[1] Mii H S, Grossman E L, Yancey T E. Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation[J]. GSA Bulletin, 1999, 111(7): 960-973.
[2] Fielding C R, Frank T D, Birgenheier L P, et al. Stratigraphic imprint of the Late Palaeozoic Ice Age in eastern Australia: A record of alternating glacial and nonglacial climate regime[J]. Journal of the Geological Society, 2008, 165(1): 129-140.
[3] Wang X D, Wang X J, Zhang F, et al. Diversity patterns of Carboniferous and Permian rugose corals in South China[J]. Geological Journal, 2006, 41(3/4): 329-343.
[4] McGhee G R, Sheehan P M, Bottjer D J, et al. Ecological ranking of Phanerozoic biodiversity crises: The Serpukhovian (Early Carboniferous) crisis had a greater ecological impact than the end-Ordovician[J]. Geology, 2012, 40(2): 147-150.
[5] Dimichele W A, Montañez I P, Poulsen C J, et al. Climate and vegetational regime shifts in the Late Paleozoic Ice Age earth[J]. Geobiology, 2009, 7(2): 200-226.
[6] Montañez I P, McElwain J C, Poulsen C J, et al. Climate, pCO2 and terrestrial carbon cycle linkages during Late Palaeozoic glacial-interglacial cycles[J]. Nature Geoscience, 2016, 9(11): 824-828.
[7] Shi Y K, Wang X D, Fan J X, et al. Carboniferous-earliest Permian marine biodiversification event (CPBE) during the Late Paleozoic Ice Age[J]. Earth-Science Reviews, 2021, 220: 103699.
[8] Rong J Y, Harper D A T. A global synthesis of the latest Ordovician Hirnantian brachiopod faunas[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1988, 79(4): 383-402.
[9] Méhay S, Keller C E, Bernasconi S M, et al. A volcanic CO2 pulse triggered the Cretaceous Oceanic Anoxic Event 1a and a biocalcification crisis[J]. Geology, 2009, 37(9): 819-822.
[10] Chen J T, Montañez I P, Zhang S, et al. Marine anoxia linked to abrupt global warming during Earth's penultimate icehouse[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(19): e2115231119.
[11] Kampschulte A, Bruckschen P, Strauss H. The sulphur isotopic composition of trace sulphates in Carboniferous brachiopods: Implications for coeval seawater, correlation with other geochemical cycles and isotope stratigraphy[J]. Chemical Geology, 2001, 175(1/2): 149-173.
[12] 曲跃. 内蒙古满都拉—锡林浩特地区石炭纪—二叠纪碳酸盐岩古环境分析[D]. 长春:吉林大学,2020.

Qu Yue. Palaeoenvironment of the Carboniferous-Permian carbonate rocks in Mandula-Xilinhot, Inner Mongolia[D]. Changchun: Jilin University, 2020.
[13] Liu J S, Algeo T J, Qie W K, et al. Intensified oceanic circulation during Early Carboniferous cooling events: Evidence from carbon and nitrogen isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 531: 108962.
[14] 韦恒叶. 古海洋生产力与氧化还原指标:元素地球化学综述[J]. 沉积与特提斯地质,2012,32(2):76-88.

Wei Hengye. Productivity and redox proxies of palaeo-oceans: An overview of elementary geochemistry[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(2): 76-88.
[15] 常华进,储雪蕾. 草莓状黄铁矿与古海洋环境恢复[J]. 地球科学进展,2011,26(5):475-481.

Chang Huajin, Chu Xuelei. Pyrite framboids and palaeo-ocean redox condition reconstruction[J]. Advances in Earth Science, 2011, 26(5): 475-481.
[16] Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3897-3912.
[17] Wilkin R T, Arthur M A. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea: Evidence for Late Pleistocene to Holocene excursions of the o2-h2s redox transition[J]. Geochimica et Cosmochimica Acta, 2001, 65(9): 1399-1416.
[18] 常华进,储雪蕾,冯连君,等. 华南老堡组硅质岩中草莓状黄铁矿:埃迪卡拉纪末期深海缺氧的证据[J]. 岩石学报,2009,25(4):1001-1007.

Chang Huajin, Chu Xuelei, Feng Lianjun, et al. Framboidal pyrites in cherts of the Laobao Formation, South China: Evidence for anoxic deep ocean in the terminal Ediacaran[J]. Acta Petrologica Sinica, 2009, 25(4): 1001-1007.
[19] 常晓琳,黄元耕,陈中强,等. 沉积地层中草莓状黄铁矿分析方法及其在古海洋学上的应用[J]. 沉积学报,2020,38(1):150-165.

Chang Xiaolin, Huang Yuangeng, Chen Zhongqiang, et al. The microscopic analysis of pyrite framboids and application in paleo-oceanography[J]. Acta Sedimentologica Sinica, 2020, 38(1): 150-165.
[20] Wei H Y, Algeo T J, Yu H, et al. Episodic euxinia in the Changhsingian (Late Permian) of South China: Evidence from framboidal pyrite and geochemical data[J]. Sedimentary Geology, 2015, 319: 78-97.
[21] Tagliavento M, Lauridsen B W, Stemmerik L. Episodic dysoxia during Late Cretaceous cyclic chalk-marl deposition:Evidence from framboidal pyrite distribution in the Upper Maastrichtian Rørdal Mb., Danish Basin[J]. Cretaceous Research, 2020, 106: 104223.
[22] Wei H Y, Wei X M, Qiu Z, et al. Redox conditions across the G-L boundary in South China: Evidence from pyrite morphology and sulfur isotopic compositions[J]. Chemical Geology, 2016, 440: 1-14.
[23] Chang X L, Hou M C, Woods A, et al. Late Ordovician paleoceanographic change: Sedimentary and geochemical evidence from northwest Tarim and Middle Yangtze region, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562: 110070.
[24] 高昌峰. 滇西保山地区石炭系综合地层及岩相古地理研究[D]. 北京:中国地质大学(北京),2016.

Gao Changfeng. The study on the comprehensive strata and lithofacies palaeogeography of the Carboniferous in Baoshan, western Yunnan[D]. Beijing: China University of Geosciences (Beijing), 2016.
[25] 郭福祥. 滇西上古生界分区和板块构造[J]. 云南地质,1985,4(3):217-233.

Guo Fuxiang. The division of the Upper Paleozoic Erathem and the plate tectonics in western Yunnan province[J]. Yunnan Geology, 1985, 4(3): 217-233.
[26] 王向东,朱夔玉,陈重泰. 云南保山地区的下石炭统[J]. 地层学杂志,1993,17(4):241-255.

Wang Xiangdong, Zhu Kuiyu, Chen Zhongtai. The Lower Carboniferous of Baoshan, Yunnan[J]. Journal of Stratigraphy, 1993, 17(4): 241-255.
[27] Wang X D, Ueno K, Mizuno Y, et al. Late Paleozoic faunal, climatic, and geographic changes in the Baoshan Block as a Gondwana-derived continental fragment in southwest China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 170(3/4): 197-218.
[28] Qie W K, Sun Y L, Guo W, et al. Devonian-Carboniferous boundary in China[J]. Palaeobiodiversity and Palaeoenvironments, 2021, 101(2): 589-611.
[29] Wang X D, Hu K Y, Shi Y K, et al. The missing Upper Carboniferous in the Cimmerian continent: A critical review[J]. Earth-Science Reviews, 2021, 217: 103627.
[30] Powell C M, Veevers J J. Namurian uplift in Australia and South America triggered the main Gondwanan glaciation[J]. Nature, 1987, 326(6109): 177-179.
[31] Wopfner H. Gondwana origin of the Baoshan and Tengchong terranes of west Yunnan[J]. Geological Society, London, Special Publications, 1996, 106(1): 539-547.
[32] Wilkin R T, Barnes H L. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species[J]. Geochimica et Cosmochimica Acta, 1996, 60(21): 4167-4179.
[33] Bond D P G, Wignall P B. Pyrite framboid study of marine Permian-Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction[J]. GSA Bulletin, 2010, 122(7/8): 1265-1279.
[34] 瞿永泽,徐林刚,毛景文,等. 贵州铜仁地区南华系大塘坡组黑色页岩型菱锰矿碳、氧同位素特征及锰矿成矿作用[J]. 矿床地质,2018,37(1):50-66.

Ju Yongze, Xu Lingang, Mao Jingwen, et al. Carbon and oxygen isotope characteristics and mineralization of black shalehosted manganese carbonate of Datangpo Formation in Tongren, Guizhou province[J]. Mineral Deposits, 2018, 37(1): 50-66.
[35] 赵军,吉雪峰,陈林,等. 鄂西走马地区南华系大塘坡式锰矿C-O同位素特征及锰矿成矿作用[J]. 资源环境与工程,2021,35(3):291-296.

Zhao Jun, Ji Xuefeng, Chen Lin, et al. Carbon and oxygen isotope characteristics and mineralization of Datangpo type manganese deposit in Nanhua system in Zouma area, western Hubei province[J]. Resources Environment & Engineering, 2021, 35(3): 291-296.
[36] 郄文昆,张雄华,蔡雄飞,等. 华南地区石炭纪—早二叠世早期成冰期的地球生物学过程与烃源岩的形成[J]. 地球科学:中国地质大学学报,2007,32(6):803-810.

Wenkun Qie, Zhang Xionghua, Cai Xiongfei, et al. Geobiological processes and the formation of hydrocarbon source rocks in the Carboniferous-early Permian glacial period in South China[J]. Earth Science: Journal of China University of Geosciences, 2007, 32(6): 803-810.
[37] Ganai J A, Rashid S A, Romshoo S A. Evaluation of terrigenous input, diagenetic alteration and depositional conditions of Lower Carboniferous carbonates of Tethys Himalaya, India[J]. Solid Earth Sciences, 2018, 3(2): 33-49.
[38] 王庆同,王志军,王海根,等. 塔里木盆地西北缘二叠纪生物礁灰岩地球化学特征及其地质意义[J]. 西北地质,2021,54(4):49-58.

Wang Qingtong, Wang Zhijun, Wang Haigen, et al. Geochemical characteristics and geological significance of Permian reef limestone in the northwest of Tarim Basin[J]. Northwestern Geology, 2021, 54(4): 49-58.
[39] Patel R, Goswami S, Aggarwal N, et al. Lower Gondwana megaflora, palynoflora, and biomarkers from Jagannath Colliery, Talcher Basin, Odisha, India, and its biostratigraphic significance[J]. Geological Journal, 2022, 57(3): 986-1004.
[40] Chen B, Joachimski M M, Wang X D, et al. Ice volume and paleoclimate history of the Late Paleozoic Ice Age from conodont apatite oxygen isotopes from Naqing (Guizhou, China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 151-161.
[41] Metcalfe I. Palaeozoic-Mesozoic history of SE Asia[J]. Geological Society, London, Special Publications, 2011, 355(1): 7-35.
[42] Shaokletan N J. 新生代同位素的记录埋藏有机碳及海洋与大气中氧含量的历史[J]. 王律江,译. 海洋地质译丛,1986(2):27-35.

Shaokletan N J. Records of Cenozoic isotopes buried organic carbon and the history of oxygen content in ocean and atmosphere[J]. Wang Lüjiang, trans. Translation of Marine Geology, 1986(2): 27-35.