[1] 郑永飞. 新元古代雪球地球事件与地幔超柱活动[J]. 自然杂志,2005,27(1):28-32.

Zheng Yongfei. Neoproterozoic snowball Earth event and mantle superplume activity[J]. Chinese Journal of Nature, 2005, 27(1): 28-32.
[2] Hoffman P F, Kaufman A J, Halverson G P, et al. A Neoproterozoic snowball earth[J]. Science, 1998, 281(5381): 1342-1346.
[3] 赵彦彦,郑永飞. 全球新元古代冰期的记录和时限[J]. 岩石学报,2011,27(2):545-565.

Zhao Yanyan, Zheng Yongfei. Record and time of Neoproterozoic glaciations on earth[J]. Acta Petrologica Sinica, 2011, 27(2): 545-565.
[4] Frimmel H E, Klötzli U S, Siegfried P R, et al. New Pb-Pb single zircon age constraints on the timing of Neoproterozoic glaciation and continental break-up in Namibia[J]. The Journal of Geology, 1996, 104(4): 459-469.
[5] Borg G, Kärner K, Buxton M, et al. Geology of the skorpion supergene zinc deposit, southern Namibia[J]. Economic Geology, 2003, 98(4): 749-771.
[6] Zheng Y F, Wu Y B, Gong B, et al. Tectonic driving of Neoproterozoic glaciations: Evidence from extreme oxygen isotope signature of meteoric water in granite[J]. Earth and Planetary Science Letters, 2007, 256(1/2): 196-210.
[7] Zheng Y F, Gong B, Zhao Z F, et al. Zircon U-Pb age and O isotope evidence for Neoproterozoic low-18O magmatism during supercontinental rifting in South China: Implications for the Snowball Earth event[J]. American Journal of Science, 2008, 308: 484-516.
[8] Fölling P G, Frimmel H E. Chemostratigraphic correlation of carbonate successions in the Gariep and Saldania Belts, Namibia and South Africa[J]. Basin Research, 2002, 14(1): 69-88.
[9] Hoffman P F, Schrag D P. The Snowball Earth hypothesis: Testing the limits of global change[J]. Terra Nova, 2002, 14(3): 129-155.
[10] Xiao S H, Bao H M, Wang H F, et al. The Neoproterozoic Quruqtagh group in eastern Chinese Tianshan: Evidence for a post-Marinoan glaciation[J]. Precambrian Research, 2004, 130(1/2/3/4): 1-26.
[11] Zhang Q R, Chu X L, Feng L J, et al. Discussion on the Neoproterozoic glaciations in the South China Block and their related paleolatitudes[J]. Chinese Science Bulletin, 2009, 54(10): 1797-1800.
[12] Evans D A D, Li Z X, Kirschvink J L, et al. A high-quality mid-Neoproterozoic paleomagnetic pole from South China, with implications for ice ages and the breakup configuration of Rodinia[J]. Precambrian Research, 2000, 100(1/2/3): 313-334.
[13] Brasier M, McCarron G, Tucker R, et al. New U-Pb zircon dates for the Neoproterozoic Ghubrah glaciation and for the top of the Huqf Supergroup, Oman[J]. Geology, 2000, 28(2): 175-178.
[14] Brasier M D, Shields G, Kuleshov V N, et al. Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic-Early Cambrian of Southwest Mongolia[J]. Geological Magazine, 1996, 133(4): 445-485.
[15] Hoffman P F, Li Z X. A palaeogeographic context for Neoproterozoic glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 277(3/4): 158-172.
[16] 张启锐,储雪蕾. 扬子地区江口冰期地层的划分对比与南华系层型剖面[J]. 地层学杂志,2006,30(4):306-314.

Zhang Qirui, Chu Xuelei. The stratigraphic classification and correlation of the Jiangkou glaciation in the Yangtze Block and the stratotype section of the Nanhuan System[J]. Journal of Stratigraphy, 2006, 30(4): 306-314.
[17] 高林志,陆济璞,丁孝忠,等. 桂北地区新元古代地层凝灰岩锆石U-Pb年龄及地质意义[J]. 中国地质,2013,40(5):1443-1452.

Gao Linzhi, Lu Jipu, Ding Xiaozhong, et al. Zircon U-Pb dating of Neoproterozoic tuff in south Gaungxi and its implications for stratigraphic correlation[J]. Geology in China, 2013, 40(5): 1443-1452.
[18] 韩坤英,王梁,丁孝忠,等. 桂北地区南华系沉积物源分析:来自碎屑锆石U-Pb年龄的证据[J]. 岩石学报,2016,32(7):2166-2180.

Han Kunying, Wang Liang, Ding Xiaozhong, et al. Provenance of sedimentary rocks of Nanhua System in the northern Guangxi province: Evidence from detrital zircon U-Pb ages[J]. Acta Petrologica Sinica, 2016, 32(7): 2166-2180.
[19] 刘建清,赵瞻,林家善,等. 南华系底界年龄:SHRIMP II定年新证据[J]. 矿物岩石,2015,35(3):35-40.

Liu Jianqing, Zhao Zhan, Lin Jianshan, et al. The age of bottom boundary of the Nanhua System: New evidence from SHRIMP II dating[J]. Journal of Mineralogy and Petrology, 2015, 35(3): 35-40.
[20] 孙海清,黄建中,杜远生,等. 扬子地块东南缘南华系长安组同位素年龄及其意义[J]. 地质科技情报,2014,33(2):15-20,27.

Sun Haiqing, Huang Jianzhong, Du Yuansheng, et al. Isotope ages and significance of Nanhuaian Chang’an Formation in the southeastern Yangtze Craton[J]. Geological Science and Technology Information, 2014, 33(2): 15-20, 27.
[21] 崔晓庄,江新胜,王剑,等. 滇中新元古代澄江组层型剖面锆石U-Pb年代学及其地质意义[J]. 现代地质,2013,27(3):547-556.

Cui Xiaozhuang, Jiang Xinsheng, Wang Jian, et al. Zircon U-Pb geochronology for the stratotype section of the Neoproterozoic Chengjiang Formation in central Yunnan and its geological significance[J]. Geoscience, 2013, 27(3): 547-556.
[22] Zhang Q R, Li X H, Feng L J, et al. A new age constraint on the onset of the Neoproterozoic Glaciations in the Yangtze Platform, South China[J]. The Journal of Geology, 2008, 116(4): 423-429.
[23] Lan Z W, Li X H, Zhu M Y, et al. A rapid and synchronous initiation of the wide spread Cryogenian glaciations[J]. Precambrian Research, 2014, 255: 401-411.
[24] Lan Z W, Li X H, Zhu M Y, et al. Revisiting the Liantuo Formation in Yangtze Block, South China: SIMS U-Pb zircon age constraints and regional and global significance[J]. Precambrian Research, 2015, 263: 123-141.
[25] Jiang Z F, Cui X Z, Jiang X S, et al. New zircon U-Pb ages of the pre-Sturtian rift successions from the western Yangtze Block, South China and their geological significance[J]. International Geology Review, 2016, 58(9): 1064-1075.
[26] Song G Y, Wang X Q, Shi X Y, et al. New U-Pb age constraints on the Upper Banxi Group and synchrony of the Sturtian glaciation in South China[J]. Geoscience Frontiers, 2017, 8(5): 1161-1173.
[27] Lan Z W, Huyskens M H, Lu K, et al. Toward refining the onset age of Sturtian glaciation in South China[J]. Precambrian Research, 2020, 338: 105555.
[28] Zhou C M, Tucker R, Xiao S H, et al. New constraints on the ages of Neoproterozoic glaciations in south China[J]. Geology, 2004, 32(5): 437-440.
[29] Zhou C M, Huyskens M H, Lang X G, et al. Calibrating the terminations of Cryogenian global glaciations[J]. Geology, 2019, 47(3): 251-254.
[30] Lorentz N J, Corsetti F A, Link P K. Seafloor precipitates and C-isotope stratigraphy from the Neoproterozoic Scout Mountain member of the Pocatello Formation, southeast Idaho: Implications for Neoproterozoic earth system behavior[J]. Precambrian Research, 2004, 130(1/2/3/4): 57-70.
[31] Jiang G Q, Sohl L E, Christie-Blick N, et al. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (south China): Paleogeographic implications[J]. Geology, 2003, 31(10): 917-920.
[32] Jiang G Q, Kennedy M J, Christie-Blick N, et al. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates[J]. Nature, 2003, 426(6968): 822-826.
[33] Condon D, Zhu M Y, Bowring S, et al. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China[J]. Science, 2005, 308(5718): 95-98.
[34] Chu X L, Todt W, Zhang Q R, et al. U-Pb zircon age for the Nanhua-Sinian boundary[J]. Chinese Science Bulletin, 2005, 50(7): 716-718.
[35] Yin C Y, Tang F, Liu Y Q, et al. U-Pb zircon age from the base of the Ediacaran Doushantuo Formation in the Yangtze Gorges, South China: Constraint on the age of Marinoan glaciation[J]. Episodes, 2005, 28(1): 48-51.
[36] Yin C Y, Tang F, Liu Y Q, et al. New U-Pb zircon ages from the Ediacaran (Sinian) System in the Yangtze Gorges: Constraint on the age of Miaohe biota and Marinoan glaciation[J]. Geological Bulletin of China, 2005, 24(5): 393-400.
[37] Zhang S H, Jiang G Q, Zhang J M, et al. U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in South China: Constraints on Late Neoproterozoic glaciations[J]. Geology, 2005, 33(6): 473-476.
[38] 黄晶,储雪蕾,张启锐,等. 新元古代冰期及其年代[C]中国科学院地质与地球物理研究所.中国科学院地质与地球物理研究所. 2008:10.

Huang Jing, Chu Xuelei, Zhang Qirui, et al. Constraints on the age of Neoproterozoic global glaciations[C]. Institute of Geology and Geophysics,Chinese Academy of Sciences. Institute of Geology and Geophysics,Chinese Academy of Sciences.2008: 10.
[39] 尹崇玉,王砚耕,唐烽,等. 贵州松桃南华系大塘坡组凝灰岩锆石SHRIMP II U-Pb年龄[J]. 地质学报,2006,80(2):273-278.

Yin Chongyu, Wang Yangeng, Tang Feng, et al. SHRIMP II U-Pb zircon date from the Nanhuan Datangpo Formation in Songtao county, Guizhou province[J]. Acta Geologica Sinica, 2006, 80(2): 273-278.
[40] 余文超,杜远生,周琦,等. 黔东松桃地区大塘坡组LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质论评,2016,62(3):539-549.

Yu Wenchao, Du Yuansheng, Zhou Qi, et al. LA-ICP-MS Zircon U-Pb dating from the Nanhuan Datangpo Formation in Songtao area, east Guizhou and its geological significance[J]. Geological Review, 2016, 62(3): 539-549.
[41] Zhang S H, Jiang G Q, Han Y G. The age of the Nantuo Formation and Nantuo glaciation in South China[J]. Terra Nova, 2008, 20(4): 289-294.
[42] Liu P J, Li X H, Chen N M, et al. New SIMS U-Pb zircon age and its constraint on the beginning of the Nantuo glaciation[J]. Science Bulletin, 2015, 60(10): 958-963.
[43] 蔡娟娟,崔晓庄,兰中伍,等. 华南扬子陆块成冰纪冰川作用的启动时限及其全球对比[J]. 古地理学报,2018,20(1):65-86.

Cai Juanjuan, Cui Xiaozhuang, Lan Zhongwu, et al. Onset time and global correlation of the Cryogenian glaciations in Yangtze Block, South China[J]. Journal of Palaeogeography, 2018, 20(1): 65-86.
[44] Bowring S, Myrow P, Landing E, et al. Geochronological constraints on terminal Neoproterozoic events and the rise of Metazoans[J]. Geophysical Research Abstracts, 2003, 5: 13219.
[45] Knoll A H, Walter M R, Narbonne G M, et al. A new Period for the geologic time scale[J]. Science, 2004, 305(5684): 621-622.
[46] Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210.
[47] 旷红伟,柳永清,彭楠,等. 陡山沱组盖帽碳酸盐岩C同位素特征及形成环境:以扬子北缘神农架地区为例[J]. 地质学报,2019,93(9):2139-2157.

Kuang Hongwei, Liu Yongqing, Peng Nan, et al. Carbon isotopic characteristics and sedimentology of Ediacaran cap carbonates: A case study from the Shennongjia area, northern Yangtze Craton[J]. Acta Geologica Sinica, 2019, 93(9): 2139-2157.
[48] 卢定彪,张德明,吴开彬,等. 华南新元古代南华大冰期气候岩石地层对比[J]. 中国科技论文,2018,13(9):1060-1067.

Lu Dingbiao, Zhang Deming, Wu Kaibin, et al. Stratigraphic correlation on climate and rock during the Nanhua Great Ice Age of the Neoproterozoic in South China[J]. China Sciencepaper, 2018, 13(9): 1060-1067.
[49] 旷红伟,柳永清,耿元生,等. 中国中新元古代重要沉积地质事件及其意义[J]. 古地理学报,2019,21(1):1-30.

Kuang Hongwei, Liu Yongqing, Geng Yuansheng, et al. Important sedimentary geological events of the Meso-Neoproterozoic and their significance[J]. Journal of Palaeogeography, 2019, 21(1): 1-30.
[50] 王家生,甘华阳,魏清,等. 三峡“盖帽”白云岩的碳、硫稳定同位素研究及其成因探讨[J]. 现代地质,2005,19(1):14-20.

Wang Jiasheng, Gan Huayang, Wei Qing, et al. Stable isotopes of carbon and sulfur of cap dolomite in the three gorges and its mechanism discussion[J]. Geoscience, 2005, 19(1): 14-20.
[51] Kennedy M J, Christie-Blick N, Sohl L E. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals?[J]. Geology, 2001, 29(5): 443-446.
[52] 储雪蕾. 新元古代的“雪球地球”[J]. 矿物岩石地球化学通报,2004,23(3):233-238.

Chu Xuelei. “Snowball Earth” during the Neoproterozoic[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2004, 23(3): 233-238.
[53] Allen P A, Hoffman P F. Extreme winds and waves in the aftermath of a Neoproterozoic glaciation[J]. Nature, 2005, 433(7022): 123-127.
[54] Grotzinger J P, Knoll A H. Anomalous carbonate precipitates: Is the Precambrian the key to the Permian?[J]. Palaios, 1995, 10(6): 578-596.
[55] Macouin M, Besse J, Ader M, et al. Combined paleomagnetic and isotopic data from the Doushantuo carbonates, South China: Implications for the “Snowball earth” hypothesis[J]. Earth and Planetary Science Letters, 2004, 224(3/4): 387-398.
[56] 孙知明,杨振宇,裴军令,等. 华南陡山沱期古地理环境及“雪球地球”研究新进展[J]. 地质通报,2004,23(8):728-731.

Sun Zhiming, Yang Zhenyu, Pei Junling, et al. Doushantuoan paleogeographic environment in South China and new progress in the study of the “snow-ball Earth”[J]. Geological Bulletin of China, 2004, 23(8): 728-731.
[57] 熊国庆. 贵州梵净山西北陡山沱组底部白云岩帽地球化学特征及成因探讨[J]. 沉积与特提斯地质,2006,26(2):7-11.

Xiong Guoqing. Geochemistry and petrogenesis of the cap dolostones at the bottom of the Doushantuo Formation in northwestern Fanjing Mountains, Guizhou[J]. Sedimentary Geology and Tethyan Geology, 2006, 26(2): 7-11.
[58] 赵元龙,杨洪,李勇,等. 贵州新元古代到寒武纪早期特异埋藏后生生物群及其研究意义[J]. 古生物学报,2008,47(4):405-418.

Zhao Yuanlong, Yang Hong, Li Yong, et al. Exceptionally-preserved early metazoan biotas of Neoproterozoic-Cambrian in Guizhou and their implications: A brief introduction[J]. Acta Palaeontologica Sinica, 2008, 47(4): 405-418.
[59] 蒋干清,史晓颖,张世红. 甲烷渗漏构造、水合物分解释放与新元古代冰后期盖帽碳酸盐岩[J]. 科学通报,2006,51(10):1121-1138.

Jiang Ganqing, Shi Xiaoying, Zhang Shihong. Methane seeps, methane hydrate destabilization, and the Late Neoproterozoic postglacial cap carbonates[J]. Chinese Science Bulletin, 2006, 51(10): 1121-1138.
[60] Zou H, Bagas L, Li X Y, et al. Origin and evolution of the Neoproterozoic Dengganping Granitic Complex in the western margin of the Yangtze Block, SW China: Implications for breakup of Rodina Supercontinent[J]. Lithos, 2020, 370-371: 105602.
[61] Condie K C. Mantle plumes and their record in earth history[J]. Cambridge: Cambridge University Press, 2001: 305.
[62] 牛绍武,孙淑芬. 古太平洋淮南—小达尔生物地理区的初步确认及其意义:重建新元古代Rodinia超大陆的古生物学证据[J]. 前寒武纪研究进展,2000,23(1):11-21.

Niu Shaowu, Sun Shufen. The tentative establishment of Palaeopacific Huainan-Litlle dal biogeographic Demaration and its significace: On the palaeontological evidence about reestablishing Newproterozoic Rodinia supercontinent[J]. Geological Survey and Research, 2000, 23(1): 11-21.
[63] Lenton T M. The coupled evolution of life and atmospheric oxygen[M]//Rothschild L, Lister A. Evolution on planet earth: The impact of the physical environment. London: Academic Press, 2003: 35-53.
[64] Canfield D E. The early history of atmospheric oxygen: Homage to Robert M. Garrels[J]. Annual Review of Earth and Planetary Sciences, 2005, 33(1): 1-36.
[65] Catling D C. Oxygenation of the Earth’s Atmosphere[M]//Gargaud M. Encyclopedia of astrobiology. Berlin: Springer, 2011: 1200-1208.
[66] Kvenvolden K A. Gas hydrates-geological perspective and global change[J]. Reviews of Geophysics, 1993, 31(2): 173-187.
[67] Nisbet E G. The end of the ice age[J]. Canadian Journal of Earth Sciences, 1990, 27(1): 148-157.
[68] Dickens G R, O’Neil J R, Rea D K, et al. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene[J]. Paleoceanography, 1995, 10(6): 965-971.
[69] Buffett B A. Clathrate hydrates[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 477-507.
[70] Kvenvolden K A. Methane hydrate in the global organic carbon cycle[J]. Terra Nova, 2002, 14(5): 302-306.
[71] Paull C K, Hecker B, Commeau R, et al. Biological communities at the Florida escarpment resemble hydrothermal vent taxa[J]. Science, 1984, 226(4677): 965-967.
[72] Campbell K A, Farmer J D, Des Marais D, et al. Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: Carbonate geochemistry, fluids and palaeoenvironments[J]. Geofluids, 2002, 2(2): 63-94.
[73] Kennett J P, Cannariato K G, Hendy I L, et al. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials[J]. Science, 2000, 288(5463): 128-133.
[74] Jahren A H, Arens N C, Sarmiento G, et al. Terrestrial record of methane hydrate dissociation in the Early Cretaceous[J]. Geology, 2001, 29(2): 159-162.
[75] Jahren A H, Conrad C P, Arens N C, et al. A plate tectonic mechanism for methane hydrate release along subduction zones[J]. Earth and Planetary Science Letters, 2005, 236(3/4): 691-704.
[76] Hesselbo S P, Gröcke D R, Jenkyns H C, et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event[J]. Nature, 2000, 406(6794): 392-395.
[77] Padden M, Weissert H, De Rafelis M. Evidence for Late Jurassic release of methane from gas hydrate[J]. Geology, 2001, 29(3): 223-226.
[78] Krull E S, Retallack G J. δ13C depth profiles from Paleosols across the Permian-Triassic boundary: Evidence for methane release[J]. GSA Bulletin, 2000, 112(9): 1459-1472.
[79] Heydari E, Hassanzadeh J. Deev jahi model of the Permian-Triassic boundary mass extinction: A case for gas hydrates as the main cause of biological crisis on Earth[J]. Sedimentary Geology, 2003, 163(1/2): 147-163.
[80] Retallack G J, Smith R M H, Ward P D. Vertebrate extinction across Permian-Triassic boundary in Karoo Basin, South Africa[J]. GSA Bulletin, 2003, 115(9): 1133-1152.
[81] Ryskin G. Methane-driven oceanic eruptions and mass extinctions[J]. Geology, 2003, 31(9): 741-744.
[82] Bains S, Corfield R M, Norris R D, et al. Mechanisms of climate warming at the end of the Paleocene[J]. Science, 1999, 285(5428): 724-727.
[83] Katz M E, Pak D K, Dickens G R, et al. The source and fate of massive carbon input during the latest Paleocene thermal maximum[J]. Science, 1999, 286(5444): 1531-1533.
[84] Thomas D J, Zachos J C, Bralower T J, et al. Warming the fuel for the fire: Evidence for the thermal dissociation of methane hydrate during the Paleocene-Eocene thermal maximum[J]. Geology, 2002, 30(12): 1067-1070.
[85] Maslin M, Mikkelsen N, Vilela C, et al. Sea-level –and gas-hydrate–controlled catastrophic sediment failures of the Amazon Fan[J]. Geology, 1998, 26(12): 1107-1110.
[86] Maslin M, Owen M, Day S, et al. Linking continental-slope failures and climate change: Testing the clathrate gun hypothesis[J]. Geology, 2004, 32(1): 53-56.
[87] Bratton J F. Clathrate eustasy: Methane hydrate melting as a mechanism for geologically rapid sea-level fall[J]. Geology, 1999, 27(10): 915-918.
[88] Wood W T, Gettrust J F, Chapman N R, et al. Decreased stability of methane hydrates in marine sediments owing to phase-boundary roughness[J]. Nature, 2002, 420(6916): 656-660.
[89] Greinert J, Bollwerk S M, Derkachev A, et al. Massive barite deposits and carbonate mineralization in the Derugin Basin, Sea of Okhotsk: Precipitation processes at cold seep sites[J]. Earth and Planetary Science Letters, 2002, 203(1): 165-180.
[90] Dickens G R. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor[J]. Earth and Planetary Science Letters, 2003, 213(3/4): 169-183.
[91] Kasemann S A, Hawkesworth C J, Prave A R, et al. Boron and calcium isotope composition in Neoproterozoic carbonate rocks from Namibia: Evidence for extreme environmental change[J]. Earth and Planetary Science Letters, 2005, 231(1/2): 73-86.
[92] Zheng Y F, Gong B, Zhao Z F, et al. Two types of gneisses associated with eclogite at shuanghe in the Dabie terrane: Carbon isotope, zircon U-Pb dating and oxygen isotope[J]. Lithos, 2003, 70(3/4): 321-343.
[93] Zheng Y F, Wu Y B, Chen F K, et al. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic[J]. Geochimica et Cosmochimica Acta, 2004, 68(20): 4145-4165.
[94] 唐烽,尹崇玉,刘鹏举,等. 华南新元古代宏体化石特征及生物地层序列[J]. 地球学报,2009,30(4):505-522.

Tang Feng, Yin Chongyu, Liu Pengju, et al. Neoproterozoic macrofossil records in South China and biostrati-graphic successions and correlations[J]. Acta Geoscientia Sinica, 2009, 30(4): 505-522.
[95] Goddéris Y, Donnadieu Y, Nédélec A, et al. The Sturtian ‘snowball’ glaciation: Fire and ice[J]. Earth and Planetary Science Letters, 2003, 211(1/2): 1-12.
[96] Brady P V,卢鸿. CO2和温度对硅酸盐风化作用的影响:对气候控制的可能影响[J]. 地质科学译丛,1995,12(2):16-19.

Brady P V, Lu Hong. The effect of CO2 and temperature on the weathering of silicate-possible impact on climate control[J]. Journal of Gems and Gemmology, 1995, 12(2): 16-19.
[97] 殷鸿福,王红梅,邱轩. 地史早期微生物对沉积的作用[C]//2015年中国地球科学联合学术年会论文集. 北京:中国地球物理学会,中国地质学会,2015:2.

Yin Hongfu, Wang Hongmei, Qiu Xuan. The effect of microorganisms on sedimentation in the early geohistory[C]//Proceedings of the 2015 China geoscience joint annual meeting. Beijing: Chinese Geophysical Society, Geological Society of China, 2015: 2.