[1] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
[2] Schlager W, Camber O. Submarine slope angles, drowning unconformities, and self-erosion of limestone escarpments[J]. Geology, 1986, 14(9): 762-765.
[3] Betzler C, Hübscher C, Lindhorst S, et al. Monsoon-induced partial carbonate platform drowning (Maldives, Indian Ocean)[J]. Geology, 2009, 37(10): 867-870.
[4] Betzler C, Fürstenau J, Lüdmann T, et al. Sea-level and ocean-current control on carbonate-platform growth, Maldives, Indian Ocean[J]. Basin Research, 2013, 25(2): 172-196.
[5] Scheibner C, Speijer R P. Recalibration of the Tethyan shallow-benthic zonation across the Paleocene-Eocene boundary: The Egyptian record[J]. Geological Acta, 2009, 7(1/2): 195-214.
[6] Courgeon S, Jorry S J, Camoin G F, et al. Growth and demise of Cenozoic isolated carbonate platforms: New insights from the Mozambique channel seamounts (SW Indian Ocean)[J]. Marine Geology, 2016, 380: 90-105.
[7] Scheibner C, Speijer R P, Marzouk A M. Turnover of larger foraminifera during the Paleocene-Eocene thermal maximum and paleoclimatic control on the evolution of platform ecosystems[J]. Geology, 2005, 33(6): 493-496.
[8] Scheibner C, Rasser M W, Mutti M. The Campo section (Pyrenees, Spain) revisited: Implications for changing benthic carbonate assemblages across the Paleocene-Eocene boundary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 248(1/2): 145-168.
[9] Robinson S A. Shallow-water carbonate record of the Paleocene-Eocene thermal maximum from a Pacific Ocean guyot[J]. Geology, 2011, 39(1): 51-54.
[10] Zamagni J, Mutti M, Košir A. Evolution of shallow benthic communities during the Late Paleocene–earliest Eocene transition in the northern Tethys (SW Slovenia)[J]. Facies, 2008, 54: 25-43.
[11] Höntzsch S, Scheibner C, Kuss J, et al. Tectonically driven carbonate ramp evolution at the southern Tethyan shelf: The Lower Eocene succession of the Galala mountains, Egypt[J]. Facies, 2011, 57: 51-72.
[12] 卫平生,刘全新,张景廉,等. 再论生物礁与大油气田的关系[J]. 石油学报,2006,27(2):33-42.

Wei Pingsheng, Liu Quan-xin, Zhang Jinglian, et al. Re-discussion of relationship between reef and giant oil-gas fields[J]. Acta Petrolei Sinica, 2006, 27(2): 33-42.
[13] Khain V E, Polyakova I D. Oil and gas potential of deep-and ultradeep-water zones of continental margins[J]. Lithology and Mineral Resources, 2004, 39(6): 530-540.
[14] Wilson M E J. Global and regional influences on equatorial shallow-marine carbonates during the Cenozoic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 265(3/4): 262-274.
[15] 张功成,米立军,屈红军,等. 中国海域深水区油气地质[J]. 石油学报,2013,34(增刊2):1-14.

Zhang Gongcheng, Mi Lijun, Qu Hongjun, et al. Petroleum geology of deep-water areas in offshore China[J]. Acta Petrolei Sinica, 2013, 34(Suppl. 2): 1-14.
[16] Carmichael S M, Akhter S, Bennett J K, et al. Geology and hydrocarbon potential of the offshore Indus Basin, Pakistan[J]. Petroleum Geoscience, 2009, 15(2): 107-116.
[17] Shahzad K, Betzler C, Ahmed N, et al. Growth and demise of a Paleogene isolated carbonate platform of the Offshore Indus Basin, Pakistan: Effects of regional and local controlling factors[J]. International Journal of Earth Sciences, 2018, 107(2): 481-504.
[18] Shahzad K, Betzler C, Qayyum F. Controls on the Paleogene carbonate platform growth under greenhouse climate conditions (Offshore Indus Basin)[J]. Marine and Petroleum Geology, 2019, 101: 519-539.
[19] Chatterjee S, Goswami A, Scotese C R. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian Plate during its northward flight from Gondwana to Asia[J]. Gondwana Research, 2013, 23(1): 238-267.
[20] Green O R, Searle M P, Corfield R I, et al. Cretaceous-Tertiary carbonate platform evolution and the age of the India-Asia collision along the Ladakh Himalaya (northwest India)[J]. The Journal of Geology, 2008, 116(4): 331-353.
[21] Copley A, Avouac J P, Royer J Y. India-Asia collision and the Cenozoic slowdown of the Indian Plate: Implications for the forces driving plate motions[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B3): B03410.
[22] Zhuang G S, Najman Y, Millar I, et al. Dating the Indo-Asia collision in NW Himalaya: Constraints from Sr-Nd isotopes and detrital zircon (U-Pb) and Hf isotopes of Paleogene-Neogene rocks in the Katawaz Basin, NW Pakistan[C]//EGU General Assembly 2015. Vienna: EGU, 2015: 2648.
[23] Collier J S, Sansom V, Ishizuka O, et al. Age of Seychelles-India break-up[J]. Earth and Planetary Science Letters, 2008, 272(1/2): 264-277.
[24] Shuaib S M. Geology and hydrocarbon potential of offshore Indus Basin, Pakistan: Geologic notes[J]. AAPG Bulletin, 1982, 66(7): 940-946.
[25] Calvès G, Schwab A M, Huuse M, et al. Seismic volcanostratigraphy of the western Indian rifted margin: The pre-Deccan igneous province[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B1): B01101.
[26] Khan N, Rehman K, Ahmad S, et al. Sequence stratigraphic analysis of Eocene rock strata, Offshore Indus, southwest Pakistan[J]. Marine Geophysical Research, 2016, 37(3): 207-228.
[27] Daley T, Alam Z. Seismic stratigraphy of the offshore Indus Basin[M]//Clift P D, Kroon D, Gaedicke C, et al. The tectonic and climatic evolution of the Arabian Sea region. McLean: Geological Society of London, 2002: 259-271.
[28] Rodriguez M, Chamot-Rooke N, Huchon P, et al. The Owen Ridge uplift in the Arabian Sea: Implications for the sedimentary record of Indian monsoon in Late Miocene[J]. Earth and Planetary Science Letters, 2014, 394: 1-12.
[29] Clift P D, Shimizu N, Layne G D, et al. Development of the Indus Fan and its significance for the erosional history of the western Himalaya and Karakoram[J]. Geological Society of America Bulletin, 2001, 113(8): 1039-1051.
[30] Gaedicke C, Schlüter H U, Roeser H A, et al. Origin of the northern Indus Fan and Murray Ridge, northern Arabian Sea: Interpretation from seismic and magnetic imaging[J]. Tectonophysics, 2002, 355(1/2/3/4): 127-143.
[31] Clift P, Gaedicke C. Accelerated mass flux to the Arabian Sea during the Middle to Late Miocene[J]. Geology, 2002, 30(3): 207-210.
[32] Wilson J L. Carbonate facies in geologic history[M]. New York: Springer, 2012.
[33] Zampetti V, Schlager W, van Konijnenburg J H, et al. Architecture and growth history of a Miocene carbonate platform from 3D seismic reflection data; Luconia province, offshore Sarawak, Malaysia[J]. Marine and Petroleum Geology, 2004, 21(5): 517-534.
[34] Fournier F, Borgomano J, Montaggioni L F. Development patterns and controlling factors of Tertiary carbonate buildups: Insights from high-resolution 3D seismic and well data in the Malampaya gas field (Offshore Palawan, Philippines)[J]. Sedimentary Geology, 2005, 175(1/2/3/4): 189-215.
[35] Bosence D. A genetic classification of carbonate platforms based on their basinal and tectonic settings in the Cenozoic[J]. Sedimentary Geology, 2005, 175(1/2/3/4): 49-72.
[36] Ding W W, Li J B, Dong C Z, et al. Oligocene-Miocene carbonates in the reed bank area, South China Sea, and their tectono-sedimentary evolution[J]. Marine Geophysical research, 2015, 36(2/3): 149-165.
[37] Perrin C. Tertiary: The emergence of modern reef ecosystems[M]//Kiessling W, Flügel E, Golonka J. Phanerozoic reef patterns. Tulsa: SEPM Society for Sedimentary Geology, 2002: 587-618.
[38] Speijer R P, van der Zwaan G J, Schmitz B. The impact of Paleocene/Eocene boundary events on middle neritic benthic foraminiferal assemblages from Egypt[J]. Marine Micropaleontology, 1996, 28(2): 99-132.
[39] Abreu V S, Anderson J B. Glacial eustasy during the Cenozoic: Sequence stratigraphic implications[J]. AAPG Bulletin, 1998, 82(7): 1385-1400.
[40] Sluijs A, Brinkhuis H, Crouch E M, et al. Eustatic variations during the Paleocene-Eocene greenhouse world[J]. Paleoceanography, 2008, 23(4): PA4216.
[41] Speijer R P, Scheibner C, Stassen P, et al. Response of marine ecosystems to deep-time global warming: A synthesis of biotic patterns across the Paleocene-Eocene thermal maximum (PETM)[J]. Austrian Journal of Earth Sciences, 2012, 105(1): 6-16.
[42] 张新元. 南海西北部陆缘中新世碳酸盐岩台地发育演化与生物礁识别研究[D]. 青岛:中国科学院海洋研究所,2016.

Zhang Xinyuan. The evolution and characteristics of Miocene carbonate platforms and reefs in the Xisha area, northwestern continental margin of the South China Sea[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2016.