[1] 李志国. 日本海自然环境特征及生物资源开发利用[J]. 人文地理,1993,8(2):89-95.

Li Zhiguo. Characteristics of natural environment and the exploitation of biological resources in the sea of Japan[J]. Human Geography, 1993, 8(2): 89-95.
[2] Igarashi Y, Irino T, Sawada K, et al. Fluctuations in the East Asian monsoon recorded by pollen assemblages in sediments from the Japan Sea off the southwestern coast of Hokkaido, Japan, from 4.3 Ma to the present[J]. Global and Planetary Change, 2018, 163: 1-9.
[3] Zou J J, Shi X F, Zhu A M, et al. Paleoenvironmental implications of Sr and Nd isotopes variability over the past 48 ka from the southern sea of Japan[J]. Marine Geology, 2021, 432: 106393.
[4] Yoshikawa Y, Awaji T, Akitomo K. Formation and circulation processes of intermediate water in the Japan Sea[J]. Journal of Physical Oceanography, 1999, 29(8): 1701-1722.
[5] 崔琰琳,吴德星,兰健. 日本海环流研究综述[J]. 海洋科学进展,2006,24(4):577-592.

Cui Yanlin, Wu Dexing, Lan Jian. Review of study on circulation in the Japan Sea[J]. Advances in Marine Science, 2006, 24(4): 577-592.
[6] Kim M, Hwang J, Kim G, et al. Carbon cycling in the East Sea (Japan Sea): A review[J]. Frontiers in Marine Science, 2022, 9: 938935.
[7] Tada R. Paleoceanographic evolution of the Japan Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108(3/4): 487-508.
[8] Gorbarenko S A, Shi X F, Bosin A A, et al. Highly resolved East Asian monsoon changes inferred from sea of Japan sediments[J]. Global and Planetary Change, 2023, 220: 103996.
[9] 沈兴艳,万世明. 日本海第四纪沉积记录及其海陆联系的研究进展[J]. 海洋地质与第四纪地质,2015,5(6):139-151.

Shen Xingyan, Wan Shiming. Research progress of Quaternary depositional records of the Japan Sea and its implications for the linkages to the Asian continent[J]. Marine Geology & Quaternary Geology, 2015, 35(6): 139-151.
[10] Tada R, Murray R W, Alvarez Zarikian C A, et al. Expedition 346 summary[M]//Tada R, Murray R W, Alvarez Zarikian C A, et al. Proceedings of the integrated ocean drilling program, 346. College Station, TX: Integrated Ocean Drilling Program, 2015.
[11] Tada R, Murray R W, Alvarez Zarikian C A, et al. Site U1424[M]//Tada R, Murray R W, Alvarez Zarikian C A, et al. Proceedings of the integrated ocean drilling program, 346. College Station, TX: Integrated Ocean Drilling Program, 2015.
[12] Tada R, Irino T, Ikehara K, et al. High-resolution and high-precision correlation of dark and light layers in the Quaternary hemipelagic sediments of the Japan Sea recovered during IODP Expedition 346[J]. Progress in Earth and Planetary Science, 2018, 5: 19.
[13] Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide[J]. Nature, 2000, 407(6806): 859-869.
[14] Chisholm S W. Stirring times in the Southern Ocean[J]. Nature, 2000, 407(6805): 685-686.
[15] Nelson D M, Tréguer P, Brzezinski M A, et al. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation[J]. Global Biogeochemical Cycles, 1995, 9(3): 359-372.
[16] Yamada K, Ishizaka J, Nagata H. Spatial and temporal variability of satellite primary production in the Japan Sea from 1998 to 2002[J]. Journal of Oceanography, 2005, 61(5): 857-869.
[17] Joo H, Son S, Park J W, et al. Long-term pattern of primary productivity in the East/Japan Sea based on ocean color data derived from MODIS-Aqua[J]. Remote Sensing, 2016, 8(1): 25.
[18] Lee J S, Han J H, An S U, et al. Sedimentary organic carbon budget across the slope to the basin in the southwestern Ulleung (Tsushima) Basin of the East (Japan) Sea[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(9): 2804-2822.
[19] Park G H, Lee K, Tishchenko P, et al. Large accumulation of anthropogenic CO2 in the East (Japan) Sea and its significant impact on carbonate chemistry[J]. Global Biogeochemical Cycles, 2006, 20(4): GB4013.
[20] Zhai L N, Wan S M, Colin C, et al. Deep-water formation in the North Pacific during the Late Miocene global cooling[J]. Paleoceanography and Paleoclimatology, 2021, 36(2): E2020PA003946.
[21] Zhai L N, Wan S M, Tada R, et al. Links between iron supply from Asian dust and marine productivity in the Japan Sea since four million years ago[J]. Geological Magazine, 2020, 157(5): 818-828.
[22] Martin J H. Glacial-interglacial CO2 change: The iron hypothesis[J]. Paleoceanography, 1990, 5(1): 1-13.
[23] Harrison K G. Role of increased marine silica input on paleo-pCO2 levels[J]. Paleoceanography, 2000, 15(3): 292-298.
[24] Oba T, Pedersen T F. Paleoclimatic significance of eolian carbonates supplied to the Japan Sea during the last glacial maximum[J]. Paleoceanography, 1999, 14(1): 34-41.
[25] Nozaki Y, Yamamoto Y. Radium 228 based nitrate fluxes in the eastern Indian Ocean and the South China Sea and a silicon-induced "alkalinity pump" hypothesis[J]. Global Biogeochemical Cycles, 2001, 15(3): 555-567.
[26] Brzezinski M A, Pride C J, Franck V M, et al. A switch from Si(OH)4 to NO3 - depletion in the glacial Southern Ocean[J]. Geophysical Research Letters, 2002, 29(12): 1564.
[27] Matsumoto K, Sarmiento J L, Brzezinski M A. Silicic acid leakage from the Southern Ocean: A possible explanation for glacial atmospheric pCO2 [J]. Global Biogeochemical Cycles, 2002, 16(3): 1031.
[28] Matsumoto K, Sarmiento J L. A corollary to the silicic acid leakage hypothesis[J]. Paleoceanography, 2008, 23(2): PA2203.
[29] 汪品先,翦知湣,刘志飞. 地球圈层相互作用中的深海过程和深海记录(II):气候变化的热带驱动与碳循环[J]. 地球科学进展,2006,21(4):338-345.

Wang Pinxian, Jian Zhimin, Liu Zhifei. Interactions between the earth spheres: Deep-sea processes and records (II) tropical forcing of climate changes and carbon cycling[J]. Advances in Earth Science, 2006, 21(4): 338-345.
[30] 熊志方,李铁刚. 海洋纹层硅藻席古海洋学与生物地球化学研究进展[J]. 海洋与湖沼,2017,48(6):1244-1256.

Xiong Zhifang, Li Tiegang. Marine laminated diatom mats in palaeoceanography and biogeochemistry: Retrospective and prospective[J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1244-1256.
[31] Ruddiman W F. Earth's climate: Past and future[M]. 3rd ed. New York: W. H. Freeman and Company, 2014: 413-431.
[32] Moore J K, Doney S C, Glover D M, et al. Iron cycling and nutrient-limitation patterns in surface waters of the world ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2001, 49(1/2/3): 463-507.
[33] Kim T J, Hong G H, Kim D G, et al. Iron fertilization with enhanced phytoplankton productivity under minimal sulfur compounds and grazing control analysis in HNLC region[J]. American Journal of Climate Change, 2019, 8(1): 14-39.
[34] 陈敏. 化学海洋学[M]. 北京:海洋出版社,2009:143-200.

Chen Min. Chemical oceanography[M]. Beijing: China Ocean Press, 2009: 143-200.
[35] de Baar H J W, Boyd P W, Coale K H, et al. Synthesis of iron fertilization experiments: From the iron age in the age of enlightenment[J]. Journal of Geophysical Research: Oceans, 2005, 110(C9): C09S16.
[36] Kumar N, Anderson R F, Mortlock R A, et al. Increased biological productivity and export production in the glacial Southern Ocean[J]. Nature, 1995, 378(6558): 675-680.
[37] Paytan A, Kastner M, Chavez F P. Glacial to interglacial fluctuations in productivity in the equatorial pacific as indicated by marine barite[J]. Science, 1996, 274(5291): 1355-1357.
[38] Murray R W, Leinen M, Knowlton C W. Links between iron input and opal deposition in the Pleistocene equatorial Pacific Ocean[J]. Nature Geoscience, 2012, 5(4): 270-274.
[39] Xu Z K, Li T G, Clift P D, et al. Quantitative estimates of Asian dust input to the western Philippine Sea in the mid-Late Quaternary and its potential significance for paleoenvironment[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 3182-3196.
[40] Watson A J, Bakker D C E, Ridgwell A J, et al. Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2 [J]. Nature, 2000, 407(6805): 730-733.
[41] Takeda S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters[J]. Nature, 1998, 393(6687): 774-777.
[42] Dean W E, Gardner J V, Piper D Z. Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin[J]. Geochimica et Cosmochimica Acta, 1997, 61(21): 4507-4518.
[43] Brunelle B G, Sigman D M, Cook M S, et al. Evidence from diatom-bound nitrogen isotopes for subarctic Pacific stratification during the Last Ice Age and a link to North Pacific denitrification changes[J]. Paleoceanography, 2007, 22(1): PA1215.
[44] Piotrowski A M, Banakar V K, Scrivner A E, et al. Indian Ocean circulation and productivity during the last glacial cycle[J]. Earth and Planetary Science Letters, 2009, 285(1/2): 179-189.
[45] Kim S, Khim B K. Estimate of glacial silicic acid reduction over the last 600 ka in the Bering Sea using δ 30Si of diatom frustules[J]. Geochemical Journal, 2017, 51(4): 347-357.
[46] Zhao D B, Wan S M, Lu Z Y, et al. Delayed collapse of the North Pacific intermediate water after the glacial termination[J]. Geophysical Research Letters, 2021, 48(13): E2021GL092911.
[47] Beucher C P, Brzezinski M A, Crosta X. Silicic acid dynamics in the glacial sub-Antarctic: Implications for the silicic acid leakage hypothesis[J]. Global Biogeochemical Cycles, 2007, 21(3): GB3015.
[48] Anderson R F, Barker S, Fleisher M, et al. Biological response to millennial variability of dust and nutrient supply in the subantarctic South Atlantic Ocean[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 372(2019): 20130054.
[49] Martínez-García A, Sigman D M, Ren H J, et al. Iron fertilization of the subantarctic ocean during the last ice age[J]. Science, 2014, 343(6177): 1347-1350.
[50] Costa K M, McManus J F, Anderson R F, et al. No iron fertilization in the equatorial Pacific Ocean during the last ice age[J]. Nature, 2016, 529(7587): 519-522.
[51] 万世明,徐兆凯. 西太平洋风尘沉积记录研究进展[J]. 海洋与湖沼,2017,48(6):1208-1219.

Wan Shiming, Xu Zhaokai. Research progress on eolian dust records in the West Pacific[J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1208-1219.
[52] Wan S M, Sun Y B, Nagashima K. Asian dust from land to sea: Processes, history and effect from modern observation to geological records[J]. Geological Magazine, 2020, 157(5): 701-706.
[53] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
[54] Shen X Y, Wan S M, France-Lanord C, et al. History of Asian eolian input to the sea of Japan since 15 Ma: Links to Tibetan uplift or global cooling?[J]. Earth and Planetary Science Letters, 2017, 474: 296-308.
[55] Holbourn A E, Kuhnt W, Clemens S C, et al. Late Miocene climate cooling and intensification of Southeast Asian winter monsoon[J]. Nature Communications, 2018, 9(1): 1584.
[56] 靳华龙,万世明.新生代气候变冷机制研究进展[J]. 海洋地质与第四纪地质,2019,39(5):71-86.

Jin Hualong, Wan Shiming. The mechanism of Cenozoic cooling: A review of research progress[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 71-86.
[57] Westerhold T, Marwan N, Drury A J, et al. An astronomically dated record of Earth's climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6509): 1383-1387.
[58] Matsuzaki K M, Suzuki N, Tada R. An intensified East Asian winter monsoon in the Japan Sea between 7.9 and 6.6 Ma[J]. Geology, 2020, 48(9): 919-923.
[59] Matsuzaki K M, Ikeda M, Tada R. Weakened pacific overturning circulation, winter monsoon dominance and tectonism re-organized Japan Sea paleoceanography during the Late Miocene global cooling[J]. Scientific Reports, 2022, 12(1): 11396.
[60] Wen Y X, Zhang L M, Holbourn A E, et al. CO2-forced Late Miocene cooling and ecosystem reorganizations in East Asia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(5): E2214655120.
[61] Westacott S, Planavsky N J, Zhao M Y, et al. Revisiting the sedimentary record of the rise of diatoms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(27): E2103517118.
[62] Oba T, Kato M, Kitazato H, et al. Paleoenvironmental changes in the Japan Sea during the last 85,000 years[J]. Paleoceanography, 1991, 6(4): 499-518.
[63] Ishiwatari R, Yamada K, Matsumoto K, et al. Organic molecular and carbon isotopic records of the Japan Sea over the past 30 kyr[J]. Paleoceanography, 1999, 14(2): 260-270.
[64] Lee K E, Bahk J J, Narita H. Temporal variations in productivity and planktonic ecological structure in the East Sea (Japan Sea) since the last glaciation[J]. Geo-Marine Letters, 2003, 23(2): 125-129.
[65] Xing L, Zhang R P, Liu Y G, et al. Biomarker records of phytoplankton productivity and community structure changes in the Japan Sea over the last 166 kyr[J]. Quaternary Science Reviews, 2011, 30(19/20): 2666-2675.
[66] Zou J J, Shi X F, Liu Y G, et al. Reconstruction of environmental changes using a multi-proxy approach in the Ulleung Basin (sea of Japan) over the last 48 ka[J]. Journal of Quaternary Science, 2012, 27(9): 891-900.
[67] Das M, Singh R K, Holbourn A, et al. Paleoceanographic evolution of the Japan Sea during the Pleistocene:A benthic foraminiferal perspective[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 566: 110238.
[68] Ludwig W J, Murauchi S, Houtz R E. Sediments and structure of the Japan Sea[J]. GSA Bulletin, 1975, 86(5): 651-664.
[69] Water Yanagi T., salt, phosphorus and nitrogen budgets of the Japan Sea[J]. Journal of Oceanography, 2002, 58(6): 797-804.
[70] Onitsuka G, Yanagi T, Yoon J H. A numerical study on nutrient sources in the surface layer of the Japan Sea using a coupled physical-ecosystem model[J]. Journal of Geophysical Research: Oceans, 2007, 112(C5): C05042.
[71] 赵美训,张荣平,邢磊,等. 末次冰盛期以来日本海浮游植物生产力和群落结构变化[J]. 中国海洋大学学报,2009,39(5):1093-1099.

Zhao Meixun, Zhang Rongping, Xing Lei, et al. The changes of phytoplanktonic productivity and community structure in the Japan Sea since the Last Glacial Maximum[J]. Periodical of Ocean University of China, 2009, 39(5): 1093-1099.
[72] Katsunobu N, Satoshi K, Hideyuki S. The Japan Sea proper water and the Japan Sea warm eddy[J]. Bulletin of the Kobe Marine Observatory, 1990(209): 1-10.
[73] Talley L D, Min D H, Lobanov V B, et al. Japan/East Sea water masses and their relation to the sea’s circulation[J]. Oceanography, 2006, 19(3): 32-49.
[74] Senjyu T, Shiota K. Revisit the upper portion of the Japan Sea proper water: A recent structural change and freshening in the formation area[J]. Journal of Geophysical Research: Oceans, 2023, 128(1): E2022JC019094.
[75] Gamo T, Horibe Y. Abyssal circulation in the Japan Sea[J]. Journal of the Oceanographical Society of Japan, 1983, 39(5): 220-230.
[76] Gamo T, Nozaki Y, Sakai H, et al. Spacial and temporal variations of water characteristics in the Japan Sea bottom layer[J]. Journal of Marine Research, 1986, 44(4): 781-793.
[77] Ikehara K, Fujine K. Fluctuations in the Late Quaternary East Asian winter monsoon recorded in sediment records of surface water cooling in the northern Japan Sea[J]. Journal of Quaternary Science, 2012, 27(9): 866-872.
[78] Takata H, Kuma K, Iwade S, et al. Comparative vertical distributions of iron in the Japan Sea, the Bering Sea, and the western North Pacific Ocean[J]. Journal of Geophysical Research: Oceans, 2005, 110(C7): C07004.
[79] Takata H, Kuma K, Isoda Y, et al. Iron in the Japan Sea and its implications for the physical processes in deep water[J]. Geophysical Research Letters, 2008, 35(2): L02606.
[80] Park K A, Kim K R. Unprecedented coastal upwelling in the East/Japan Sea and linkage to long-term large-scale variations[J]. Geophysical Research Letters, 2010, 37(9): L09603.
[81] Kaizuka S. Late Cenozoic palaeogeography of Japan[J]. GeoJournal, 1980, 4(2): 101-109.
[82] Itaki T. Transitional changes in microfossil assemblages in the Japan Sea from the Late Pliocene to Early Pleistocene related to global climatic and local tectonic events[J]. Progress in Earth and Planetary Science, 2016, 3(1): 11.
[83] Itoh Y, Nakajima T, Takemura A. Neogene deformation of the back-arc shelf of southwest Japan and its impact on the palaeo- environments of the Japan Sea[J]. Tectonophysics, 1997, 281(1/2): 71-82.
[84] Kozaka Y, Horikawa K, Asahara Y, et al. Late Miocene-mid-Pliocene tectonically induced formation of the semi-closed Japan Sea, inferred from seawater Nd isotopes[J]. Geology, 2018, 46(10): 903-906.
[85] Sato H. The relationship between Late Cenozoic tectonic events and stress field and basin development in northeast Japan[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B11): 22261-22274.
[86] Gallagher S J, Kitamura A, Iryu Y, et al. The Pliocene to recent history of the Kuroshio and Tsushima currents: A multi-proxy approach[J]. Progress in Earth and Planetary Science, 2015, 2(1): 17.
[87] Zheng J Y, Guo X Y, Yang H Y, et al. Low sea surface salinity event of the Japan Sea during the last glacial maximum[J]. Paleoceanography and Paleoclimatology, 2023, 38(1): E2022PA004486.
[88] Lee K E. Surface water changes recorded in Late Quaternary marine sediments of the Ulleung Basin, East Sea (Japan Sea)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247(1/2): 18-31.
[89] 李铁刚,孙荣涛,张德玉,等. 晚第四纪对马暖流的演化和变动:浮游有孔虫和氧碳同位素证据[J]. 中国科学(D辑):地球科学,2007,37(5):660-669.

Li Tiegang, Sun Rongtao, Zhang Deyu, et al. Evolution and variation of the Tsushima warm current during the Late Quaternary: Evidence from planktonic foraminifera, oxygen and carbon isotopes[J]. Science China (Seri. D): Earth Sciences, 2007, 37(5): 660-669.
[90] Lim D, Xu Z K, Choi J, et al. Paleoceanographic changes in the Ulleung Basin, East (Japan) Sea, during the last 20,000 years: Evidence from variations in element composition of core sediments[J]. Progress in Oceanography, 2011, 88(1/2/3/4): 101-115.
[91] Matsuzaki K M, Itaki T, Tada R, et al. Paleoceanographic history of the Japan Sea over the last 9.5 million years inferred from radiolarian assemblages (IODP Expedition 346 Sites U1425 and U1430)[J]. Progress in Earth and Planetary Science, 2018, 5(1): 54.
[92] Tamaki K, Suyehiro K, Allan J, et al. Tectonic synthesis and implications of Japan Sea ODP drilling[M]//Tamaki K, Suyehiro K, Allan J, et al. Proceedings of the ocean drilling program, scientific results. College Station, TX: Ocean Drilling Program, 1992: 1333-1348.
[93] Jolivet L, Tamaki K, Fournier M. Japan Sea, opening history and mechanism: A synthesis[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B11): 22237-22259.
[94] Yang G, Zhao L F, Xie X B, et al. “Double door” opening of the Japan Sea inferred by Pn attenuation tomography[J]. Geophysical Research Letters, 2022, 49(16): E2022GL099886.
[95] Tsoy I B, Usoltseva M V. Miocene freshwater diatoms from the eastern slope of the submarine Ulleung Plateau (Krishtofovich Rise) in the sea of Japan[J]. Stratigraphy and Geological Correlation, 2016, 24(3): 276-293.
[96] Tsoy I. Early Miocene freshwater diatom flora from the Yamato Rise, the sea of Japan[J]. Diatom Research, 2017, 32(3): 277-293.
[97] Tsoy I B, Vashchenkova N G, Vasilenko L N, et al. Age and Formation conditions of Cenozoic sedimentary cover of the Yamato Rise in the sea of Japan[J]. Stratigraphy and Geological Correlation, 2020, 28(2): 202-229.
[98] Kimura S, Shikazono N, Kashiwagi H, et al. Middle Miocene-Early Pliocene paleo-oceanic environment of Japan Sea deduced from geochemical features of sedimentary rocks[J]. Sedimentary Geology, 2004, 164(1/2): 105-129.
[99] Martizzi P, Chiyonobu S, Hibi Y, et al. Middle-Late Miocene paleo-environment of the Japan Sea inferred by sedimentological and geochemical characterization of coeval sedimentary rocks[J]. Marine and Petroleum Geology, 2021, 128: 105059.
[100] Iijima A, Tada R. Evolution of Tertiary sedimentary basins of Japan in reference to opening of the Japan Sea[J]. Journal of the Japanese Association for Petroleum Technology, 1992, 57(2): 171-179.
[101] Ingle J C, Jr. Subsidence of the Japan Sea: Stratigraphic evidence from ODP sites and onshore sections[M]//Tamaki K, Suyehiro K, Allan J, et al. Proceedings of the ocean drilling program, scientific results. College Station, TX: Ocean Drilling Program, 1992: 1197-1218.
[102] Jolivet L, Tamaki K. Neogene kinematics in the Japan Sea region and volcanic activity of the northeast Japan arc[M]//Tamaki K, Suyehiro K, Allan J, et al. Proceedings of the ocean drilling program, scientific results. College Station, TX: Ocean Drilling Program, 1992: 1311-1331.
[103] Koizumi I. Biostratigraphy and paleoceanography of the Japan Sea based on diatoms: ODP Leg 127[M]//Tsuchi R, Ingle J C, Jr. Pacific Neogene: Environment, evolution, and events. Tokyo: University of Tokyo Press, 1992: 15-24.
[104] Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235(4793): 1156-1167.
[105] Tada R, Irino T, Koizumi I. Land-ocean linkages over orbital and millennial timescales recorded in Late Quaternary sediments of the Japan Sea[J]. Paleoceanography, 1999, 14(2): 236-247.
[106] Irino T, Tada R. High-resolution reconstruction of variation in aeolian dust (Kosa) deposition at ODP site 797, the Japan Sea, during the last 200 ka[J]. Global and Planetary Change, 2003, 35(1/2): 143-156.
[107] Nagashima K, Tada R, Tani A, et al. Contribution of aeolian dust in Japan Sea sediments estimated from ESR signal intensity and crystallinity of quartz[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(2): Q02Q04.
[108] Irino T, Tada R. Quantification of aeolian dust (Kosa) contribution to the Japan Sea sediments and its variation during the last 200 ky[J]. Geochemical Journal, 2000, 34(1): 59-93.
[109] Nagashima K, Tada R, Matsui H, et al. Orbital- and millennial-scale variations in Asian dust transport path to the Japan Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247(1/2): 144-161.
[110] Anderson C H, Murray R W, Dunlea A G, et al. Aeolian delivery to Ulleung Basin, Korea (Japan Sea), during development of the East Asian monsoon through the last 12 Ma[J]. Geological Magazine, 2020, 157(5): 806-817.
[111] Aoki S, Oinuma K, Sudo T. The distribution of clay minerals in the recent sediments of the Japan Sea[J]. Deep Sea Research and Oceanographic Abstracts, 1974, 21(4): 299-310.
[112] Cha H J, Choi M S, Lee C B, et al. Geochemistry of surface sediments in the southwestern East/Japan Sea[J]. Journal of Asian Earth Sciences, 2007, 29(5/6): 685-697.
[113] Singh R K, Sahu B, Vats N, et al. Sediment depositional pattern in the northern Japan Sea over the last 1200 ka and its linkages to orbital forcing[J]. Geological Journal, 2023, 58(7): 2777-2789.
[114] Kido Y, Minami I, Tada R, et al. Orbital-scale stratigraphy and high-resolution analysis of biogenic components and deep-water oxygenation conditions in the Japan Sea during the last 640 kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247(1/2): 32-49.
[115] Yokoyama Y, Kido Y, Tada R, et al. Japan Sea oxygen isotope stratigraphy and global sea-level changes for the last 50,000 years recorded in sediment cores from the Oki Ridge[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247(1/2): 5-17.
[116] Tada R, Koizumi I, Cramp A, et al. Correlation of dark and light layers, and the origin of their cyclicity in the Quaternary sediments from the Japan Sea[M]//Pisciotto K A, Ingle J C, Jr, von Breymann M T, et al. Proceedings of the ocean drilling program, scientific results. College Station, TX: Ocean Drilling Program, 1992: 577-601.
[117] Tada R. Onset and evolution of millennial-scale variability in the Asian monsoon and its impact on paleoceanography of the Japan Sea[M]//Clift P, Kuhnt W, Wang P, et al. Continent-ocean interactions within East Asian marginal seas. Washington, DC: American Geophysical Union, 2004: 283-298.
[118] Watanabe S, Tada R, Ikehara K, et al. Sediment fabrics, oxygenation history, and circulation modes of Japan Sea during the Late Quaternary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247(1/2): 50-64.
[119] Usami K, Ohi T, Hasegawa S, et al. Foraminiferal records of bottom-water oxygenation and surface-water productivity in the southern Japan Sea during 160-15ka: Associations with insolation changes[J]. Marine Micropaleontology, 2013, 101: 10-27.
[120] Dymond J, Suess E, Lyle M. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity[J]. Paleoceanography, 1992, 7(2): 163-181.
[121] Filippelli G M, Delaney M L, Garrison R E, et al. Phosphorus accumulation rates in a Miocene low oxygen basin: The Monterey Formation (Pismo Basin), California[J]. Marine Geology, 1994, 116(3/4): 419-430.
[122] Piper D Z, Isaacs C M. Minor elements in Quaternary sediment from the Sea of Japan: A record of surface-water productivity and intermediate-water redox conditions[J]. GSA Bulletin, 1995, 107(1): 54-67.
[123] Elderfield H, Rickaby R E M. Oceanic Cd/P ratio and nutrient utilization in the glacial Southern Ocean[J]. Nature, 2000, 405(6784): 305-310.
[124] 邹建军,石学法,刘焱光,等. 48ka以来日本海古生产力和古氧化还原环境变化的地球化学记录[J]. 海洋学报,2010,32(4):98-109.

Zou Jianjun, Shi Xuefa, Liu Yanguang, et al. The geochemical records of paleoproductivity and paleoredox in the sea of Japan since 48ka[J]. Acta Oceanologica Sinica, 2010, 32(4): 98-109.
[125] Schubert C J, Villanueva J, Calvert S E, et al. Stable phytoplankton community structure in the Arabian Sea over the past 200,000 years[J]. Nature, 1998, 394(6693): 563-566.
[126] Hinrichs K U, Schneider R R, Müller P J, et al. A biomarker perspective on paleoproductivity variations in two Late Quaternary sediment sections from the southeast Atlantic Ocean[J]. Organic Geochemistry, 1999, 30(5): 341-366.
[127] Leinen M, Cwienk D, Heath G R, et al. Distribution of biogenic silica and quartz in recent deep-sea sediments[J]. Geology, 1986, 14(3): 199-203.
[128] Black H D, Anderson W T, Alvarez Zarikian C A, et al. Data report: Organic matter, carbonate, and stable isotope stratigraphy from IODP Expedition 346 Sites U1426, U1427, and U1429[M]//Tada R, Murray R W, Alvarez Zarikian C A, et al. Proceedings of the integrated ocean drilling program, 346. College Station, TX: Integrated Ocean Drilling Program, 2018.
[129] Gallagher S J, Sagawa T, Henderson A C G, et al. East Asian monsoon history and paleoceanography of the Japan Sea over the last 460,000 years[J]. Paleoceanography and Paleoclimatology, 2018, 33(7): 683-702.
[130] Saavedra-Pellitero M, Baumann K H, Gallagher S J, et al. Paleoceanographic evolution of the Japan Sea over the last 460 kyr :A coccolithophore perspective[J]. Marine Micropaleontology, 2019, 152: 101720.
[131] Gorbarenko S A, Shi X F, Bosin A A, et al. Relative sea level changes during the last glacial maximum and deglaciation (33-15 ka) inferred from the δ 18O records of planktic foraminifera from the sea of Japan[J]. Quaternary Science Reviews, 2022, 279: 107386.
[132] Koizumi I, Ekeda A. The Plio-Pleistocene diatom record from ODP site 797 of the Japan Sea[M]//Wang N W, Remane. Stratigraphy: Proceedings of the 30th international geological congress. London: CRC Press, 1998: 213-230.
[133] 黄玥. 末次冰期以来南海及日本海硅藻及其古环境变化[D]. 上海:华东师范大学,2009:84-104.

Huang Yue. Diatom response to changes in palaeoenvironments of the South China Sea and the East Sea (sea of Japan) since the last glacial maximum[D]. Shanghai: East China Normal University, 2009: 84-104.
[134] Gorbarenko S A, Shi X F, Bosin A A, et al. Timing and mechanisms of the formation of the dark layers in the sea of Japan during the last 40 kyr[J]. Frontiers in Earth Science, 2021, 9: 647495.
[135] Gorbarenko S A, Shi X F, Rybiakova Y, et al. Fine structure of dark layers in the central Japan Sea and their relationship with the abrupt climate and sea level changes over the last 75 ka inferred from lithophysical, geochemical and pollen results[J]. Journal of Asian Earth Sciences, 2015, 114: 476-487.
[136] Koizumi I, Tada R, Narita H, et al. Paleoceanographic history around the Tsugaru Strait between the Japan Sea and the Northwest Pacific Ocean since 30 cal kyr BP[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(1): 36-52.
[137] 黄玥,刘焱光, Boo-Keum K,等. 从UB-2孔硅藻记录看末次冰期至早全新世日本海古海洋环境[J]. 古地理学报,2010,12(4):432-443.

Huang Yue, Liu Yanguang, Boo-Keum K, et al. Palaeoceanographical environment of Japan Sea during the last glacial and Early Holocene: An evidence from diatom record in core UB-2[J]. Journal of Palaeogeography, 2010, 12(4): 432-443.
[138] Vashchenkova N G, Gorovaya M T, Mozherovskii A V, et al. Sedimentary cover and Late Cenozoic history of the Okushiri Ridge (sea of Japan)[J]. Stratigraphy and Geological Correlation, 2011, 19(6): 663-678.
[139] Koizumi I, Yamamoto H. Diatom records in the Quaternary marine sequences around the Japanese Islands[J]. Quaternary International, 2016, 397: 436-447.
[140] Ventura C P L, Lopes C. Freshwater monsoon related inputs in the Japan Sea: A diatom record from IODP core U1427[C]//AGU (American Geophysical Union) fall meeting. San Francisco: American Geophysical Union, 2016.
[141] Yun S M, Lee T, Jung S W, et al. Fossil diatom assemblages as paleoecological indicators of paleo-water environmental change in the Ulleung Basin, East Sea, Republic of Korea[J]. Ocean Science Journal, 2017, 52(3): 345-357.
[142] Yi S, Yun H, Park B, et al. Biostratigraphy of the Ulleung Basin, East Sea (Japan Sea)[J]. Marine and Petroleum Geology, 2020, 122: 104697.
[143] Evstigneeva T A, Cherepanova M V. Environmental changes clarified by pollen and diatom proxy records in the sedimentary archive of the northwestern Japan Sea during last 21.0 kyr[J]. Palaeoworld, 2022, 31(4): 733-748.
[144] Lopes C, Mix A C, Abrantes F. Diatoms in northeast Pacific surface sediments as paleoceanographic proxies[J]. Marine Micropaleontology, 2006, 60(1): 45-65.
[145] 李铁刚,熊志方. 海洋硅藻稳定同位素研究进展[J]. 海洋与湖沼,2010,41(4):645-656.

Li Tiegang, Xiong Zhifang. A review of diatom stable isotopes in palaeoceanography[J]. Oceanologia et Limnologia Sinica, 2010, 41(4): 645-656.
[146] Andersen M B, Vance D, Archer C, et al. The Zn abundance and isotopic composition of diatom frustules, a proxy for Zn availability in ocean surface seawater[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 137-145.
[147] Sun X L, Andersson P S, Humborg C, et al. Silicon isotope enrichment in diatoms during nutrient-limited blooms in a eutrophied river system[J]. Journal of Geochemical Exploration, 2013, 132: 173-180.
[148] Xiong Z F, Li T G, Algeo T, et al. The silicon isotope composition of Ethmodiscus rex laminated diatom mats from the tropical West Pacific: Implications for silicate cycling during the Last Glacial Maximum[J]. Paleoceanography, 2015, 30(7): 803-823.
[149] Doering K, Ehlert C, Grasse P, et al. Differences between mono-generic and mixed diatom silicon isotope compositions trace present and past nutrient utilisation off Peru[J]. Geochimica et Cosmochimica Acta, 2016, 177: 30-47.
[150] Meyerink S, Ellwood M J, Maher W A, et al. Iron availability influences silicon isotope fractionation in two Southern Ocean diatoms (Proboscia inermis and Eucampia antarctica) and a coastal diatom (Thalassiosira pseudonana)[J]. Frontiers in Marine Science, 2017, 4: 217.
[151] Seki A, Tada R, Kurokawa S, et al. High-resolution Quaternary record of marine organic carbon content in the hemipelagic sediments of the Japan Sea from bromine counts measured by XRF core scanner[J]. Progress in Earth and Planetary Science, 2019, 6(1): 1.
[152] Olgun N, Duggen S, Croot P L, et al. Surface ocean iron fertilization: The role of airborne volcanic ash from subduction zone and hot spot volcanoes and related iron fluxes into the Pacific Ocean[J]. Global Biogeochemical Cycles, 2011, 25(4): GB4001.
[153] Takeda S. Iron and phytoplankton growth in the subarctic North Pacific[J]. Aqua-BioScience Monographs, 2011, 4(2): 41-93.
[154] 石学法,邹建军,姚政权,等. 日本海末次冰期以来沉积作用和环境演化及其控制要素[J]. 海洋地质与第四纪地质,2019,39(3):1-11.

Shi Xuefa, Zou Jianjun, Yao Zhengquan, et al. Sedimentation and environment evolution of the sea of Japan since the last glaciation and its driving forces[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 1-11.
[155] Fujine K, Tada R, Yamamoto M. Paleotemperature response to monsoon activity in the Japan Sea during the last 160 kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(3/4): 350-360.
[156] Horozal S, Kim G Y, Cukur D, et al. Sedimentary and structural evolution of the eastern South Korea Plateau (ESKP), East Sea (Japan Sea)[J]. Marine and Petroleum Geology, 2017, 85: 70-88.
[157] Chen T, Liu Q S, Roberts A, et al. A test of the relative importance of iron fertilization from aeolian dust and volcanic ash in the stratified high-nitrate low-chlorophyll subarctic Pacific Ocean[J]. Quaternary Science Reviews, 2020, 248: 106577.
[158] Kennett J P, Thunell R C. Global increase in Quaternary explosive volcanism[J]. Science, 1975, 187(4176): 497-503.
[159] Prueher L M, Rea D K. Volcanic triggering of Late Pliocene glaciation: Evidence from the flux of volcanic glass and ice-rafted debris to the North Pacific Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001: 173(3/4): 215-230.
[160] Cather S M, Dunbar N W, McDowell F W, et al. Climate forcing by iron fertilization from repeated ignimbrite eruptions: The icehouse-silicic large igneous province (SLIP) hypothesis[J]. Geosphere, 2009, 5(3): 315-324.
[161] Jicha B R, Scholl D W, Rea D K. Circum-Pacific arc flare-ups and global cooling near the Eocene-Oligocene boundary[J]. Geology, 2009, 37(4): 303-306.
[162] Hamme R C, Webley P W, Crawford W R, et al. Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific[J]. Geophysical Research Letters, 2010, 37(19): L19604.
[163] Tada R, Murray R W, Alvarez Zarikian C A, et al. Site U1430[M]//Tada R, Murray R W, Alvarez Zarikian C A, et al. Proceedings of the integrated ocean drilling program, 346. College Station, TX: Integrated Ocean Drilling Program, 2015.
[164] Park M H, Kim J H, Kim I S, et al. Tephrostratigraphy and paleo-environmental implications of Late Quaternary sediments and interstitial water in the western Ulleung Basin, East/Japan Sea[J]. Geo-Marine Letters, 2005, 25(1): 54-62.
[165] Park M H, Kim J H, Kil Y W. Identification of the Late Quaternary tephra layers in the Ulleung Basin of the East Sea using geochemical and statistical methods[J]. Marine Geology, 2007, 244(1/2/3/4): 196-208.
[166] Ikehara K. Marine tephra in the Japan Sea sediments as a tool for paleoceanography and paleoclimatology[J]. Progress in Earth and Planetary Science, 2015, 2(1): 36.
[167] Harrison S P, Kohfeld K E, Roelandt C, et al. The role of dust in climate changes today, at the last glacial maximum and in the future[J]. Earth-Science Reviews, 2001, 54(1/2/3): 43-80.
[168] Wan S M, Yu Z J, Clift P D, et al. History of Asian eolian input to the West Philippine Sea over the last one million years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 326-328: 152-159.
[169] Conway T M, John S G. Quantification of dissolved iron sources to the North Atlantic Ocean[J]. Nature, 2014, 511(7508): 212-215.
[170] Falkowski P G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean[J]. Nature, 1997, 387(6630): 272-275.
[171] Broecker W S, Henderson G M. The sequence of events surrounding termination II and their implications for the cause of glacial-interglacial CO2 changes[J]. Paleoceanography, 1998, 13(4): 352-364.
[172] Martínez-Garcia A, Rosell-Melé A, Jaccard S L, et al. Southern Ocean dust-climate coupling over the past four million years[J]. Nature, 2011, 476(7360): 312-315.
[173] Zan J B, Maher B A, Yamazaki T, et al. Mid-Pleistocene links between Asian dust, Tibetan glaciers, and Pacific iron fertilization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(24): E2304773120.
[174] Tada R, Murray R W, Zarikian C A, et al. An overview of IODP Expedition 346: Asian monsoon[C]//Japan Geoscience Union meeting. Kanagawa: Japan Geoscience Union, 2014.
[175] Zhang W F, De Vleeschouwer D, Shen J, et al. Orbital time scale records of Asian eolian dust from the sea of Japan since the Early Pliocene[J]. Quaternary Science Reviews, 2018, 187: 157-167.
[176] 冉莉华,郑玉龙,陈建芳,等. 南海北部和中部硅藻通量季节性变化及其对季风气候的响应[J]. 海洋学报,2011,33(5):139-145.

Ran Lihua, Zheng Yulong, Chen Jianfang, et al. The influence of monsoon on seasonal changes of diatom fluxes in the northern and central South China Sea[J]. Acta Oceanologica Sinica, 2011, 33(5): 139-145.
[177] Zhabin I A, Dmitrieva E V, Kil’matov T R, et al. Wind effects on the upwelling variability in the coastal zone of Primorye (the northwest of the sea of Japan)[J]. Russian Meteorology and Hydrology, 2017, 42(3): 181-188.
[178] Zhao D B, Wan S M, Zhai L N, et al. Tectonic and orbital imprints in the redox history of Japan Sea since the Pliocene[J]. Paleoceanography and Paleoclimatology, 2022, 37(2): E2021PA004333.
[179] Ruddiman W F, Raymo M E, Martinson D G, et al. Pleistocene evolution: Northern hemisphere ice sheets and North Atlantic Ocean[J]. Paleoceanography, 1989, 4(4): 353-412.
[180] Beny F, Toucanne S, Skonieczny C, et al. Geochemical provenance of sediments from the northern East China Sea document a gradual migration of the Asian Monsoon belt over the past 400,000 years[J]. Quaternary Science Reviews, 2018, 190: 161-175.
[181] Hayashi R, Sagawa T, Irino T, et al. Orbital-scale vegetation-ocean-atmosphere linkages in western Japan during the last 550 ka based on a pollen record from the IODP site U1427 in the Japan Sea[J]. Quaternary Science Reviews, 2021, 267: 107103.
[182] Felder S, Sagawa T, Greaves M, et al. Palaeoceanography of the Japan sea across the mid-Pleistocene transition: Insights from IODP exp. 346, site U1427[J]. Paleoceanography and Paleoclimatology, 2022, 37(1): E2021PA004236.
[183] Waelbroeck C, Labeyrie L, Michel E, et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records[J]. Quaternary Science Reviews, 2002, 21(1/2/3): 295-305.
[184] Berger A L. Long-term variations of daily insolation and Quaternary climatic changes[J]. Journal of the Atmospheric Sciences, 1978, 35(12): 2362-2367.
[185] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550): 2345-2348.
[186] Yuan D X, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the Last Interglacial Asian Monsoon[J]. Science, 2004, 304(5670): 575-578.
[187] Xu Z K, Lim D, Choi J, et al. Sediment provenance and paleoenvironmental change in the Ulleung Basin of the East (Japan) Sea during the last 21 kyr[J]. Journal of Asian Earth Sciences, 2014, 93: 146-157.
[188] Wu Y H, Shi X F, Gong X, et al. Evolution of the upper ocean stratification in the Japan Sea since the last glacial[J]. Geophysical Research Letters, 2020, 47(16): E2020GL088255.
[189] 刘焱光,邹建军,李朝新,等. 日本海的末次盛冰期[J]. 海洋地质与第四纪地质,2009,29(4):53-63.

Liu Yanguang, Zou Jianjun, Li Chaoxin, et al. The last glaciation maximum in the sea of Japan/East Sea[J]. Marine Geology & Quaternary Geology, 2009, 29(4): 53-63.
[190] 邹建军,宗娴,朱爱美,等. 37ka以来日本海沉积物有机质碳和氮稳定同位素变化及其古海洋学意义[J]. 地学前缘,2022,29(4):123-135.

Zou Jianjun, Zong Xian, Zhu Aimei, et al. Stable carbon and nitrogen isotope variations in sedimentary organic matter in the sea of Japan since 37 ka: Paleoceanographic implications[J]. Earth Science Frontiers, 2022, 29(4): 123-135.
[191] 刘焱光,石学法,吕海龙. 日本海、鄂霍次克海和白令海的古海洋学研究进展[J]. 海洋科学进展,2004,22(4):519-530.

Liu Yanguang, Shi Xuefa, Hailong Lü. Advances in paleoceanographic studies on the Japan Sea, Okhotsk Sea and Bering Sea[J]. Advances in Marine Science, 2004, 22(4): 519-530.
[192] 姚政权,刘焱光,王昆山,等. 日本海末次冰期千年尺度古环境变化的地球化学记录[J]. 矿物岩石地球化学通报,2010,29(2):119-126.

Yao Zhengquan, Liu Yanguang, Wang Kunshan, et al. Millennial-scale paleoenvironment change during the last glacial period recorded by geochemical variations in the Japan Sea[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2010, 29(2): 119-126.
[193] 葛淑兰,刘建兴,石学法,等. 日本海南部48ka以来的环境磁学记录及其反映的千年尺度环境变化[J]. 第四纪研究,2012,32(4):641-654.

Ge Shulan, Liu Jianxing, Shi Xuefa, et al. Millennial environmental and post-depositional changes of the last 48ka recorded by environmental magnetic parameters in southern Japan Sea[J]. Quaternary Sciences, 2012, 32(4): 641-654.
[194] Itaki T, Komatsu N, Motoyama I. Orbital- and millennial-scale changes of radiolarian assemblages during the last 220 kyrs in the Japan Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247(1/2): 115-130.