[1] Zachos J C, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
[2] Zachos J C, Flower B P, Paul H. Orbitally paced climate oscillations across the Oligocene/Miocene boundary[J]. Nature, 1997, 388(6642): 567-570.
[3] Woodruff F, Savin S M. Miocene deepwater oceanography[J]. Paleoceanography, 1989, 4(1): 87-140.
[4] Miller K G, Wright J D, Fairbanks R G. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B4): 6829-6848.
[5] Guo Z T, Sun B, Zhang Z S, et al. A major reorganization of Asian climate by the Early Miocene[J]. Climate of the Past, 2008, 4(3): 153-174.
[6] 李吉均,周尚哲,赵志军,等. 论青藏运动主幕[J]. 中国科学(D辑):地球科学,2015,45(10):1597-1608.

Li Jijun, Zhou Shangzhe, Zhao Zhijun, et al. The Qingzang movement: The major uplift of the Qinghai-Tibetan Plateau[J]. Science China (Seri. D): Earth Sciences, 2015, 45(10): 1597-1608.
[7] Le Fort P, Cuney M, Deniel C, et al. Crustal generation of the Himalayan leucogranites[J]. Tectonophysics, 1987, 134(1/2/3): 39-57.
[8] 李炳元,潘保田,高红山. 可可西里东部地区的夷平面与火山年代[J]. 第四纪研究,2002,22(5):397-405.

Li Bingyuan, Pan Baotian, Gao Hongshan. A planation surface and ages of volcanic rocks in eastern Hoh Xil, Qinghai-Tibetan Plateau[J]. Quaternary Sciences, 2002, 22(5): 397-405.
[9] 邓涛,吴飞翔,王世骐,等. 古近纪/新近纪之交青藏高原陆地生态系统的重大转折[J]. 科学通报,2019,64(27):2894-2906.

Deng Tao, Wu Feixiang, Wang Shiqi, et al. Significant shift in the terrestrial ecosystem at the Paleogene/Neogene boundary in the Tibetan Plateau[J]. Chinese Science Bulletin, 2019, 64(27): 2894-2906.
[10] Wu F X, Miao D S, Chang M M, et al. Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the Late Oligocene[J]. Scientific Reports, 2017, 7(1): 878.
[11] Su T, Farnsworth A, Spicer R A, et al. No high Tibetan Plateau until the Neogene[J]. Science Advances, 2019, 5(3): eaav2189.
[12] Miao Y F, Fang X M, Song C Het al. Pollen and fossil wood's linkage with Mi-1 Glaciation in northeastern Tibetan Plateau, China[J]. Palaeoworld, 2013, 22(3/4): 101-108.
[13] Wang C S, Zhao X X, Liu Z F, et al. Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(13): 4987-4992.
[14] 陈涛,王欢,张祖青,等. 粘土矿物对古气候指示作用浅析[J]. 岩石矿物学杂志,2003,22(4):416-420.

Chen Tao, Wang Huan, Zhang Zuqing, et al. Clay minerals as indicators of paleoclimate[J]. Acta Petrologica et Mineralogica, 2003, 22(4): 416-420.
[15] Robert C, Kennett J P. Antarctic continental weathering changes during Eocene-Oligocene cryosphere expansion: Clay mineral and oxygen isotope evidence[J]. Geology, 1997, 25(7): 587-590.
[16] Devleeschouwer X, Herbosch A, Préat A. Microfacies, sequence stratigraphy and clay mineralogy of a condensed deep-water section around the Frasnian/Famennian boundary (Steinbruch Schmidt, Germany)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 181(1/2/3): 171-193.
[17]
[18]
[19]
[20] Kapp P, Yin A, Harrison T M, et al. Cretaceous-Tertiary shortening, Basin development, and volcanism in central Tibet[J]. Geological Society of America Bulletin, 2005, 117(7/8): 865-878.
[21] 马鹏飞,王立成,冉波. 青藏高原中部新生代伦坡拉盆地沉降史分析[J]. 岩石学报,2013,29(3):990-1002.

Ma Pengfei, Wang Licheng, Ran Bo. Subsidence analysis of the Cenozoic Lunpola Basin, central Qinghai-Tibetan Plateau[J]. Acta Petrologica Sinica, 2013, 29(3): 990-1002.
[22] 曾胜强,王剑,陈文彬,等. 伦坡拉盆地西部丁青湖组新发现凝灰岩锆石U-Pb年龄及其地层学意义[J]. 地质学报,2020,94(8):2354-2366.

Zeng Shengqiang, Wang Jian, Chen Wenbing, et al. Zircon U-Pb age and stratigraphic significance of the newly discovered tuff layers in the Dingqinghu Formation, west Lunpola Basin[J]. Acta Geologica Sinica, 2020, 94(8): 2354-2366.
[23] Fang X M, Dupont-Nivet G, Wang C S, et al. Revised chronology of central Tibet uplift (Lunpola Basin)[J]. Science Advances, 2020, 6(50): eaba7298.
[24] Mao Z Q, Meng Q Q, Fang X M, et al. Recognition of tuffs in the Middle-Upper Dingqinghu Fm., Lunpola Basin, central Tibetan Plateau: Constraints on stratigraphic age and implications for paleoclimate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 525: 44-56.
[25] Deng T, Wang S Q, Xie G P, et al. A mammalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleo-altimetry[J]. Chinese Science Bulletin, 2012, 57(2/3): 261-269.
[26] Sun J M, Xu Q H, Liu W M, et al. Palynological evidence for the Latest Oligocene-Early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399: 21-30.
[27] He H Y, Sun J M, Li Q L, et al. New age determination of the Cenozoic Lunpola Basin, central Tibet[J]. Geological Magazine, 2012, 149(1): 141-145.
[28] 杜佰伟,谢尚克,董宇,等. 伦坡拉盆地渐新统丁青湖组油页岩特征及其地质意义[J]. 吉林大学学报(地球科学版),2016,46(3):671-680.

Du Baiwei, Xie Shangke, Dong Yu, et al. Characteristics of oil shale of Oligocene Dingqinghu Formation and its geological significance, Lunpola Basin[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(3): 671-680.
[29] Grim R E. Crystal structures of clay minerals and their X-ray identification G.W. Brindley and G. Brown (Editors), 1980. Mineralogical Society, London, 495 pp., £stg. 28.00, US$ 70.00 (incl. of postage)[J]. Earth-Science Reviews, 1982, 18(1): 84-85.
[30] Johns W D, Grim R E, Bradley W F. Quantitative estimations of clay minerals by diffraction methods[J]. Journal of Sedimentary Research, 1954, 24(4): 242-251.
[31] Biscaye P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and Adjacent Seas and Oceans[J]. Geological Society of America Bulletin, 1965, 76(7): 803-832.
[32] Kübler B. Les argiles, indicateurs de métamorphisme[J]. Revue de L′Institut Francais du Pétrole, 1964, 19: 1093-1112.
[33] 王河锦,周健. 关于伊利石结晶度诸指数的评价[J]. 岩石学报,1998,14(3):395-405.

Wang Hejin, Zhou Jian. On the indices of illite crystallinity[J]. Acta Petrologica Sinica, 1998, 14(3): 395-405.
[34] 詹秀春,罗立强. 偏振激发—能量色散X-射线荧光光谱法快速分析地质样品中34种元素[J]. 光谱学与光谱分析,2003,23(4):804-807.

Zhan Xiuchun, Luo Liqiang. Rapid multi-element analysis of geological sample by polarized energy dispersive X-Ray fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2003, 23(4): 804-807.
[35] Westerhold T, Marwan N, Drury A J, et al. An astronomically dated record of Earth's climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6509): 1383-1387.
[36] 刘志飞,李夏晶. 南海沉积物中蒙脱石的成因探讨[J]. 第四纪研究,2011,31(2):199-206.

Liu Zhifei, Li Xiajing. Discussion on smectite formation in South China Sea sediments[J]. Quaternary Sciences, 2011, 31(2): 199-206.
[37] Chamley H. Clay sedimentology[M]. Berlin Heidelberg: Springer, 1989.
[38] Singer A. The paleoclimatic interpretation of clay minerals in sediments—a review[J]. Earth-Science Reviews, 1984, 21(4): 251-293.
[39] 刘志飞. 南海沉积物中的黏土矿物:指示东亚季风演化历史?[J]. 沉积学报,2010,28(5):1012-1019.

Liu Zhifei. Clay mineral assemblages in sediments of the South China Sea: East Asian monsoon evolution proxies[J]. Acta Sedimentologica Sinica, 2010, 28(5): 1012-1019.
[40] 王开发,杨蕉文,李哲,等. 根据孢粉组合推论西藏伦坡拉盆地第三纪地层时代及其古地理[J]. 地质科学,1975,10(4):366-374.

Wang Kaifa, Yang Jiaowen, Li Zhe, et al. On the Tertiary sporo-pollen assemblages from Lunpola Basin of Xizang, China and their palaeogeographic significance[J]. Scientia Geologica Sinica, 1975, 10(4): 366-374.
[41] 徐正余. 西藏伦坡拉盆地第三系及其含油性[J]. 石油与天然气地质,1980,1(2):153-158.

Xu Zhengyu. The Tertiary and its petroleum potential in the Lunpola Basin, Tibet[J]. Oil & Gas Geology, 1980, 1(2): 153-158.
[42] 夏金宝. 藏北班戈县及其邻近地区的新生界[J]. 青藏高原地质文集,1983(6):243-254.

Xia Jinbao. Cenozoic of Baingoin and it’s bordering, Xizang (Tibet)[J]. Geological Collection of Qinghai-Tibet Plateau, 1983(6): 243-254.
[43]
[44] Gingele F X, Deckker P D, Hillenbrand C D. Clay mineral distribution in surface sediments between Indonesia and NW Australia - source and transport by ocean currents[J]. Marine Geology, 2001, 179(3/4): 135-146.
[45] Winkler A, Wolf-Welling T, Stattegger K, et al. Clay mineral sedimentation in high northern latitude deep-sea basins since the Middle Miocene (ODP Leg 151, NAAG)[J]. International Journal of Earth Sciences, 2002, 91(1): 133-148.
[46] 郑庆福,刘艇,赵兰坡,等. 东北黑土耕层土壤黏粒矿物组成的区域差异及其演化[J]. 土壤学报,2010,47(4):734-746.

Zheng Qingfu, Liu Ting, Zhao Lanpo, et al. Spatial variation and evolution mechanism of clay mineral composition in agric horizon of black soil in Northeast China[J]. Acta Pedologica Sinica, 2010, 47(4): 734-746.
[47] 师育新,戴雪荣,宋之光,等. 我国不同气候带黄土中粘土矿物组合特征分析[J]. 沉积学报,2005,23(4):690-695.

Shi Yuxin, Dai Xuerong, Song Zhiguang, et al. Characteristics of clay mineral assemblages and their spatial distribution of chinese loess in different climatic zones[J]. Acta Sedimentologica Sinica, 2005, 23(4): 690-695.
[48] 蒋梅茵,杨德涌,熊毅. 中国土壤胶体研究:ⅥⅡ. 五种主要土壤的粘粒矿物组成[J]. 土壤学报,1982,19(1):62-70.

Jiang Meiyin, Yang Deyong, Xiong Yi. Soil colloid researches ⅥⅡ. the mineralogical composition of the colloids of five important soils in China[J]. Acta Pedologica Sinica, 1982, 19(1): 62-70.
[49] Fang X M, Galy A, Yang Y B, et al. Paleogene global cooling-induced temperature feedback on chemical weathering, as recorded in the northern Tibetan Plateau[J]. Geology, 2019, 47(10): 992-996.
[50] 张志春,潘根兴,孔尚成,等. 青藏高原三江源南部下拉秀剖面粘土矿物组合特征及其环境意义[J]. 水土保持学报,2015,29(5):181-186,308.

Zhang Zhichun, Pan Genxing, Kong Shangcheng, et al. Characteristics and environmental significance of clay minerals composition of Xialaxiu profile in Three Rivers Source southern, Qinghai-Tibet Plateau[J]. Journal of Soil and Water Conservation, 2015, 29(5): 181-186, 308.
[51]
[52] 王朝文,洪汉烈,向树元,等. 东昆仑阿拉克湖早更新世沉积物黏土矿物特征及其古气候环境意义[J]. 地质科技情报,2008,27(5):37-42.

Wang Chaowen, Hong Hanlie, Xiang Shuyuan, et al. Characteristics of clay minerals and their paleoclimatic indicator of Early Pleistocene sediments from Alag Lake, East Kunlun[J]. Geological Science and Technology Information, 2008, 27(5): 37-42.
[53] Bronger A, Winter R, Sedov S. Weathering and clay mineral formation in two Holocene soils and in buried paleosols in Tadjikistan: Towards a Quaternary paleoclimatic record in Central Asia[J]. CATENA, 1998, 34(1/2): 19-34.
[54] Yang S Y, Li C X, Cai J G. Geochemical compositions of core sediments in eastern China: Implication for Late Cenozoic palaeoenvironmental changes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 229(4): 287-302.
[55] Nesbitt H W, Markovics G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(8): 1653-1670.
[56] Wei G J, Liu Y, Li X H, et al. Major and trace element variations of the sediments at ODP Site 1144, South China Sea, during the last 230 ka and their paleoclimate implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212(3/4): 331-342.
[57] Roddaz M, Viers J, Brusset S, et al. Controls on weathering and provenance in the Amazonian foreland Basin: Insights from major and trace element geochemistry of Neogene Amazonian sediments[J]. Chemical Geology, 2006, 226(1/2): 31-65.
[58] McLennan S M, Nance W B, Taylor S R, et al. Rare earth element-thorium correlations in sedimentary rocks, and the composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 1980, 44(11): 1833-1839.
[59] 李蒙,赵红格,李文厚,等. 贺兰山地区晚三叠世沉积主微量元素物源分析及方法探讨[J]. 高校地质学报,2018,24(6):841-555.

Li Meng, Zhao Hongge, Li Wenhou, et al. Major and trace elements of the Late Triassic strata in the Helan Mountain: Constraints on the provenance and discussions on different methods[J]. Geological Journal of China Universities, 2018, 24(6): 841-555.
[60] 伊海生,林金辉,周恳恳,等. 青藏高原北部新生代湖相碳酸盐岩碳氧同位素特征及古环境意义[J]. 古地理学报,2007,9(3):303-312.

Yi Haisheng, Lin Jinhui, Zhou Kenken, et al. Carbon and oxygen isotope characteristics and palaeoenvironmental implication of the Cenozoic lacustrine carbonate rocks in northern Qinghai-Tibetan Plateau[J]. Journal of Palaeogeography, 2007, 9(3): 303-312.
[61] 吴珍汉,吴中海,胡道功,等. 青藏高原北部中新统五道梁群湖相沉积碳氧同位素变化及古气候旋回[J]. 中国地质,2009,36(5):966-975.

Wu Zhenhan, Wu Zhonghai, Hu Daogong, et al. Carbon and oxygen isotope changes and palaeoclimate cycles recorded by lacustrine deposits of Miocene Wudaoliang Group in northern Tibetan Plateau[J]. Geology in China, 2009, 36(5): 966-975.
[62] 伊海生,林金辉,王成善,等. 藏北可可西里地区中新世湖相油页岩的生物分子标识及碳同位素异常[J]. 成都理工学院学报,2002,29(5):473-480.

Yi Haisheng, Lin Jinhui, Wang Chengshan, et al. Biomarkers and carbon isotopic anomaly from the Miocene lacustrine oil shales in Hoh Xil Basin of northern Tibetan Plateau[J]. Journal of Chengdu University of Technology, 2002, 29(5): 473-480.
[63] 张以茀,郑健康. 青海可可西里及邻区地质概论[M]. 北京:地震出版社,1994.[

Zhang Yifu, Zheng Jiankang. Geological overview in Kokshili, Qinghai and adjacent areas.[M]. Beijing: Seismological Press, 1994.
[64] Qiu Z D, Li C K. Evolution of Chinese mammalian faunal regions and elevation of the Qinghai-Xizang (Tibet) Plateau[J]. Science in China (Seri. D): Earth Sciences, 2005, 48(8): 1246-1258.
[65] Wu C H, Xia G Q, Wagreich M, et al. Early Miocene expansion of C4 vegetation on the northern Tibetan Plateau[J]. Global and Planetary Change, 2019, 177: 173-185.
[66] 吴珍汉,吴中海,叶培盛,等. 青藏高原晚新生代孢粉组合与古环境演化[J]. 中国地质,2006,33(5):966-979.

Wu Zhenhan, Wu Zhonghai, Ye Peisheng, et al. Late Cenozoic environmental evolution of the Qinghai-Tibet Plateau as indicated by the evolution of sporopollen assemblages[J]. Geology in China, 2006, 33(5): 966-979.
[67]
[68] 颜其德. 南极:全球气候变暖的敏感区[J]. 科学,1996,48(1):19-22.

Yan Qide. Antarctica-The sensitive region of global climate warming [J]. Science, 1996, 48(1): 19-22.
[69] Sellwood B W, Price G D, Valdest P J. Cooler estimates of Cretaceous temperatures[J]. Nature, 1994, 370(6489): 453-455.
[70] Kidder D L, Worsley T R. A human-induced hothouse climate?[J]. GSA Today, 2012, 22(2): 4-11.
[71] Johnson N M, Stix J, Tauxe L, et al. Paleomagnetic chronology, fluvial processes, and tectonic implications of the Siwalik deposits near Chinji Village, Pakistan[J]. The Journal of Geology, 1985, 93(1): 27-40.
[72] Hough B G, Garzione C N, Wang Z C, et al. Timing and spatial patterns of Basin segmentation and climate change in Northeastern Tibet[M]//Nie J S, Horton B K, Hoke G D. Toward an Improved Understanding of Uplift Mechanisms and the Elevation History of the Tibetan Plateau. Colorado: The Geological Society of America, 2014: 129-153.
[73] Lease R O. Cenozoic mountain building on the northeastern Tibetan Plateau[M]//Nie J S, HortoN B K, Hoke G D. Toward an Improved Understanding of Uplift Mechanisms and the Elevation History of the Tibetan Plateau. Colorda: The Geological Society of America, 2014: 115-127.
[74]
[75] Wang P X. Progress in Late Cenozoic palaeoclimatology of China: A brief review[M]//Whyte R O. The Evolution of the East Asian Environment. Hong Kong: Centre of Asian Studies, University of Hong Kong, 1984: 165-187.
[76] 刘东生,郑绵平,郭正堂. 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性[J]. 第四纪研究,1998,18(3):194-204.

Liu Tungsheng, Zheng Mianping, Guo Zhengtang. Initiation and evolution of the Asian monsoon system timely coupled with the ice-sheet growth and the tectonic movements in Asia[J]. Quaternary Sciences, 1998, 18(3): 194-204.
[77] Sun X J, Wang P X. How old is the Asian monsoon system?: Palaeobotanical records from China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222(3/4): 181-222.
[78] 张仲石,郭正堂. 根据地质记录恢复渐新世和中新世不同时期环境空间特征及其意义[J]. 第四纪研究,2005,25(4):523-530.

Zhang Zhongshi, Guo Zhengtang. Spatial character reconstruction of different periods in Oligocene and Miocene[J]. Quaternary Sciences, 2005, 25(4): 523-530.
[79] 祝淑雅,吴海斌,李琴,等. 晚新生代以来中国西北植被演化及反映的干旱化过程[J]. 第四纪研究,2016,36(4):820-831.

Zhu Shuya, Wu Haibin, Li Qin, et al. Aridification in northwestern China since the Late Cenozoic evidenced by the vegetation change[J]. Quaternary Sciences, 2016, 36(4): 820-831.
[80] Ramstein G, Fluteau F, Besse J, et al. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years[J]. Nature, 1997, 386(6627): 788-795.
[81] Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet[J]. Science, 1992, 255(5052): 1663-1670.
[82] 张林源. 青藏高原上升对我国第四纪环境演变的影响[J]. 兰州大学学报,1981(3):142-155.

Zhang Linyuan. The influence of the uplift of Qinghai-Xizang Plateau on the Quaternary environmental evolution in China[J]. Journal of Lanzhou University, 1981(3): 142-155.
[83] Kutzbach J E, Guetter P J, Ruddiman W F, et al. Sensitivity of climate to Late Cenozoic uplift in southern Asia and the American West: Numerical experiments[J]. Journal of Geophysical Research: Atmospheres, 1989, 94(D15): 18393-18407.
[84] Li J J, Fang X M. Uplift of the Tibetan Plateau and environmental changes[J]. Chinese Science Bulletin, 1999, 44(23): 2117-2124.
[85] An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times[J]. Nature, 2001, 411(6833): 62-66.
[86] Liu X D, Kutzbach J, Liu Z Y, et al. The Tibetan Plateau as amplifier of orbital-scale variability of the East Asian monsoon[J]. Geophysical Research Letters, 2003, 30(16): 1839.
[87] Fang X M, Zhang W L, Meng Q Q, et al. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai province, China and its implication on tectonic uplift of the NE Tibetan Plateau[J]. Earth and Planetary Science Letters, 2007, 258(1/2): 293-306.
[88] Rowley D B, Currie B S. Palaeo-altimetry of the Late Eocene to Miocene Lunpola Basin, central Tibet[J]. Nature, 2006, 439(7077): 677-681.
[89] DeCelles P G, Kapp P, Ding L, et al. Late Cretaceous to Middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain[J]. Geological Society of America Bulletin, 2007, 119(5/6): 654-680.
[90] Polissar P J, Freeman K H, Rowley D B, et al. Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers[J]. Earth and Planetary Science Letters, 2009, 287(1/2): 64-76.
[91] Quade J, Breecker D O, Daëron M, et al. The paleoaltimetry of Tibet: An isotopic perspective[J]. American Journal of Science, 2011, 311(2): 77-115.
[92] Wang H, Dutta S, Kelly R S, et al. Amber fossils reveal the Early Cenozoic dipterocarp rainforest in central Tibet[J]. Palaeoworld, 2018, 27(4): 506-513.
[93] Ma P F, Wang C S, Meng J, et al. Late Oligocene-Early Miocene evolution of the Lunpola Basin, central Tibetan Plateau, evidences from successive lacustrine records[J]. Gondwana Research, 2017, 48: 224-236.
[94] Botsyun S, Sepulchre P, Donnadieu Y, et al. Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene[J]. Science, 2019, 363(6430): eaaq1436.
[95] Valdes P J, Lin D, Farnsworth A, et al. Comment on “Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene”[J]. Science, 2019, 365(6459): eaax8474.