[1] Riding R. Microbial carbonates:The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47(Suppl. 1):179-214. doi:  10.1046-j.1365-3091.2000.00003.x/
[2] Riding R. Microbialites, stromatolites, and thrombolites[M]//Reitner J, Thiel V. Encyclopedia of geobiology. Dordrecht: Springer, 2011: 635-654.
[3] Shapiro R S. A comment on the systematic confusion of thrombolites[J]. PALAIOS, 2000, 15(2):166-169.
[4] Kalkowsky E. Oolith und Stromatolith im norddeutschen Buntsandstein[J]. Zeitschrift der Deutschen Geologischen Gesellschaft, 1908, 60:68-125.
[5] Aitken J D. Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta[J]. Journal of Sedimentary Research, 1967, 37(4):1163-1178.
[6] Riding R. Classification of microbial carbonates[M]//Riding R. Calcareous algae and stromatolites. Berlin, Heidelberg: Springer, 1991: 21-51.
[7] Braga J C, Martin J M, Riding R. Controls on microbial dome fabric development along a carbonate-siliciclastic shelfbasin transect, Miocene, SE Spain[J]. PALAIOS, 1995, 10(4):347-361. http://cn.bing.com/academic/profile?id=f3007cc64f39cb3c2d023235d4086ae0&encoded=0&v=paper_preview&mkt=zh-cn
[8] 杨仁超, 樊爱萍, 韩作振, 等.核形石研究现状与展望[J].地球科学进展, 2011, 26(5):465-474.[ http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201105001

Yang Renchao, Fan Aiping, Han Zuozhen, et al. Status and prospect of studies on oncoid[J]. Advances in Earth Science, 2011, 26(5):465-474.] http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201105001
[9] 梅冥相.微生物碳酸盐岩分类体系的修订:对灰岩成因结构分类体系的补充[J].地学前缘, 2007, 14(5):222-234.[ http://d.old.wanfangdata.com.cn/Periodical/dxqy200705022

Mei Mingxiang. Revised classification of microbial carbonates:Complementing the classification of limestones[J]. Earth Science Frontiers, 2007, 14(5):222-234.] http://d.old.wanfangdata.com.cn/Periodical/dxqy200705022
[10] Woo J, Chough S, Han Z. Chambers of Epiphyton thalli in microbial buildups, Zhangxia Formation (Middle Cambrian), Shandong province, China[J]. PALAIOS, 2008, 23(1/2):55-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dfcfb94329ed0557052eb3b5fd42fbc2
[11] 韩作振, 陈吉涛, 张晓蕾, 等.鲁西寒武系第三统张夏组附枝菌与附枝菌微生物灰岩特征研究[J].地质学报, 2009, 83(8):1097-1103.[ http://d.old.wanfangdata.com.cn/Periodical/dizhixb200908006

Han Zuozhen, Chen Jitao, Zhang Xiaolei, et al. Characteristics of Epiphyton and Epiphyton microbialites in the Zhangxia Formation (Third Series of Cambrian), Shandong province[J]. Acta Geologica Sinica, 2009, 83(8):1097-1103.] http://d.old.wanfangdata.com.cn/Periodical/dizhixb200908006
[12] Shen J W, Yu C M, Bao H M. A Late-Devonian (Famennian) Renalcis-Epiphyton reef at Zhaijiang, Guilin, South China[J]. Facies, 1997, 37(1):195-209.
[13] Chen J T, Lee J H, Woo J. Formative mechanisms, depositional processes, and geological implications of Furongian (late Cambrian) reefs in the North China Platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 414:246-259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f11a28997f5a3bdaa6572e807c45604c
[14] Lee J H, Chen J T, Choh S J, et al. Furongian (Late Cambrian) sponge-microbial maze-like reefs in the North China Platform[J]. PALAIOS, 2014, 29(1):27-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=778e60299ebab81e69506bc3269e0fa7
[15] Lee J H, Chen J T, Chough S K. Paleoenvironmental implications of an extensive maceriate microbialite bed in the Furongian Chaomidian Formation, Shandong province, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 297(3/4):621-632. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cf134aa886813d229e174120c4b6d50d
[16] Coulson K P, Brand L R. Lithistid sponge-microbial reef-building communities construct laminated, Upper Cambrian (Furongian) 'stromatolites'[J]. PALAIOS, 2016, 31(7):358-370. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d585cdca0c5bf350746a85dc6bffd32e
[17] Lee J H, Riding R. Marine oxygenation, lithistid sponges, and the early history of Paleozoic skeletal reefs[J]. EarthScience Reviews, 2018, 181:98-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4659e5417ad98befbfde193d522677af
[18] Nutman A P, Bennett V C, Friend C R L, et al. Rapid emergence of life shown by discovery of 3, 700-million-yearold microbial structures[J]. Nature, 2016, 537(7621):535-538.
[19] Allen M A, Goh F, Burns B P, et al. Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay[J]. Geobiology, 2009, 7(1):82-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=64f0d4265c93830036ed19a742da5a08
[20] Delfino D O, Wanderley M D, Silva L H S E, et al. Sedimentology and temporal distribution of microbial mats from Brejo do Espinho, Rio de Janeiro, Brazil[J]. Sedimentary Geology, 2012, 263-264:85-95. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=59e271c2c9cc1f5fa0d29b34d50074b3
[21] Reid R P, James N P, Macintyre I G, et al. Shark Bay stromatolites:Microfabrics and reinterpretation of origins[J]. Facies, 2003, 49(1):299-324. http://cn.bing.com/academic/profile?id=4bf8be5255c80d38d6d8afa01a11805d&encoded=0&v=paper_preview&mkt=zh-cn
[22] 梅冥相, 孟庆芬.现代叠层石的多样化构成:认识古代叠层石形成的关键和窗口[J].古地理学报, 2016, 18(2):127-146.[ http://d.old.wanfangdata.com.cn/Periodical/gdlxb201602001

Mei Mingxiang, Meng Qingfen. Composition diversity of modern stromatolites:A key and window for further understanding of the formation of ancient stromatolites[J]. Journal of Palaeogeography, 2016, 18(2):127-146.] http://d.old.wanfangdata.com.cn/Periodical/gdlxb201602001
[23] Chen Z Q, Tu C Y, Pei Y, et al. Biosedimentological features of major microbe-metazoan transitions (MMTs) from Precambrian to Cenozoic[J]. Earth-Science Reviews, 2019, 189:21-50.
[24] 梅冥相, Latif K, 孟庆芬, 等.寒武系张夏组鲕粒滩中微生物碳酸盐岩主导的生物丘:以河北秦皇岛驻操营剖面为例[J].地质学报, 2019, 93(1):227-251.[ http://d.old.wanfangdata.com.cn/Periodical/dizhixb201901014

Mei Ming-xiang, Latif K, Meng Qingfen, et al. Cambrian bioherms dominated by microbial carbonate within the oolitic grainstone bank, Zhangxia Formation of the Miaolingian, Zhucaoying section in Qinhuangdao city of Hebei province[J]. Acta Geologica Sinica, 2019, 93(1):227-251.] http://d.old.wanfangdata.com.cn/Periodical/dizhixb201901014
[25] 梅冥相, 郭荣涛, 胡媛.北京西郊下苇甸剖面寒武系崮山组叠层石生物丘的沉积组构[J].岩石学报, 2011, 27(8):2473-2486.[ http://d.old.wanfangdata.com.cn/Periodical/ysxb98201108023

Mei Mingxiang, Guo Rongtao, Hu Yuan. Sedimentary fabrics for the stromatolitic bioherm of the Cambrian Gushan Formation at the Xiaweidian section in the western suburb of Beijing[J]. Acta Petrologica Sinica, 2011, 27(8):2473-2486.] http://d.old.wanfangdata.com.cn/Periodical/ysxb98201108023
[26] 梅冥相, 张瑞, 李屹尧, 等.华北地台东北缘寒武系芙蓉统叠层石生物丘中的钙化蓝细菌[J].岩石学报, 2017, 33(4):1073-1093.[ http://d.old.wanfangdata.com.cn/Periodical/ysxb98201704005

Mei Mingxiang, Zhang Rui, Li Yiyao, et al. Calcified cyanobacterias within the stromatolotic bioherm for the Cambrian Furongian Series in the northeastern margin of the North-China Platform[J]. Acta Petrologica Sinica, 2017, 33(4):1073-1093.] http://d.old.wanfangdata.com.cn/Periodical/ysxb98201704005
[27] Riding R. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time[J]. Sedimentary Geology, 2006, 185(3/4):229-238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c56d19de9a1d789e146a154c19b80e25
[28] 史晓颖, 陈建强, 梅仕龙.华北地台东部寒武系层序地层年代格架[J].地学前缘, 1997, 4(3/4):161-173.[ http://www.cqvip.com/QK/98600X/199704/2627200.html

Shi Xiaoying, Chen Jianqiang, Mei Shilong. Cambrian sequence chronostratigraphic frame-work of the North China Platform[J]. Earth Science Frontiers, 1997, 4(3/4):161-173.] http://www.cqvip.com/QK/98600X/199704/2627200.html
[29] Han Z Z, Zhang X L, Chi N J, et al. Cambrian oncoids and other microbial-related grains on the North China Platform[J]. Carbonates and Evaporites, 2015, 30(4):373-386. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=16f04410582bc2a86c6b9f64927bb35f
[30] 肖恩照, 覃英伦, Riaz M, 等.吕梁山东北缘寒武系层序地层划分:以文水苍尔会剖面为例[J].东北石油大学学报, 2017, 41(5):43-53.[ http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqsyxyxb201705005

Xiao Enzhao, Qin Yinglun, Riaz M, et al. Sequence stratigraphy division of Cambrian in the northeast area of Luliang Mountain:A case study of the Cangerhui section in Wenshui city[J]. Journal of Northeast Petroleum University, 2017, 41(5):43-53.] http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqsyxyxb201705005
[31] 卢衍豪, 朱兆玲, 袁金良, 等.中国寒武纪地层对比表及说明书[M].北京:科学出版社, 1982.[

Lu Yanhao, Zhu Zhaoling, Yuan Jinliang, et al. Suggestions for the establishment of the Cambrian Stages in China[M]. Beijing:Science Press, 1982.]
[32] 梅冥相, 马永生, 梅仕龙, 等.华北寒武系层序地层格架及碳酸盐台地演化[J].现代地质, 1997, 11(3):275-282.[ http://www.cqvip.com/Main/Detail.aspx?id=2757230

Mei Mingxiang, Ma Yongsheng, Mei Shilong, et al. Framework of Cambrian sedimentary sequence and evolution of carbonate platform in North China[J]. Geoscience, 1997, 11(3):275-282.] http://www.cqvip.com/Main/Detail.aspx?id=2757230
[33] Helland-Hansen W. Towards the standardization of sequence stratigraphy[J]. Earth-Science Reviews, 2009, 94(1/2/3/4):95-97. doi:  10.1016-j.earscirev.2010.03.004/
[34] Goldhammer R K, Dunn P A, Hardie L A. Depositional cycles, composite sea-level changes, cycle stacking patterns, and the hierarchy of stratigraphic forcing:Examples from Alpine Triassic platform carbonates[J]. Geological Society of America Bulletin, 1990, 102(5):535-562. http://cn.bing.com/academic/profile?id=f67adae51154c29931ad01db1d930e12&encoded=0&v=paper_preview&mkt=zh-cn
[35] 梅冥相.从正常海退与强迫型海退的辨别进行层序界面对比:层序地层学进展之一[J].古地理学报, 2010, 12(5):549-564.[ http://d.old.wanfangdata.com.cn/Periodical/gdlxb201005005

Mei Mingxiang. Correlation of sequence boundaries according to discerning between normal and forced regressions:The first advance in sequence stratigraphy[J]. Journal of Palaeogeography, 2010, 12(5):549-564.] http://d.old.wanfangdata.com.cn/Periodical/gdlxb201005005
[36] Burne R V, Moore L S. Microbialites:Organosedimentary deposits of benthic microbial communities[J]. PALAIOS, 1987, 2(3):241-254. http://d.old.wanfangdata.com.cn/Periodical/gdlxb200705005
[37] Chen J T, Lee J H. Current progress on the geological record of microbialites and microbial carbonates[J]. Acta Geologica Sinica, 2014, 88(1):260-275. http://cn.bing.com/academic/profile?id=058cfaebc42805141362f08b0966ea54&encoded=0&v=paper_preview&mkt=zh-cn
[38] 陈金勇, 韩作振, 范洪海, 等.鲁西寒武系第三统张夏组凝块石特征及其形成环境研究[J].沉积学报, 2014, 32(3):494-502.[ http://www.cjxb.ac.cn/CN/abstract/abstract1074.shtml

Chen Jinyong, Han Zuozhen, Fan Honghai, et al. Characteristics and sedimentary environment of thrombolite in the Zhangxia Formation (Third Series of Cambrian), Shandong province[J]. Acta Sedimentologica Sinica, 2014, 32(3):494-502.] http://www.cjxb.ac.cn/CN/abstract/abstract1074.shtml
[39] 梅冥相.碳酸盐岩米级旋回层序的成因类型及形成机制[J].岩相古地理, 1993, 13(6):34-43.[

Mei Ming-xiang. Genetic types and mechanisms of the carbonate rock meter-scale cyclic sequences[J]. Sedimentary Geology and Tethyan Geology, 1993, 13(6):34-43.]
[40] 梅冥相, Riaz M, 刘丽, 等.辽东半岛复州湾剖面寒武系第二统光合作用生物膜建造的核形石[J].古地理学报, 2019, 21(1):31-48.[ http://d.old.wanfangdata.com.cn/Periodical/gdlxb201901003

Mei Mingxiang, Riaz M, Liu Li, et al. Oncoids built by photosynthetic biofilms:An example from the Series 2 of Cambrian at Fuzhouwan section in Liaodong Peninsula[J]. Journal of Palaeogeography, 2019, 21(1):31-48.] http://d.old.wanfangdata.com.cn/Periodical/gdlxb201901003
[41] Logan B W, Rezak R, Ginsburg R N. Classification and environmental significance of algal stromatolites[J]. The Journal of Geology, 1964, 72(1):68-83. http://cn.bing.com/academic/profile?id=b61df1b96409e44aa49246a709120419&encoded=0&v=paper_preview&mkt=zh-cn
[42] Luo C, Reitner J. First report of fossil "keratose" demosponges in Phanerozoic carbonates:Preservation and 3-D reconstruction[J]. Naturwissenschaften, 2014, 101(6):467-477. http://cn.bing.com/academic/profile?id=031190855aaa751ac6c68872fcdc5d97&encoded=0&v=paper_preview&mkt=zh-cn
[43] Xiao E Z, Latif K, Riaz M, et al. Calcified microorganisms bloom in Furongian of the North China Platform:Evidence from Microbialitic-Bioherm in Qijiayu Section, Hebei[J]. Open Geosciences, 2018, 10(1):250-260.
[44] Stal L J. Cyanobacterial mats and stromatolites[M]//Whitton B A, Potts M. The ecology of cyanobacteria: Their diversity in time and space. Dordrecht: Springer, 2000: 61-120.
[45] 陈旭, 阮亦萍, 布科A J.中国古生代气候演变[M].北京:科学出版社, 2001:1-325.[

Chen Xu, Ruan Yiping, Boucot A J. Paleozoic climate evolution in China[M]. Beijing:Science Press, 2001:1-325.]
[46] 王龙, Latif K, Riaz M, 等.微生物碳酸盐岩的成因、分类以及问题与展望:来自华北地台寒武系微生物碳酸盐岩研究的启示[J].地球科学进展, 2018, 33(10):1005-1023.[ http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201810003

Wang Long, Latif K, Riaz M, et al. The genesis, classification, problems and prospects of microbial carbonates:Implications from the Cambrian carbonate of North China Platform[J]. Advances in Earth Science, 2018, 33(10):1005-1023.] http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201810003
[47] Luchinina V A, Terleev A A. The morphology of the genus Epiphyton Bornemann[J]. Geologia Croatica, 2008, 61(2/3):105-111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000002402367
[48] Adachi N, Nakai T, Ezaki Y, et al. Late early Cambrian archaeocyath reefs in Hubei province, South China:Modes of construction during their period of demise[J]. Facies, 2014, 60(2):703-717.
[49] Laval B, Cady S L, Pollack J C, et al. Modern freshwater microbialite analogues for ancient dendritic reef structures[J]. Nature, 2000, 407(6804):626-629. http://cn.bing.com/academic/profile?id=6269f1eaa034c8530aef35818a57d32a&encoded=0&v=paper_preview&mkt=zh-cn
[50] 梅冥相.微生物席的特征和属性:微生物席沉积学的理论基础[J].古地理学报, 2014, 16(3):285-304.[ http://d.old.wanfangdata.com.cn/Periodical/gdlxb201403001

Mei Mingxiang. Feature and nature of microbial-mat:Theoretical basis of microbial-mat sedimentology[J]. Journal of Palaeogeography, 2014, 16(3):285-304.] http://d.old.wanfangdata.com.cn/Periodical/gdlxb201403001
[51] Dupraz C, Reid R P, Braissant O, et al. Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 2009, 96(3):141-162.
[52] Dupraz C, Reid R P, Visscher P T. Microbialites, modern[M]//Reitner J, Thiel V. Encyclopedia of geobiology. Dordrecht: Springer, 2011: 617-635.
[53] Kennard J M, James N P. Thrombolites and stromatolites:Two distinct types of microbial structures[J]. PALAIOS, 1986, 1(5):492-503.
[54] Dupraz C, Pattisina R, Verrecchia E P. Translation of energy into morphology:Simulation of stromatolite morphospace using a stochastic model[J]. Sedimentary Geology, 2006, 185(3/4):185-203. http://cn.bing.com/academic/profile?id=c17f9122113a49d0062b682825090ee6&encoded=0&v=paper_preview&mkt=zh-cn
[55] 梅冥相.从凝块石概念的演变论微生物碳酸盐岩的研究进展[J].地质科技情报, 2007, 26(6):1-9.[ http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200706001

Mei Ming-xiang. Discussion on advances of microbial carbonates from the terminological change of thrombolites[J]. Geological Science and Technology Information, 2007, 26(6):1-9.] http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200706001
[56] Reid R P, Foster J S, Radtke G, et al. Modern marine stromatolites of Little Darby Island, Exuma archipelago, Bahamas:Environmental setting, accretion mechanisms and role of euendoliths[M]//Reitner J, Quéric N V, Arp G. Advances in stromatolite geobiology. Berlin:Springer, 2011:77-89.