C H, Bai Y, Fang X M, et al. A Late Miocene terrestrial temperature history for the northeastern Tibetan Plateau’s Period of tectonic expansion[J]. Geophysical Research Letters, 2019, 4(14): 8375-8386.
[10] Zhu C G, Meng J, Hu Y Y, et al. East⁃Central Asian climate evolved with the northward migration of the High Proto‐Tibetan Plateau[J]. Geophysical Research Letters, 2019, 46(14): 8397-8406.
[11] 刘晓东, Dong Buwen, Yin Zhiyong,等. 大陆漂移、高原隆升与新生代亚—非—澳洲季风区和干旱区演化[J]. 中国科学(D辑):地球科学,2019,49(7):1059-1081.

Liu Xiaodong, Dong Buwen, Yin Zhiyong, et al. Continental drift, plateau uplift, and the evolutions of monsoon and arid regions in Asia, Africa, and Australia during the Cenozoic[J]. Science China (Seri. D): Earth Sciences, 2019, 49(7): 1059-1081.
[12] Sun J M, Ni X J, Bi S D, et al. Synchronous turnover of flora, fauna and climate at the Eocene-Oligocene Boundary in Asia[J]. Scientific Reports, 2014, 4(1): 7463.
[13] Jiang H C, Wan S M, Ma X L, et al. End-member modeling of the grain-size record of Sikouzi fine sediments in Ningxia (China) and implications for temperature control of Neogene evolution of East Asian winter monsoon[J]. PLoS One, 2017, 12(10): e0186153.
[14] 鹿化煜,郭正堂. 晚新生代东亚气候变化:进展与问题[J]. 中国科学(D辑):地球科学,2013,43(12):1907-1918.

Lu Huayu, Guo Zhengtang. Evolution of the monsoon and dry climate in East Asia during Late Cenozoic: A review[J]. Science China (Seri. D): Earth Sciences, 2013, 43(12): 1907-1918.
[15] Sun J M, Gong Z J, Tian Z H, et al. Late Miocene stepwise aridification in the Asian interior and the interplay between tectonics and climate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 421: 48-59.
[16] Sun J M, Ye J, Wu W Y, et al. Late Oligocene-Miocene mid-latitude aridification and wind patterns in the Asian interior[J]. Geology, 2010, 38(6): 515-518.
[17] Shen X Y, Wan S M, France-Lanord C, et al. History of Asian eolian input to the Sea of Japan since 15 Ma: Links to Tibetan uplift or global cooling?[J]. Earth and Planetary Science Letters, 2017, 474: 296-308.
[18] Wang X, Carrapa B, Chapman J B, et al. Parathethys last gasp in central Asia and Late Oligocene accelerated uplift of the Pamirs[J]. Geophysical Research Letters, 2019, 46(21): 11773-11781.
[19] Warren J K. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits[J]. Earth-Science Reviews, 2010, 98(3/4): 217-268.
[20] 朱洪发,刘翠章,林付律. 四川盆地中下三叠系含盐系岩石类型的成因和沉积相特征[J]. 矿物岩石,1986,6(3):76-86.

Zhu Hongfa, Liu Cuizhang, Lin Fulü. Characteristics of sedimentary facies of salt sequences and origin of their rock types in Lower and Middle Triassic, Sichuan Basin[J]. Minerals and Rocks, 1986, 6(3): 76-86.
[21] 金强,查明. 柴达木盆地西部第三系蒸发岩与生油岩共生沉积作用研究[J]. 地质科学,2000,35(4):465-473.

Jin Qiang, Zha Ming. Co-sedimentation of Tertiary evaporites and oil source rocks in the western Qaidam Basin[J]. Scientia Geologica Sinica, 2000, 35(4): 465-473.
[22] 岳志鹏,曾俊,高志卫,等. 惠民凹陷孔店组—沙四段“膏盐岩”层沉积机理:以MS1井“膏盐岩”层分析为例[J]. 石油勘探与开发,2006,33(5):591-595.

Yue Zhipeng, Zeng Jun, Gao Zhiwei, et al. Sedimentation mechanism of “gypsum rock” in Kongdian Formation and Sha 4 member of Shahejie Formation in Huimin Sag—With the “gypsum rock” of well MS1 as an example[J]. Petroleum Exploration and Development, 2006, 33(5): 591-595.
[23] Zhang F, Jin Z D, West A J, et al. Monsoonal control on a delayed response of sedimentation to the 2008 Wenchuan earthquake[J]. Science Advances, 2019, 5(6): eaav7110.
[24] Molnar P, England P. Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg?[J]. Nature, 1990, 346(6279): 29-34.
[25] 吴小力,李荣西,胡建民,等. 中国北方宁南盆地古近纪晚期咸化湖盆演化及其区域地质意义[J]. 地质学报,2017,91(4):954-967.

Wu Xiaoli, Li Rongxi, Hu Jianmin, et al. Late Paleogene saline lake evolution of the Ningnan Basin, northern China, and its regional geological significance[J]. Acta Geologica Sinica, 2017, 91(4): 954-967.
[26] Wu X L, Li R X, Hu J M, et al. Late Paleogene saline lake evolution of the Ningnan Basin and its response to the regional paleoclimate and uplift of the Tibetan Plateau: Evidence from sedimentary strata, and S and Sr isotopes[J]. Geological Journal, 2018, 53(Suppl.2): 405-416.
[27] 邓辉. 宁南盆地新生代沉积—构造面貌及其演化[D]. 西安:西北大学,2014.

Deng Hui. Cainozoic appearance and evolution of sedimentation-tectonics in Ningnan Basin[D]. Xi’an: Northwestern University, 2014.
[28] 房建军. 宁南盆地沉积构造演化与改造[D]. 西安:西北大学,2009.

Fang Jianjun. Sedimentary-structural evolution and reformation of Ningnan Basin[D]. Xi’an: Northwestern University, 2009.
[29] 申旭辉,田勤俭,丁国瑜,等. 宁夏贺家口子地区晚新生代地层序列及其构造意义[J]. 中国地震,2001,17(2):156-166.

Shen Xuhui, Tian Qinjian, Ding Guoyu, et al. The Late Cenozoic stratigraphic sequence and its implication to tectonic evolution, Hejiakouzi area, Ningxia Hui Autonomous Region[J]. Earthquake Research in China, 2001, 17(2): 156-166.
[30] 刘池洋,赵红格,桂小军,等. 鄂尔多斯盆地演化—改造的时空坐标及其成藏(矿)响应[J]. 地质学报,2006,80(5):617-638.

Liu Chiyang, Zhao Hongge, Gui Xiaojun, et al. Space-time coordinate of the evolution and reformation and mineralization response in Ordos Basin[J]. Acta Geologica Sinica, 2006, 80(5): 617-638.
[31] 王伟涛. 宁夏南部新生代盆地沉积演化及其对青藏高原东北角构造变形的响应[D]. 北京:中国地震局地质研究所,2011.

Wang Weitao. Sedimentary responses to the Cenozoic tectonic evolution of the northeastern corner of the Tibetan Plateau[D]. Beijing: Institute of Geology, China Earthquake Administrator, 2011.
[32] 赵晓辰,刘池洋,王建强,等. 南北构造带北部香山地区中—新生代构造抬升事件[J]. 岩石学报,2016,32(7):2124-2136.

Zhao Xiaochen, Liu Chiyang, Wang Jianqiang, et al. Mesozoic-Cenozoic tectonic uplift events of Xiangshan Mountain in northern North-South Tectonic Belt, China[J]. Acta Petrologica Sinica, 2016, 32(7): 2124-2136.
[33] 中科院南京地质古生物研究所. 宁夏灵武首次发现古近纪始新世大型哺乳动物雷兽化石[EB/OL]. (2019-04-19). http://www.nigpas.cas.cn/kxcb/kpwz/201904/t20190419_5277647.html.

Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences. The fossil of the large mammal Ultralisk of Paleogene Eocene was first discovered in Lingwu, Ningxia[EB/OL].(2019-04-19). http://www.nigpas.cas.cn/kxcb/kpwz/201904/t20190419_5277647.html.
[34] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T 14506.28—2010 硅酸盐岩石化学分析方法 第28部分:16个主次成分量测定 [S]. 北京:中国标准出版社,2011.

General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration Committee. GB/T 14506.28-2010. Methods for chemical analysis of silicate rocks: Part 28: Determination of 16 major and minor elements content [S]. Beijing: China Standard Press, 2011.
[35] 国家质量技术监督局. GB/T 17672—1999 岩石中铅、锶、钕同位素测定方法 [S]. 北京:中国标准出版社,1999.

State Bureau of Quality and Technical Supervision. GB/T 17672-1999 Determinations for isotopes of lead, strontium and neodymium in rock samples [S]. Beijing: China Standard Press, 1999.
[36] 国家能源局. SY/T 5163—2010 沉积岩中黏土矿物和常见非黏土矿物X衍射分析方法 [S]. 北京:石油工业出版社,2010.

National Energy Administration. SY/T 5163-2010 Analysis method for clay minerals and ordinary non-clay minerals in sedimentary rocks by the X-ray diffraction [S]. Beijing: Petroleum Industry Press, 2010.
[37] 中国石油天然气总公司. SY/T 5124—1995 沉积岩中镜质组反射率测定方法 [S]. 北京:石油工业出版社,1996. [China National Petroleum Corporation. SY/T 5124-1995 Determination of vitrinite reflectance in hydrocarbon source rock[S]. Beijing: Petroleum Industry Press, 1996.]
[38] 郑永飞,陈江峰. 稳定同位素地球化学[M]. 北京:科学出版社,2000:1-315.

Zheng Yongfei, Chen Jiangfeng. Stable isotope geochemistry[M]. Beijing: Science Press, 2000: 1-315.
[39] 秦建中. 中国烃源岩[M]. 北京:科学出版社,2005.

Qin Jianzhong. The hydrocarbon source rock of China[M]. Beijing: Science Press, 2005.
[40] 邓宏文,钱凯. 沉积地球化学与环境分析[M]. 兰州:甘肃科技出版社,1993:1-154.

Deng Hongwen, Qian Kai. Sedimentary geochemistry and environmental analysis[M]. Lanzhou: Gansu Science and Technology Press, 1993: 1-154.
[41] 张虎才. 元素表生地球化学特征及理论基础[M]. 兰州:兰州大学出版社,1997:1-456.

Zhang Hucai. Elemental epigenetic geochemical characteristics and theoretical basis[M]. Lanzhou: Lanzhou University Press, 1997: 1-456.
[42] Nesbitt H W, Wilson R E. Recent chemical weathering of basalts[J]. American Journal of Science, 1992, 292(10): 740-777.
[43] Wei G J, Liu Y, Li X H, et al. Major and trace element variations of the sediments at ODP Site 1144, South China Sea, during the last 230 ka and their paleoclimate implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212(3/4): 331-342.
[44] 马英军,刘丛强. 地壳风化系统中的Sr同位素地球化学[J]. 矿物学报,1998,18(3):350-358.

Ma Yingjun, Liu Congqiang. Geochemistry of strontium isotopes in the crust weathering system[J]. Acta Mineralogica Sinica, 1998, 18(3): 350-358.
[45] Åberg G, Jacks G, Joseph Hamilton P. Weathering rates and 87Sr/86Sr ratios: An isotopic approach[J]. Journal of Hydrology, 1989, 109(1/2): 65-78.
[46] Bain D C, Bacon J R. Strontium isotopes as indicators of mineral weathering in catchments[J]. CATENA, 1994, 22(3): 201-214.
[47] 刘晓惠,许强,丁林. 差异抬升:青藏高原新生代古高度变化历史[J]. 中国科学(D辑):地球科学,2017,47(1):40-56.

Liu Xiaohui, Xu Qiang, Ding Lin. Differential surface uplift: Cenozoic paleoelevation history of the Tibetan Plateau[J]. Science China (Seri. D): Earth Sciences, 2017, 47(1): 40-56.
[48] Valdes P J, Lin D, Farnsworth A, et al. Comment on “Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene”[J]. Science, 2019, 365(6459): eaax8474.
[49] Ding L, Spicer R A, Yang J, et al. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon[J]. Geology, 2017, 45(3): 215-218.
[50] Ding L, Xu Q, Yue Y H, et al. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene⁃Eocene Linzhou Basin[J]. Earth and Planetary Science Letters, 2014, 392: 250-264.
[51] 陈正乐,李丽,刘健,等. 西天山隆升—剥露过程初步研究[J]. 岩石学报,2008,24(4):625-636.

Chen Zhengle, Li Li, Liu Jian, et al. Preliminary study on the uplifting-exhumation process of the western Tianshan range, northwestern China[J]. Acta Petrologica Sinica, 2008, 24(4): 625-636.
[52] 张玲,杨晓平,万景林,等. 中新生代南北天山差异性抬升历史的磷灰石裂变径迹证据[J]. 岩石学报,2018,34(3):837-850.

Zhang Ling, Yang Xiaoping, Wan Jinglin, et al. Mesozoic and Cenozoic differential uplifting history of the North Tianshan and the South Tianshan from apatite fission-track date[J]. Acta Petrologica Sinica, 2018, 34(3): 837-850.