[1] Sepkoski J J. Flat-pebble conglomerates, storm deposits, and the Cambrian bottom fauna[M]//Einsele G, Seilacher A. Cyclic and event stratification. Berlin: Springer, 1982: 371-385.
[2] Bottjer D J, Hagadorn J W, Dornbos S Q. The Cambrian substrate revolution[J]. GSA Today, 2000, 10(9): 1-7.
[3] Wilson M D. Origin of Upper Cambrian flat pebble conglomerates in the northern Powder River Basin, Wyoming[M]//Longman M W, Shanley K W, Lindsay R F, et al. Rocky mountain carbonate reservoirs: A core workshop. McLean: SEPM Society for Sedimentary Geology, 1985: 1-50.
[4] 孟祥化,乔秀夫,葛铭. 华北古浅海碳酸盐风暴沉积和丁家滩相序模式[J]. 沉积学报,1986,4(2):1-18.

Meng Xianghua, Qiao Xiufu, Ge Ming. Study on ancient shallow sea carbonate storm deposits (tempestite) in North China and Dingjiatan model of facies sequences[J]. Acta Sedimentologica Sinica, 1986, 4(2): 1-18.
[5] Mount J F, Kidder D. Combined flow origin of edgewise intraclast conglomerates: Sellick Hill Formation (Lower Cambrian), South Australia[J]. Sedimentology, 1993, 40(2): 315-329.
[6] 田海芹,马玉新,狄明信. 山东新泰盘车沟地区崮山组和长山组风暴沉积特征[J]. 石油大学学报(自然科学版),1994,18(6):8-13.

Tian Haiqin, Ma Yuxin, Di Mingxin. Storm deposits of Gushan and Changshan Formations at Panchegou region of Xintai in Shandong province[J]. Journal of the University of Petroleum, China, 1994, 18(6): 8-13.
[7] Meng X H, Ge M, Tucker M E. Sequence stratigraphy, sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform[J]. Sedimentary Geology, 1997, 114(1/2/3/4): 189-222.
[8] Myrow P M, Tice L, Archuleta B, et al. Flat-pebble conglomerate: Its multiple origins and relationship to metre-scale depositional cycles[J]. Sedimentology, 2004, 51(5): 973-996.
[9] 吴淳,刘航宇,芦飞凡,等. 北京西山下苇甸中上寒武统风暴沉积特征及模式[J/OL]. 地学前缘, doi:10.13745/j.esf.sf.2023.2.17 .

Wu Chun, Liu Hangyu, Lu Feifan, et al. Characteristics and models of storm deposition in the Middle and Upper Cambrian in Xiaweidian, Western mountains of Beijing[J/OL]. Earth Science Frontiers, doi: 10.13745/j.esf.sf.2023.2.17 .
[10] Bouchette F, Seguret M, Moussine-Pouchkine A. Coarse carbonate breccias as a result of water-wave cyclic loading (uppermost Jurassic-South-East Basin, France)[J]. Sedimentology, 2001, 48(4): 767-789.
[11] Chough S K, Kwon Y K, Choi D K, et al. Autoconglomeration of limestone[J]. Geosciences Journal, 2001, 5(2): 159-164.
[12] Chen J T, Chough S K, Chun S S, et al. Limestone pseudoconglomerates in the Late Cambrian Gushan and Chaomidian Formations (Shandong province, China): Soft-sediment deformation induced by storm-wave loading[J]. Sedimentology, 2009, 56(4): 1174-1195.
[13] Chen J T, Han Z Z, Zhang X L, et al. Early diagenetic deformation structures of the Furongian ribbon rocks in Shandong province of China: A new perspective of the genesis of limestone conglomerates[J]. Science China Earth Sciences, 2010, 53(2): 241-252.
[14] Chen J T, Chough S K, Han Z Z, et al. An extensive erosion surface of a strongly deformed limestone bed in the Gushan and Chaomidian Formations (late Middle Cambrian to Furongian), Shandong province, China: Sequence-stratigraphic implications[J]. Sedimentary Geology, 2011, 233(1/2/3/4): 129-149.
[15] Chen J T, Lee H S. Soft-sediment deformation structures in Cambrian siliciclastic and carbonate storm deposits (Shandong province, China): Differential liquefaction and fluidization triggered by storm-wave loading[J]. Sedimentary Geology, 2013, 288: 81-94.
[16] van Loon A J, Han Z Z, Han Y. Origin of the vertically orientated clasts in brecciated shallow-marine limestones of the Chaomidian Formation (Furongian, Shandong province, China)[J]. Sedimentology, 2013, 60(4): 1059-1070.
[17] Chen J T. Origin of the Furongian limestone breccias in the North China Platform[J]. Science China Earth Sciences, 2015, 58(5): 770-775.
[18] van Loon A J, Han Z Z, Han Y. Slide origin of breccia lenses in the Cambrian of the North China Platform: New insight into mass transport in an epeiric sea[J]. Geologos, 2012, 18(4): 223-235.
[19] van Loon A J, Han Z, Han Y. Changes in the shape of breccia lenses sliding from source to sink in the Cambrian epeiric sea of the North China Platform[M]//Mazumder R. Sediment provenance. Amsterdam: Elsevier, 2017: 277-295.
[20] Chough S K, Chen J T. Generation of subsurface injection flow in a carbonate platform[J]. Geosciences Journal, 2013, 17(1): 3-8.
[21] Yang R C, van Loon A J, Fan A P, et al. Evidence for fault activity during accumulation of the Furongian Chaomidian Formation (Shandong province, China)[J]. Journal of Palaeogeography, 2021, 10(4): 509-528.
[22] Lee H S, Chen J T, Han Z Z, et al. Depositional processes and environmental changes during initial flooding of an epeiric platform: Liguan Formation (Cambrian Series 2), Shandong province, China[J]. Geosciences Journal, 2018, 22(6): 903-919.
[23] Lee H S, Chough S K. Depositional processes of the Zhushadong and Mantou Formations (Early to Middle Cambrian), Shandong province, China: Roles of archipelago and mixed carbonate-siliciclastic sedimentation on cycle genesis during initial flooding of the North China Platform[J]. Sedimentology, 2011, 58(6): 1530-1572.
[24] Woo J, Kim Y H S, Chough S K. Facies and platform development of a microbe-dominated carbonate platform: The Zhangxia Formation (Drumian, Cambrian Series 3), Shandong province, China[J]. Geological Journal, 2019, 54(4): 1993-2015.
[25] Chen J T, Chough S K, Lee J H, et al. Sequence-stratigraphic comparison of the Upper Cambrian series 3 to Furongian succession between the Shandong region, China and the Taebaek area, Korea: High variability of bounding surfaces in an epeiric platform[J]. Geosciences Journal, 2012, 16(4): 357-379.
[26] Lee J H, Chen J T, Woo J. The earliest Phanerozoic carbonate hardground (Cambrian stage 5, series 3): Implications to the paleoseawater chemistry and early adaptation of hardground fauna[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 440: 172-179.
[27] 黄汲清. 北京西山之寒武纪及奥陶纪地层[J]. 中国地质学会志,1927,6(2):69-82.

Huang Jiqing. Cambrian and Ordovician Strata of the Western hill section, Beijing[J]. Chinese Geological Society, 1927, 6(2): 69-82.
[28] 刘宝珺. 沉积岩石学[M]. 北京:地质出版社,1980:1-120.

Liu Baojun. Sedimentary petrology[M]. Beijing: Geological Publishing House, 1980: 1-120.
[29] 王祥珍. 关于“竹叶状灰岩”的命名、分类、分布和形成机理的探讨[J]. 矿物岩石,1981,1(5):31-41.

Wang Xiangzhen. Study on nomenclature, classification, distribution, and formative mechanism of flat pebble conglomerates[J]. Minerals and Rocks, 1981, 1(5): 31-41.
[30] 章雨旭,万渝生. 北京西山竹叶状灰岩的成因[J]. 中国地质科学院地质研究所所刊,1990,22:56-64.

Zhang Yuxu, Wan Yusheng. Origin of the flat pebble conglomerates in the Western hills, Beijing[J]. Bulletin of the Institute of Geology Chinese Academy of Geological Sciences, 1990, 22: 56-64.
[31] 梅冥相,马永生. 华北北部晚寒武世层序地层及海平面变化研究:兼论与北美晚寒武世海平面变化的对比[J]. 地层学杂志,2001,25(3):201-206.

Mei Mingxiang, Ma Yongsheng. Study on sequence-stratigraphy and sea-level changes of Late Cambrian in northern part of North China: Discussion on the correlation of sea-level change with that of North America[J]. Journal of Stratigraphy, 2001, 25(3): 201-206.
[32] 梅冥相,马永生. 华北地台晚寒武世层序地层及其与北美地台海平面变化的对比[J]. 沉积与特提斯地质,2003,23(4):15-26.

Mei Mingxiang, Ma Yongsheng. Sequence stratigraphy of the Late Cambrian strata on the North China Platform and the correlation of the sea-level changes with the North America Platform[J]. Sedimentary Geology and Tethyan Geology, 2003, 23(4): 14-26.
[33] Ding Y, Bai Z Q, Liu J B, et al. Multiple origins for flat-pebble limestones and sedimentary environments of the Upper Cambrian Gushan Formation at Tangwangzhai in Shandong province[J]. Journal of Palaeogeography, 2008, 10(2): 125-138.
[34] 朱茂炎,孙智新,杨爱华,等. 中国寒武纪岩石地层划分和对比[J]. 地层学杂志,2021,45(3):223-249.

Zhu Maoyan, Sun Zhixin, Yang Aihua, et al. Lithostratigraphic subdivision and correlation of the Cambrian in China[J]. Journal of Stratigraphy, 2021, 45(3): 223-249.
[35] Braccini E, de Boer W, Hurst A, et al. Sand injectites[J]. Oilfield Review, 2008, 20(2): 34-49.
[36] 陈吉涛. 软沉积物变形构造研究进展[J]. 地层学杂志,2020,44(1):64-75.

Chen Jitao. Research progress of soft-sediment deformation structures[J]. Journal of Stratigraphy, 2020, 44(1): 64-75.
[37] Allen P A. Hummocky cross-stratification is not produced purely under progressive gravity waves[J]. Nature, 1985, 313(6003): 562-564.
[38] Dumas S, Arnott R W C. Origin of hummocky and swaley cross-stratification: The controlling influence of unidirectional current strength and aggradation rate[J]. Geology, 2006, 34(12): 1073-1076.
[39] Smith B P, Edie S M, Fischer W W. Tracing energy inputs into the seafloor using carbonate sediments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(9): e2215833120.