[1] An Z S, Kukla G, Porter S C, et al. Late Quaternary dust flow on the Chinese Loess Plateau[J]. CATENA, 1991, 18(2): 125-132.
[2] Ding Z L, Yu Z W, Rutter N W, et al. Towards an orbital time scale for Chinese Loess deposits[J]. Quaternary Science Reviews, 1994, 13(1): 39-70.
[3] 鹿化煜,安芷生. 黄土高原黄土粒度组成的古气候意义[J]. 中国科学(D辑):地球科学,1998,28(3):278-283.

Lu Huayu, An Zhisheng. Paleoclimatic significance of grain size of loess-palaeosol deposit in Chinese Loess Plateau[J]. Science China (Seri. D): Earth Sciences, 1998, 28(3): 278-283.
[4] Vandenberghe J, Lu H Y, Sun D H, et al. The Late Miocene and Pliocene climate in East Asia as recorded by grain size and magnetic susceptibility of the Red Clay deposits (Chinese Loess Plateau)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 204(3/4): 239-255.
[5] Vandenberghe J. Grain size of fine- grained windblown sediment: A powerful proxy for process identification[J]. Earth-Science Reviews, 2013, 121: 18-30.
[6] Újvári G, Kok J F, Varga G, et al. The physics of wind-blown loess: Implications for grain size proxy interpretations in Quaternary paleoclimate studies[J]. Earth-Science Reviews, 2016, 154: 247-278.
[7] 姜高磊,刘林敬,毕志伟,等. 河北丰宁黄土粒度特征及其环境意义[J]. 地质科技情报,2018,37(4):83-89.

Jiang Gaolei, Liu Linjing, Bi Zhiwei, et al. Grain-size properties and their environmental significance of Fengning Loess, Hebei province[J]. Geological Science and Technology Information, 2018, 37(4): 83-89.
[8] Bianchi G G, McCave I N. Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland[J]. Nature, 1999, 397(6719): 515-517.
[9] Wilson A M, Huettel M, Klein S. Grain size and depositional environment as predictors of permeability in coastal marine sands[J]. Estuarine, Coastal and Shelf Science, 2008, 80(1): 193-199.
[10] Smit M G D, Holthaus K I E, Trannum H C, et al. Species sensitivity distributions for suspended clays, sediment burial, and grain size change in the marine environment[J]. Environmental Toxicology and Chemistry, 2008, 27(4): 1006-1012.
[11] De Jong M F, Baptist M J, Lindeboom H J, et al. Relationships between macrozoobenthos and habitat characteristics in an intensively used area of the Dutch coastal zone[J]. ICES Journal of Marine Science, 2015, 72(8): 2409-2422.
[12] Campbell C. Late Holocene lake sedimentology and climate change in southern Alberta, Canada[J]. Quaternary Research, 1998, 49(1): 96-101.
[13] 陈敬安,万国江,唐德贵,等. 洱海近代气候变化的沉积物粒度与同位素记录[J]. 自然科学进展,2000,10(3):253-259.

Chen Jing’an, Wan Guojiang, Tang Degui, et al. Grain size and isotopic records of sediments in recent climate change of Erhai Lake[J]. Progress in Natural Science, 2000, 10(3): 253-259.
[14] Parris A S, Bierman P R, Noren A J, et al. Holocene paleostorms identified by particle size signatures in lake sediments from the northeastern United States[J]. Journal of Paleolimnology, 2010, 43(1): 29-49.
[15] Stauch G, Ijmker J, Pötsch S, et al. Aeolian sediments on the north-eastern Tibetan Plateau[J]. Quaternary Science Reviews, 2012, 57: 71-84.
[16] Ju J T, Zhu L P, Feng J L, et al. Hydrodynamic process of Tibetan Plateau lake revealed by grain size: Case study of Pumayum Co[J]. Chinese Science Bulletin, 2012, 57(19): 2433-2441.
[17] Dietze E, Maussion F, Ahlborn M, et al. Sediment transport processes across the Tibetan Plateau inferred from robust grain-size end members in lake sediments[J]. Climate of the Past, 2014, 10(1): 91-106.
[18] 陈静,赵宝成,战庆. 长江口水下三角洲北部近百年沉积物粒度组成及其对水动力环境的响应[J]. 沉积学报,2014,32(4):692-699.

Chen Jing, Zhao Baocheng, Zhan Qing. Grain size of recent sediments in the north of Changjiang subaqueous delta and its implication of estuarine hydrodynamics[J]. Acta Sedimentologica Sinica, 2014, 32(4): 692-699.
[19] Lin S, Hsieh I J, Huang K M, et al. Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments[J]. Chemical Geology, 2002, 182(2/3/4): 377-394.
[20] Yang S L, Zhang J, Zhu J, et al. Impact of dams on Yangtze River sediment supply to the sea and delta intertidal wetland response[J]. Journal of Geophysical Research: Earth Surface, 2005, 110(F3): F03006.
[21] 舒强,李才林,赵志军,等. 苏北盆地浅钻沉积物磁化率与粒度记录的末次冰消期以来的环境变化[J]. 沉积学报,2009,27(1):111-117.

Shu Qiang, Li Cailin, Zhao Zhijun, et al. The records of mass susceptibility and grain size for climate changes in Subei Basin during the last deglaciation[J]. Acta Sedimentologica Sinica, 2009, 27(1): 111-117.
[22] 谢远云,王秋良,李长安,等. 湖泊沉积物粒度的气候指示意义:以江汉平原江陵剖面为例[J]. 地质科技情报,2004,23(4):41-43.

Xie Yuanyun, Wang Qiuliang, Li Chang’an, et al. Climatic implication of grain size from lacustrine sediments: A case study of Jiangling section, Jianghan Plain, China[J]. Geological Science and Technology Information, 2004, 23(4): 41-43.
[23] 谢远云,李长安,王秋良,等. 江汉平原江陵湖泊沉积物粒度特征及气候环境意义[J]. 吉林大学学报(地球科学版),2007,37(3):570-577.

Xie Yuanyun, Li Chang’an, Wang Qiuliang, et al. Grain-size chracteristics and their environmental significance of Jiangling Lake sediments in Jianghan Plain[J]. Journal of Jilin University (Earth Science Edition), 2007, 37(3): 570-577.
[24] 谢远云,王秋良,李长安,等. 江汉平原9.0 kaB.P.以来的气候演化:来自江陵剖面沉积物记录[J]. 地理科学,2006,26(2):199-204.

Xie Yuanyun, Wang Qiuliang, Li Chang’an, et al. Climatic change since 9 ka B.P.: Evidence from Jiangling area, Jianghan Plain, China[J]. Scientia Geographica Sinica, 2006, 26(2): 199-204.
[25] 杨达源. 晚更新世冰期最盛时长江中下游地区的古环境[J]. 地理学报,1986,41(4):302-310.

Yang Dayuan. The paleoenvironment of the mid-lower regions of Changjiang in the full-glacial period of Late Pleistocene[J]. Acta Geographica Sinica, 1986, 41(4): 302-310.
[26] Xu Y T, Lai Z P, Li C A. Sea-level change as the driver for lake formation in the Yangtze Plain – A review[J]. Global and Planetary Change, 2019, 181: 102980.
[27] 李徐生,韩志勇,鹿化煜,等. 下蜀黄土底界的年代及其对区域气候变干的指示[J]. 中国科学(D辑):地球科学,2018,47(2):210-223.

Li Xusheng, Han Zhiyong, Lu Huayu, et al. Onset of Xiashu Loess deposition in southern China by 0.9Ma and its implications for regional aridification[J]. Science China (Seri. D): Earth Sciences, 2018, 47(2): 210-223.
[28] 谢树成,胡超涌,顾延生,等. 最近13ka以来长江中游古水文变化[J]. 地球科学:中国地质大学学报,2015,40(2):198-205.

Xie Shucheng, Hu Chaoyong, Gu Yansheng, et al. Paleohydrological Variation since 13 ka BP in Middle Yangtze Region[J]. Earth Science:Journal of China University of Geosciences, 2015, 40(2): 198-205.
[29] 孙永传,李惠生. 碎屑岩沉积相和沉积环境[M]. 北京:地质出版社,1986.

Sun Yongchuan, Li Huisheng. Sedimentary facies and environment of clastic rocks[M]. Beijing: Geological Publishing House, 1986.
[30] 陈敬安,万国江,张峰,等. 不同时间尺度下的湖泊沉积物环境记录:以沉积物粒度为例[J]. 中国科学(D辑):地球科学,2003,33(6):563-568.

Chen Jing’an, Wan Guojiang, Zhang Feng, et al. Environmental records of lacustrine sediments in different time scales: Sediment grain size as an example[J]. Science China (Seri. D): Earth Sciences, 2003, 33(6): 563-568.
[31] Liu X Q, Herzschuh U, Shen J, et al. Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang, China[J]. Quaternary Research, 2008, 70(3): 412-425.
[32] 张实,谢先德,万国江. 云南泸沽湖矿物学沉积记录及其环境辨识意义[J]. 矿物学报,1997,17(2):183-193.

Zhang Shi, Xie Xiande, Wan Guojiang. Mineralogical records and their environmental aspects of Lugu Lake, Yunnan province[J]. Acta Mineralogica Sinica, 1997, 17(2): 183-193.
[33] 钱宁,万兆惠. 泥沙运动力学[M]. 北京:科学出版社,2003.

Qian Ning, Wan Zhaohui. Mechanics of sediment transport[M]. Beijing: Science Press, 2003.
[34] 张建军. 黄土坡面地表径流挟沙能力研究综述[J]. 泥沙研究,2007(4):77-81.

Zhang Jianjun. Summary of studies on sediment carrying capacity of surface runoff on loess slopes[J]. Journal of Sediment Research, 2007(4): 77-81.
[35] 张锐波,张丽萍,付兴涛. 坡面径流含沙量随雨强和坡长的动态过程[J]. 水土保持学报,2018,32(1):80-84,90.

Zhang Ruibo, Zhang Liping, Fu Xingtao. Research on the dynamic processes of sediment concentrations in slope runoff with rainfall intensity and slope length[J]. Journal of Soil and Water Conservation, 2018, 32(1): 80-84, 90.
[36] 张光辉. 对坡面径流挟沙力研究的几点认识[J]. 水科学进展,2018,29(2):151-158.

Zhang Guanghui. Several understandings for sediment transport capacity by overland flow[J]. Advances in Water Science, 2018, 29(2): 151-158.
[37] Xie S C, Evershed R P, Huang X Y, et al. Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in central China[J]. Geology, 2013, 411(8): 827-830.
[38] Huang X Y, Xue J T, Wang X X, et al. Paleoclimate influence on early diagenesis of plant triterpenes in the Dajiuhu Peatland, central China[J]. Geochimica et Cosmochimica Acta, 2013, 123: 106-119.
[39] Yuan D X, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon[J]. Science, 2004, 304(5670): 575-578.
[40] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550): 2345-2348.
[41] 陈仕涛,汪永进,孔兴功,等. 倒数第三次冰消期亚洲季风气候可能的类Younger Dryas事件[J]. 中国科学(D辑):地球科学,2006,36(5):445-452.

Chen Shitao, Wang Yongjin, Kong Xinggong, et al. A possible Younger Dryas-type event during Asian monsoonal Termination 3[J]. Science China (Seri. D): Earth Sciences, 2006, 36(5): 445-452.
[42] Bond G, Heinrich H, Broecker W, et al. Evidence for massive discharges of icebergs into the North Atlantic Ocean during the last glacial period[J]. Nature, 1992, 360(6401): 245-249.
[43] Yang Y, Yuan D X, Cheng H, et al. Precise dating of abrupt shifts in the Asian Monsoon during the last deglaciation based on stalagmite data from Yamen Cave, Guizhou province[J]. Science China Earth Sciences, 2010, 53(5): 633-641.