[1] Bosence D W J, Gibbons K A, Heron D P L, et al. Microbial carbonates in space and time: Implications for global exploration and production[J]. Geological Society London Special Publications, 2015, 481: 437-454.
[2] Dupraz C, Reid R P, Visscher P T. Microbialites, modern[M]//Reitner J, Thiel V. Encyclopedia of Geobiology. Netherlands: Springer, 2011: 617-635.
[3] Riding R. Microbial carbonates:The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47(Suppl. 1):179-214. doi:  10.1046-j.1365-3091.2000.00003.x/
[4] Riding R. Microbialites, stromatolites, and thrombolites[M]//Reitner J, Thiel V. Encyclopedia of geobiology. Dordrecht: Springer, 2011: 635-654.
[5] Riding R, Liang L Y. Geobiology of microbial carbonates:Metazoan and seawater saturation state influences on secular trends during the Phanerozoic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(1/2):101-115. http://cn.bing.com/academic/profile?id=644f389fc78be4c0bf5254e2f318560e&encoded=0&v=paper_preview&mkt=zh-cn
[6] Riding R. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time[J]. Sedimentary Geology, 2006, 185(3/4):229-238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c56d19de9a1d789e146a154c19b80e25
[7] 杨孝群, 李忠.微生物碳酸盐岩沉积学研究进展:基于第33届国际沉积学会议的综述[J].沉积学报, 2018, 36(4):639-650. http://www.cjxb.ac.cn/CN/abstract/abstract3894.shtml

Yang Xiaoqun, Li Zhong. Research progress in sedimentology of microbial carbonate rocks:A review based on the 33rd International Sedimentological Congress[J] Acta Sedimentologica Sinica, 2018, 36(4):639-650. http://www.cjxb.ac.cn/CN/abstract/abstract3894.shtml
[8] Wood R. Reef evolution[M]. Oxford:Oxford University Press, 1999:1-414.
[9] Kiessling W. Geologic and biologic controls on the evolution of reefs[J]. Annual Review of Ecology, Evolution, and Systematics, 2009, 40(1):173-192. doi:  10.1146/annurev.ecolsys.110308.120251
[10] Myrow P M, Tice L, Archuleta B, et al. Flat-pebble conglomerate:Its multiple origins and relationship to metre-scale depositional cycles[J]. Sedimentology, 2004, 51(5):973-996. doi:  10.1111/j.1365-3091.2004.00657.x
[11] Pratt B R, Bordonar O L. Tsunamis in a stormy sea:Middle Cambrian inner-shelf limestones of western Argentina[J]. Journal of Sedimentary Research, 2007, 77(4):256-262. doi:  10.2110/jsr.2007.032
[12] Pruss S B, Finnegan S, Fischer W W, et al. Carbonates in skeleton-poor seas:New insights from Cambrian and Ordovician strata of Laurentia[J]. Palaios, 2010, 25:73-84. doi:  10.2110/palo.2009.p09-101r
[13] 梅冥相, 郭荣涛, 胡媛.北京西郊下苇甸剖面寒武系崮山组叠层石生物丘的沉积组构[J].岩石学报, 2011, 27(8):2473-2486. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201108023

Mei Mingxiang, Guo Rongtao, Hu Yuan. Sedimentary fabrics for the stromatolitic bioherm of the Cambrian Gushan Formation at the Xiaweidian section in the western suburb of Beijing[J]. Acta Petrologica Sinica, 2011, 27(8):2473-2486. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201108023
[14] Liu W, Zhang X L. Calcified biofilms from Cambrian oolitic limestones in China[J]. Acta Geologica Sinica (English Edition), 2015, 89(1):70-76. doi:  10.1111/1755-6724.12395
[15] 韩作振, 陈吉涛, 张晓蕾, 等.鲁西寒武系第三统张夏组附枝菌与附枝菌微生物灰岩特征研究[J].地质学报, 2009, 83(8):1097-1103. doi:  10.3321/j.issn:0001-5717.2009.08.006

Han Zuozhen, Chen Jitao, Zhang Xiaolei, et al. Characteristics of Epiphyton and Epiphyton Microbialites in the Zhangxia Formation (Third Series of Cambrian), Shandong province[J]. Acta Geologica Sinica, 2009, 83(8):1097-1103. doi:  10.3321/j.issn:0001-5717.2009.08.006
[16] 张文浩, 史晓颖, 汤冬杰, 等.华北地台西缘早-中寒武世过渡期核形石:微生物群落对浅海缺氧环境的响应[J].古地理学报, 2014, 16(3):305-318. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201403002

Zhang Wenhao, Shi Xiaoying, Tang Dongjie, et al. Mass-occurrence of oncoids in the Early-Middle Cambrian transition at western margin of North China Platform:A response of microbial community to shallow marine anoxia[J]. Journal of Palaeogeography, 2014, 16(3):305-318. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201403002
[17] 王皓, 肖恩照.山西灵丘刁泉剖面寒武系第三统张夏组核形石[J].东北石油大学学报, 2018, 42(5):44-53. doi:  10.3969/j.issn.2095-4107.2018.05.005

Wang Hao, Xiao Enzhao. Oncolites in Cambrian Series 3 at Diaoquan section in Lingqiu, Shanxi[J]. Journal of Northeast Petroleum University, 2018, 42(5):44-53. doi:  10.3969/j.issn.2095-4107.2018.05.005
[18] 代明月, 齐永安, 常玉光, 等.河南登封地区寒武系第三统馒头组二段中的核形石及其意义[J].沉积学报, 2014, 32(3):410-417. http://www.cjxb.ac.cn/CN/abstract/abstract1065.shtml

Dai Mingyue, Qi Yong'an, Chang Yuguang, et al. Oncoids and their significance from the Second member of the Mantou Formation (Cambrian Series 3), Dengfeng area, Henan[J]. Acta Sedimentologica Sinica, 2014, 32(3):410-417. http://www.cjxb.ac.cn/CN/abstract/abstract1065.shtml
[19] 梅冥相, 刘丽, 胡媛.北京西郊寒武系凤山组叠层石生物层[J].地质学报, 2015, 89(2):440-460. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201502018

Mei Ming-xiang, Liu Li, Hu Yuan. Stromatolitic biostrome of the Cambrian Fengshan Formation at the Xiaweidian section in the western suburb of Beijing, North China[J]. Acta Geologica Sinica, 2015, 89(2):440-460. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201502018
[20] Woo J, Chough S K, Han Z. Chambers of Epiphyton thalli in microbial buildups, Zhangxia Formation (Middle Cambrian), Shandong province, China[J]. Palaios, 2008, 23(1):55-64. doi:  10.2110/palo.2006.p06-103r
[21] 陈金勇, 韩作振, 范洪海, 等.鲁西寒武系第三统张夏组凝块石特征及其形成环境研究[J].沉积学报, 2014, 32(3):494-502. http://www.cjxb.ac.cn/CN/abstract/abstract1074.shtml

Chen Jinyong, Han Zuozhen, Fan Honghai, et al. Characteristics and sedimentary environment of thrombolite in the Zhangxia Formation (Third Series of Cambrian), Shandong province[J]. Acta Sedimentologica Sinica, 2014, 32(3):494-502. http://www.cjxb.ac.cn/CN/abstract/abstract1074.shtml
[22] Riding R. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition[J]. Geobiology, 2006, 4(4):299-316. doi:  10.1111/j.1472-4669.2006.00087.x
[23] Xiao E Z, Latif K, Riaz M, et al. Calcified microorganisms bloom in Furongian of the North China platform:Evidence from Microbialitic-Bioherm in Qijiayu Section, Hebei[J]. Open Geosciences, 2018, 10(1):250-260. doi:  10.1515/geo-2018-0019
[24] 梅冥相.淹没不整合型碳酸盐三级旋回层序:兼论碳酸盐台地的"凝缩作用"[J].岩相古地理, 1996, 16(6):24-33. doi:  10.1111-j.1751-553X.2008.01055.x/

Mei Mingxiang. The third-order carbonate cyclic sequences of drowned unconformity type with discussion on "condensation" of carbonate platform[J]. Sedimentary Facies and Palaeogeography, 1996, 16(6):24-33. doi:  10.1111-j.1751-553X.2008.01055.x/
[25] 肖恩照, 隋明园, 覃英伦, 等.河北涞源祁家峪剖面寒武系层序地层划分[J].大庆石油地质与开发, 2017, 36(6):16-25. http://d.old.wanfangdata.com.cn/Periodical/dqsydzykf201706003

Xiao Enzhao, Sui Mingyuan, Qing Yinglun, et al. Cambrian sequence stratigraphic division for Qijiayu section in Hebei Laiyuan[J]. Petroleum Geology & Oilfield Development in Daqing, 2017, 36(6):16-25. http://d.old.wanfangdata.com.cn/Periodical/dqsydzykf201706003
[26] Braga J C, Martin J M, Riding R. Controls on microbial dome fabric development along a carbonate-siliciclastic shelfbasin transect, Miocene, SE Spain[J]. Palaios, 1995, 10(4):347-361. doi:  10.2307/3515160
[27] Hillgärtner H, Dupraz C, Hug W A. Microbially induced cementation of carbonate sands:Are micritic meniscus cements good indicators of vadose diagenesis?[J]. Sedimentology, 2001, 48(1):117-131. doi:  10.1046/j.1365-3091.2001.00356.x
[28] Dupraz C, Visscher P T, Baumgartner L K, et al. Microbemineral interactions:Early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas)[J]. Sedimentology, 2004, 51(4):745-765. doi:  10.1111/j.1365-3091.2004.00649.x
[29] 肖恩照, 覃英伦, Riaz M, 等.吕梁山东北缘寒武系层序地层划分:以文水苍尔会剖面为例[J].东北石油大学学报, 2017, 41(5):43-53. doi:  10.3969/j.issn.2095-4107.2017.05.005

Xiao Enzhao, Qin Yinglun, Riaz M, et al. Sequence stratigraphy division of Cambrian in the northeast area of Luliang Mountain:A case study of the Cangerhui section in Wenshui city[J]. Journal of Northeast Petroleum University, 2017, 41(5):43-53. doi:  10.3969/j.issn.2095-4107.2017.05.005
[30] 梅冥相.华北寒武系二级海侵背景下的沉积趋势及层序地层序列:以北京西郊下苇甸剖面为例[J].中国地质, 2011, 38(2):317-337. doi:  10.3969/j.issn.1000-3657.2011.02.008

Mei Mingxiang. Depositional trends and sequence-stratigraphic successions under the Cambrian second-order transgressive setting in the North China Platform:A case study of the Xiaweidian section in the western suburb of Beijing[J]. Geology in China, 2011, 38(2):317-337. doi:  10.3969/j.issn.1000-3657.2011.02.008
[31] Meng, X H, Ge, M, Tucker, M E, Sequence Sequence stratigraphy, sea-level changes and depositional systems in the CambroOrdovician of the North China carbonate platform[J]. Sedimentary Geology, 1997, 114(1):189-222
[32] 肖恩照, 隋明园, Latif K, 等微生物白云岩形成机制研究进展与存在问题[J].大庆石油地质与开发, 2017, 36(2):26-32. doi:  10.3969/J.ISSN.1000-3754.2017.02.004

Xiao Enzhao, Sui Mingyuan, Latif K, et al. Study advances and existed problem for the forming mechanism of the microbial dolomite[J]. Petroleum Geology & Oilfield Development in Daqing, 2017, 36(2):26-32. doi:  10.3969/J.ISSN.1000-3754.2017.02.004
[33] 彭善池.华南寒武系年代地层系统的修订及相关问题[J].地层学杂志, 2008, 32(3):239-245. doi:  10.3969/j.issn.0253-4959.2008.03.002

Peng Shanchi. Revision on Cambrian chronostratigraphy of South China and related remarks[J]. Journal of Stratigraphy, 2008, 32(3):239-245. doi:  10.3969/j.issn.0253-4959.2008.03.002
[34] 樊隽轩, 彭善池, 侯旭东, 等.国际地层委员会官网与《国际年代地层表》(2015/01版)[J].地层学杂志, 2015, 39(2):125-134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201502001

Fan Junxuan, Peng Shanchi, Hou Xudong, et al. Official website of the International Commission on Stratigraphy and the release of the international chronostratigraphic chart (V2015/01)[J]. Journal of Stratigraphy, 2015, 39(2):125-134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201502001
[35] Mei M M, Ma Y S, Deng J, et al. From cycles to sequences:Sequence stratigraphy and relative sea level change for the Late Cambrian of the North China Platform[J]. Acta Geologica Sinica (English Edition), 2005, 79(3):372-383. doi:  10.1111/j.1755-6724.2005.tb00902.x
[36] Mei M M, Ma Y S, Zhang H, et al. From basin black shales to platform carbonate rocks:A study on sequence stratigraphy for the Lower Cambrian of the upper-Yangtze region in South China[J]. Acta Geologica Sinica (English Edition), 2015, 81(5):739-755. http://cn.bing.com/academic/profile?id=0c95f7c6f76c06fd4daed03f2c6ceaa0&encoded=0&v=paper_preview&mkt=zh-cn
[37] Schlager W, Warrlich G. Record of sea-level fall in tropical carbonates[J]. Basin Research, 2009, 21(2):209-224. doi:  10.1111/j.1365-2117.2008.00383.x
[38] Schlager W. Type 3 sequence boundaries[M]//Harris P, Saller A and Simo A. Carbonate sequence stratigraphy: Application to reservoirs, outcrops and models. SEPM Special Publication, Tulsa, 1999, 63: 35-46.
[39] Hunt D, Tucker M E. Stranded parasequences and the forced regressive wedge systems tract:Deposition during base-level'fall[J]. Sedimentary Geology, 1992, 81(1/2):1-9. doi:  10.1016-0037-0738(92)90052-S/
[40] Helland-Hansen W, Gjelberg J G. Conceptual basis and variability in sequence stratigraphy:A different perspective[J]. Sedimentary Geology, 1994, 92(1/2):31-52. http://cn.bing.com/academic/profile?id=ad58f1a62db0a486eadb07b486a35f18&encoded=0&v=paper_preview&mkt=zh-cn
[41] Vail P R, Mitchum R M, Thompson S. Seismic stratigraphy and global changes of sea level: Part 3: Relative changes of sea level from coastal onlap[M]//Payton C E. Seismic stratigraphy-applications to hydrocarbon exploration. Tulso, Okla: AAPG Memoir, 1977: 63-81.
[42] 梅冥相.微生物碳酸盐岩分类体系的修订:对灰岩成因结构分类体系的补充[J].地学前缘, 2007, 14(5):222-234. doi:  10.3321/j.issn:1005-2321.2007.05.022

Mei Mingxiang. Revised classification of microbial carbonates:Complementing the classification of limestones[J]. Earth Science Frontiers, 2007, 14(5):222-234. doi:  10.3321/j.issn:1005-2321.2007.05.022
[43] Riding R. Structure and composition of organic reefs and carbonate mud mounds:Concepts and categories[J]. Earth-Science Reviews, 2002, 58(1/2):163-231. doi:  10.1016-S0012-8252(01)00089-7/
[44] Hong J, Cho S H, Choh S J, et al. Middle Cambrian siliceous sponge-calcimicrobe buildups (Daegi formation, Korea):Metazoan buildup constituents in the aftermath of the Early Cambrian extinction event[J]. Sedimentary Geology, 2012, 253-254:47-57. doi:  10.1016/j.sedgeo.2012.01.011
[45] Chen J T, Lee J H, Woo J. Formative mechanisms, depositional processes, and geological implications of Furongian (late Cambrian) reefs in the North China Platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 414:246-259. doi:  10.1016/j.palaeo.2014.09.004
[46] Keith M L, Weber J N. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta, 1964, 18(10/11):1787-1816. http://cn.bing.com/academic/profile?id=36662712188535a33640346719ee0864&encoded=0&v=paper_preview&mkt=zh-cn
[47] 张秀莲.碳酸盐岩中氧、碳稳定同位素与古盐度、古水温的关系[J].沉积学报, 1985, 3(4):17-30. http://www.cjxb.ac.cn/CN/abstract/abstract1581.shtml

Zhang Xiulian. Relationship between carbon and oxygen stable isotope in carbonate rocks and paleosalinity and paleotemperature of seawater[J]. Journal of Sedimentology, 1985, 3(4):17-30. http://www.cjxb.ac.cn/CN/abstract/abstract1581.shtml
[48] 刘德良, 孙先如, 李振生, 等.鄂尔多斯盆地奥陶系白云岩碳氧同位素分析[J].石油实验地质, 2006, 28(2):155-161. doi:  10.3969/j.issn.1001-6112.2006.02.012

Liu Deliang, Sun Xianru, Li Zhensheng, et al. Analysis of carbon and oxygen isotope on the Ordovician dolostones in the Ordos Basin[J]. Petroleum Geology & Experiment, 2006, 28(2):155-161. doi:  10.3969/j.issn.1001-6112.2006.02.012
[49] Woo J, Chough S K. Growth patterns of the Cambrian microbialite:Phototropism and speciation of Epiphyton[J]. Sedimentary Geology, 2010, 229(1/2):1-8.
[50] Laval B, Cady S L, Pollack J C, et al. Modern freshwater microbialite analogues for ancient dendritic reef structures[J]. Nature, 2000, 407(6804):626-629. doi:  10.1038/35036579
[51] Adachi N, Ezaki Y, Liu J B. The late early Cambrian microbial reefs immediately after the demise of archaeocyathan reefs, Hunan province, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 407:45-55. doi:  10.1016/j.palaeo.2014.04.013
[52] Adachi N, Kotani A, Ezaki Y, et al. Cambrian series 3 lithistid sponge-microbial reefs in Shandong province, North China:Reef development after the disappearance of archaeocyaths[J]. Lethaia, 2015, 48(3):405-416. doi:  10.1111/let.12118
[53] Luchinina V A, Terleev A A. The morphology of the genus Epiphyton bornemann[J]. Geologia Croatica, 2008, 61(2/3):105-111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000002402367
[54] Latif K, Xiao E Z, Riaz M, et al. Calcified cyanobacteria fossils from the leiolitic bioherm in the Furongian Changshan Formation, Datong (North China Platform)[J]. Carbonates and Evaporites, 2019, 34:825-843. doi:  10.1007/s13146-018-0472-8
[55] Pratt B R. Epiphyton and Renalcis; diagenetic microfossils from calcification of coccoid blue-green algae[J]. Journal of Sedimentary Research, 1984, 54(3):948-971.
[56] Riding R. Temporal variation in calcification in marine cyanobacteria[J]. Journal of the Geological Society, 1991, 149(6):979-989. doi:  10.1144-gsjgs.149.6.0979/
[57] Riding R. Calcified cyanobacteria[M]//Reitner J, Thiel V. Encyclopedia of geobiology. Heidelberg: Springer, 2011: 211-223.
[58] Săsăran E, Bucur I I, Pleş G, et al. Late Jurassic Epiphyton-like cyanobacteria:Indicators of long-term episodic variation in marine bioinduced microbial calcification[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2014, 401:122-131. doi:  10.1016/j.palaeo.2014.02.026
[59] Adame M F, Pettit N E, Valdez D, et al. The contribution of epiphyton to the primary production of tropical floodplain wetlands[J]. Biotropica, 2017, 49(4):461-471. doi:  10.1111/btp.12445
[60] Hughes G W. Late Permian to Late Jurassic "microproblematica" of Saudi Arabia:Possible palaeobiological assignments and roles in the palaeoenviromental reconstructions[J]. GeoArabia, 2013, 18(1):57-92.
[61] 常玉光, 孙凤余, 郑伟.豫西寒武纪叠层石微生物化石及其钙化特征[J].现代地质, 2014, 28(2):271-280. doi:  10.3969/j.issn.1000-8527.2014.02.004

Chang Yuguang, Sun Fengyu, Zheng Wei. Microorganism fossils and calcification characteristics of Cambrian stromatolites, western Henan[J]. Geoscience, 2014, 28(2):271-280. doi:  10.3969/j.issn.1000-8527.2014.02.004
[62] Liu L J, Wu Y S, Yang H J, et al. Ordovician calcified cyanobacteria and associated microfossils from the Tarim Basin, Northwest China:Systematics and significance[J]. Journal of Systematic Palaeontology, 2016, 14(3):183-210. doi:  10.1080/14772019.2015.1030128
[63] Liu L J, Wu Y S, Jiang H X, et al. Paleoenvironmental distribution of Ordovician calcimicrobial associations in the Tarim Basin, Northwest China[J]. Palaios, 2017, 32(7):462-489. doi:  10.2110/palo.2016.054
[64] Brehm U, Krumbein W E, Palinska K A. Biomicrospheres generate ooids in the laboratory[J]. Geomicrobiology Journal, 2006, 23(7):545-550. doi:  10.1080/01490450600897302
[65] Gerdes G, Dunajtschik-Piewak K, Riege H, et al. Structural diversity of biogenic carbonate particles in microbial mats[J]. Sedimentology, 1994, 41(6):1273-1294. doi:  10.1111/j.1365-3091.1994.tb01453.x
[66] Sack P J, Large R R, Gregory D D. Geochemistry of shale and sedimentary pyrite as a proxy for gold fertility in the Selwyn Basin area, Yukon[J]. Mineralium Deposita, 2018, 53(7):997-1018. doi:  10.1007/s00126-018-0793-5
[67] Merinero R, Cárdenes, V. Theoretical growth of framboidal and sunflower pyrite using the R-package frambgrowth[J]. Mineralogy and Petrology, 2017, 112(4):577-589.
[68] Baumgartner L K, Reid R P, Dupraz C, et al. Sulfate reducing bacteria in microbial mats:Changing paradigms, new discoveries[J]. Sedimentary Geology, 2006, 185(3/4):131-145. http://cn.bing.com/academic/profile?id=00a5c517aca39d67ca249e1bdec8b934&encoded=0&v=paper_preview&mkt=zh-cn
[69] Wei H Y, Wei X M, Qiu Z, et al. Redox conditions across the G-L boundary in South China:Evidence from pyrite morphology and sulfur isotopic compositions[J]. Chemical Geology, 2016, 440:1-14. doi:  10.1016/j.chemgeo.2016.07.009
[70] 周杰, 邱振, 王红岩, 等.草莓状黄铁矿形成机制及其研究意义[J].地质科学, 2017, 52(1):242-253. http://d.old.wanfangdata.com.cn/Periodical/dzkx201701017

Zhou Jie, Qiu Zhen, Wang Hongyan, et al. Formation mechanism of pyrite framboid and its research significance[J]. Chinese Journal of Geology, 2017, 52(1):242-253. http://d.old.wanfangdata.com.cn/Periodical/dzkx201701017
[71] Berner R A, Raiswell R. Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time:A new theory[J]. Geochimica et Cosmochimica Acta, 1983, 47(5):855-862. doi:  10.1016/0016-7037(83)90151-5
[72] Maclean L C, Tyliszczak T, Gilbert P U, et al. A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm[J]. Geobiology, 2010, 6(5):471-480. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bc7aa809ab861b98a877718056c00d7f
[73] Schieber J. Sedimentary pyrite:A window into the microbial past[J]. Geology, 2002, 30(6):531-534. doi:  10.1130/0091-7613(2002)030<0531:SPAWIT>2.0.CO;2
[74] Fan R, Deng S H, Zhang X L. Significant carbon isotope excursions in the Cambrian and their implications for global correlations[J]. Science China Earth Sciences, 2011, 54(11):1686-1695 doi:  10.1007/s11430-011-4313-z
[75] 郝松立, 李文厚, 刘建平, 等.鄂尔多斯南缘奥陶系生物礁相碳酸盐岩碳氧同位素地球化学特征[J].地质科技情报, 2011, 30(2):52-56. doi:  10.3969/j.issn.1000-7849.2011.02.009

Hao Songli, Li Wenhou, Liu Jianping, et al. Characteristics of carbon and oxygen isotopes geochemistry of organic reef facies carbonates of Ordovician in southern margin of Ordos[J]. Geological Science & Technology Information, 2011, 30(2):52-56. doi:  10.3969/j.issn.1000-7849.2011.02.009
[76] Perry R S, Mcloughlin N, Lynne B Y, et al. Defining biominerals and organominerals:Direct and indirect indicators of life[J]. Sedimentary Geology, 2007, 201(1/2):157-179. http://cn.bing.com/academic/profile?id=90901e68d88fd4bd2e214becc0404063&encoded=0&v=paper_preview&mkt=zh-cn
[77] Dupraz C, Reid R P, Braissant O, et al. Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 2009, 96(3):141-162. doi:  10.1016/j.earscirev.2008.10.005
[78] Bogs S Jr. Petrology of sedimentary rocks[M]. 2nd edition. Cambridge:Cambridge University Press, 2009, 1-600.