[1] Hedges J I, Keil R G. Sedimentary organic matter preservation: An assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2/3): 81-115.
[2] Bianchi T S, Cui X Q, Blair N E, et al. Centers of organic carbon burial and oxidation at the land-ocean interface[J]. Organic Geochemistry, 2018, 115: 138-155.
[3] Goni M A, Monacci N, Gisewhite R, et al. Distribution and sources of particulate organic matter in the water column and sediments of the Fly River Delta, Gulf of Papua (Papua New Guinea)[J]. Estuarine, Coastal and Shelf Science, 2006, 69(1/2): 225-245.
[4] Tesi T, Miserocchi S, Goñi M A, et al. Source, transport and fate of terrestrial organic carbon on the western Mediterranean Sea, Gulf of Lions, France[J]. Marine Chemistry, 2007, 105(1/2): 101-117.
[5] Zonneveld K A F, Versteegh G J M, Kasten S, et al. Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record[J]. Biogeosciences, 2010, 7(2): 483-511.
[6] Bianchi T S, Allison M A. Large-river delta-front estuaries as natural “recorders” of global environmental change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(20): 8085-8092.
[7] Sampere T P, Bianchi T S, Wakeham S G, et al. Sources of organic matter in surface sediments of the Louisiana Continental margin: Effects of major depositional/transport pathways and Hurricane Ivan[J]. Continental Shelf Research, 2008, 28(17): 2472-2487.
[8] Nittrouer C A, Brunskill G J, Figueiredo A G. Importance of tropical coastal environments[J]. Geo-Marine Letters, 1995, 15(3): 121-126.
[9] Meybeck M. How to establish and use world budgets of riverine materials[M]//Lerman A, Meybeck M. Physical and chemical weathering in geochemical cycles. The Hague: Kluwer Academic, 1988: 247-272.
[10] DeMaster D J, McKee B A, Moore W S, et al. Geochemical processes occurring in the waters at the Amazon River/ocean boundary[J]. Oceanography, 1991, 4(1): 15-20.
[11] Ericson J P, Vörösmarty C J, Dingman S L, et al. Effective sea-level rise and deltas: Causes of change and human dimension implications[J]. Global and Planetary Change, 2006, 50(1/2): 63-82.
[12] Syvitski J P M, Kettner A J, Overeem I, et al. Sinking deltas due to human activities[J]. Nature Geoscience, 2009, 2(10): 681-686.
[13] Walling D E, Fang D. Recent trends in the suspended sediment loads of the world’s rivers[J]. Global and Planetary Change, 2003, 39(1/2): 111-126.
[14] Penland S, Boyd R, Suter J R. Transgressive depositional systems of the Mississippi delta plain: A model for barrier shoreline and shelf sand development[J]. Journal of sedimentary Research, 1988, 58(6): 932-949.
[15] Törnqvist T E, Wallace D J, Storms J E A, et al. Mississippi Delta subsidence primarily caused by compaction of Holocene strata[J]. Nature Geoscience, 2008, 1(3): 173-176.
[16] Hilton R G, Galy A, Hovius N, et al. Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains[J]. Nature Geoscience, 2008, 1(11): 759-762.
[17] Darby S E, Hackney C R, Leyland J, et al. Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity[J]. Nature, 2016, 539(7628): 276-279.
[18] Meksumpun S, Meksumpun C, Hoshika A, et al. Stable carbon and nitrogen isotope ratios of sediment in the gulf of Thailand: Evidence for understanding of marine environment[J]. Continental Shelf Research, 2005, 25(15): 1905-1915.
[19] Alongi D M, Wattayakorn G, Pfitzner J, et al. Organic carbon accumulation and metabolic pathways in sediments of mangrove forests in southern Thailand[J]. Marine Geology, 2001, 179(1/2): 85-103.
[20] Boonyatumanond R, Wattayakorn G, Amano A, et al. Reconstruction of pollution history of organic contaminants in the Upper Gulf of Thailand by using sediment cores: First report from Tropical Asia Core (TACO) project[J]. Marine Pollution Bulletin, 2007, 54(5): 554-565.
[21] Wu B, Wu X D, Shi X F, et al. Influences of tropical monsoon climatology on the delivery and dispersal of organic carbon over the Upper Gulf of Thailand[J]. Marine Geology, 2020, 426: 10629.
[22] Thampanya U, Vermaat J E, Sinsakul S, et al. Coastal erosion and mangrove progradation of southern Thailand[J]. Estuarine, Coastal and Shelf Science, 2006, 68(1/2): 75-85.
[23] Wattayakorn G, King B, Wolanski E, et al. Seasonal dispersion of petroleum contaminants in the Gulf of Thailand[J]. Continental Shelf Research, 1998, 18(6): 641-659.
[24] Cheevaporn V, Menasveta P. Water pollution and habitat degradation in the Gulf of Thailand[J]. Marine Pollution Bulletin, 2003, 47(1/2/3/4/5/6): 43-51.
[25] Wattayakorn G. Petroleum pollution in the Gulf of Thailand: A historical review[J]. Coastal Marine Science, 2012, 35(1): 234-245.
[26] Srisuksawad K, Porntepkasemsan B, Nouchpramool S, et al. Radionuclide activities, geochemistry, and accumulation rates of sediments in the Gulf of Thailand[J]. Continental Shelf Research, 1997, 17(8): 925-965.
[27] Hungspreugs M, Utoomprurkporn W, Sompongchaiyakul P, et al. Possible impact of dam reservoirs and river diversions on material fluxes to the Gulf of Thailand[J]. Marine Chemistry, 2002, 79(3/4): 185-191.
[28] Liu S F, Zhang H, Zhu A M, et al. Distribution of rare earth elements in surface sediments of the western Gulf of Thailand: Constraints from sedimentology and mineralogy[J]. Quaternary International, 2019, 527: 52-63.
[29] Shi X F, Liu S F, Fang X S, et al. Distribution of clay minerals in surface sediments of the western Gulf of Thailand: Sources and transport patterns[J]. Journal of Asian Earth Sciences, 2015, 105: 390-398.
[30] Hu L M, Shi X F, Qiao S Q, et al. Sources and mass inventory of sedimentary polycyclic aromatic hydrocarbons in the Gulf of Thailand: Implications for pathways and energy structure in SE Asia[J]. Science of the Total Environment, 2017, 575: 982-995.
[31] Williams H, Choowong M, Phantuwongraj S, et al. Geologic records of Holocene typhoon strikes on the Gulf of Thailand coast[J]. Marine Geology, 2016, 372: 66-78.
[32] Hu L M, Shi X F, Guo Z G, et al. Sources, dispersal and preservation of sedimentary organic matter in the Yellow Sea: The importance of depositional hydrodynamic forcing[J]. Marine Geology, 2013, 335: 52-63.
[33] 周亮,高抒,杨阳,等. 海南岛东南部海湾潟湖沉积和碳埋藏变化研究[J]. 第四纪研究,2016,36(1):66-77.

Zhou Liang, Gao Shu, Yang Yang, et al. Sediment accumulation and carbon burial in two tropical lagoons, southeastern Hainan island[J]. Quaternary Science, 2016, 36(1): 66-77.
[34] 赵宁,杨旸,高建华,等. 自然和人类活动作用下月湖沉积物有机质来源及其演变[J]. 地球化学,2014,43(4):365-374.

Zhao Ning, Yang Yang, Gao Jianhua, et al. The influences of natural and human activities on sources and evolution of organic matter in the Yuehu Lagoon sediments[J]. Geochimica, 2014, 43(4): 365-375.
[35] Mayer L M. Surface area control of organic carbon accumulation in continental shelf sediments[J]. Geochimica et Cosmochimica Acta, 1994, 58(4): 1271-1284.
[36] Nutalaya P. Coastal erosion in the Gulf of Thailand[J]. GeoJournal, 1996, 38(3): 283-300.
[37] Schefuß E, Versteegh G J M, Jansen J H F, et al. Lipid biomarkers as major source and preservation indicators in SE Atlantic surface sediments[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(9): 1199-1228.
[38] Yoneyama T, Okada H, Chongpraditnum P, et al. Effects of vegetation and cultivation on δ13C values of soil organic carbon and estimation of its turnover in Asian tropics: A case study in Thailand[J]. Soil Science and Plant Nutrition, 2006, 52(1): 95-102.
[39] Ruttenberg K C, Goñi M A. Phosphorus distribution, C:N:P ratios, and δ 13C OC in arctic, temperate, and tropical coastal sediments: Tools for characterizing bulk sedimentary organic matter[J]. Marine Geology, 1997, 139(1/2/3/4): 123-145.
[40] Ramaswamy V, Gaye B, Shirodkar P V, et al. Distribution and sources of organic carbon, nitrogen and their isotopic signatures in sediments from the Ayeyarwady (Irrawaddy) continental shelf, northern Andaman Sea[J]. Marine Chemistry, 2008, 111(3/4): 137-150.
[41] Goñi M A, Ruttenberg K C, Eglinton T I. A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 1998, 62(18): 3055-3075.
[42] Galy V, Peucker-Ehrenbrink B, Eglinton T. Global carbon export from the terrestrial biosphere controlled by erosion[J]. Nature, 2015, 521(7551): 204-207.
[43] Redfield A C, Ketchum B H, Richards F A. The influence of organisms on the composition of sea-water[M]//Hill M N. The composition of seawater: Comparative and descriptive oceanography. The sea: Ideas and observations on progress in the study of the seas. New York: Wiley, 1963: 26-77.
[44] Fry B, Sherr E B. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems[J]. Contributions to Marine Science, 1984, 27: 13-47.
[45] Pancost R D, Boot C S. The palaeoclimatic utility of terrestrial biomarkers in marine sediments[J]. Marine Chemistry, 2004, 92(1/2/3/4): 239-261.
[46] Kennedy H, Gacia E, Kennedy D P, et al. Organic carbon sources to SE Asian coastal sediments[J]. Estuarine, Coastal and Shelf Science, 2004, 60(1): 59-68.
[47] Boonphakdee T, Fujiwara T. Temporal variability of nutrient budgets in a tropical river estuary: The bangpakong river estuary, Thailand[J]. EnvironmentAsia, 2008, 1(1): 7-21.
[48] Boonphakdee T, Kasai A, Fujiwara T, et al. Combined stable carbon isotope and C/N ratios as indicators of source and fate of organic matter in the bangpakong river estuary, Thailand[J]. Environment Asia, 2008, 1(1): 28-36.
[49] Rau G H, Takahashi T, Des Marais D J. Latitudinal variations in plankton δ13C: Implications for CO2 and productivity in past oceans[J]. Nature, 1989, 341(6242): 516-518.
[50] Goericke R, Fry B. Variations of marine plankton δ13C with latitude, temperature, and dissolved CO2 in the world ocean[J]. Global Biogeochemical Cycles, 1994, 8(1): 85-90.
[51] Walling D E. The impact of global change on erosion and sediment transport by rivers: Current progress and future challenges[M]. Paris, Franc: United Nations Educational, Scientific and Cultural Organization, 2009: 1-30.
[52] Rangsiwanichpong P, Kazama S, Ekkawatpanit C, et al. Evaluation of cost and benefit of sediment based on landslide and erosion models[J]. CATENA, 2019, 173: 194-206.
[53] Gonneea M E, Paytan A, Herrera-Silveira J A. Tracing organic matter sources and carbon burial in mangrove sediments over the past 160 years[J]. Estuarine, Coastal and Shelf Science, 2004, 61(2): 211-227.
[54] Valiela I, Cole M L. Comparative evidence that salt marshes and mangroves may protect seagrass meadows from land-derived nitrogen loads[J]. Ecosystems, 2002, 5: 92-102.
[55] Liu K B, Fan D D. Perspectives on the linkage between typhoon activity and global warming from recent research advances in paleotempestology [J]. Chinese Science Bulletin, 2008, 53(19): 2907-2922.
[56] Donnelly J P, Woodruff J D. Intense hurricane activity over the past 5,000 years controlled by El Niño and the West African monsoon[J]. Nature, 2007, 447(7143): 465-468.
[57] Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Niño/southern Oscillation activity at millennial timescales during the Holocene Epoch[J]. Nature, 2002, 420(6912): 162-165.
[58] 王承涛. 泰国湾尖竹汶海岸沉积物组成和分布特征及其环境意义[D]. 厦门:自然资源部第三海洋研究所,2020.

Wang Chengtao. Grain-Size composition and distribution characteristics of sediments in the Chanthaburi coast, Gulf of Thailand and its environmental significance[D]. Xiamen: The Third Institute of Oceanography, Ministry of Natural Resources, 2020.
[59] Promchote P, Wang S Y S, Johnson P G. The 2011 great flood in Thailand: Climate diagnostics and implications from climate change[J]. Journal of Climate, 2016, 29(1): 367-379.
[60] Herbeck L S, Unger D, Krumme U, et al. Typhoon-induced precipitation impact on nutrient and suspended matter dynamics of a tropical estuary affected by human activities in Hainan, China[J]. Estuarine, Coastal and Shelf Science, 2011, 93(4): 375-388.
[61] Herbeck L S, Unger D, Wu Y, et al. Effluent, nutrient and organic matter export from shrimp and fish ponds causing eutrophication in coastal and back-reef waters of NE Hainan, tropical China[J]. Continental Shelf Research, 2013, 57: 92-104.
[62] 薛健宏,杨逸萍,郭卫东,等. 9810号台风过程厦门近岸海域POC的变化特征[J]. 台湾海峡,2000,19(3):269-275.

Xue Jianhong, Yang Yiping, Guo Weidong, et al. Variation characteristics of POC in Xiamen coastal area during Typhoon 9810 process[J]. Journal of Oceanography in Taiwan Strait, 2000, 19(3): 269-275.
[63] Allison M A, Dellapenna T M, Gordon E S, et al. Impact of Hurricane Katrina (2005) on shelf organic carbon burial and deltaic evolution[J]. Geophysical Research Letters, 2010, 37(21): L21605.
[64] Turner R E, Baustian J J, Swenson E M, et al. Wetland sedimentation from Hurricanes Katrina and Rita[J]. Science, 2006, 314(5798): 449-452.
[65] Sinsakul S. Late Quaternary geology of the Lower Central Plain, Thailand[J]. Journal of Asian Earth Sciences, 2000, 18(4): 415-426.