[1] Zhao X M, Qi K, Liu L, et al. Development of a partially-avulsed submarine channel on the Niger Delta continental slope: Architecture and controlling factors[J]. Marine and Petroleum Geology, 2018, 95: 30-49
[2] Ashiru O R, Qin Y, Wu S. Structural controls on submarine channel morphology, evolution, and architecture, offshore western Niger Delta[J]. Marine and Petroleum Geology, 2020, 118: 104413.
[3] 周伟. 深水单向迁移水道建造模式与成因机制研究进展[J]. 古地理学报,2021,23(6):1082-1093.

Zhou Wei. Research progress on architectural patterns and formation mechanisms of deep-water unidirectionally migrating channels[J]. Journal of Palaeogeography (Chinese Edition), 2021, 23(6): 1082-1093.
[4] 赵晓明,葛家旺,谭程鹏,等. 深海水道储层构型及其对同沉积构造响应机理的研究现状与展望[J]. 中国海上油气,2019,31(5):76-87.

Zhao Xiaoming, Ge Jiawang, Tan Chengpeng, et al. Research status and prospect of deep sea channel reservoir architecture and its response mechanism to synsedimentary structure[J]. China Offshore Oil and Gas, 2019, 31(5): 76-87.
[5] Liu L, Zhang T S, Zhao X M, et al. Sedimentary architecture models of deepwater turbidite channel systems in the Niger Delta continental slope, West Africa[J]. Petroleum Science, 2013, 10(2): 139-148.
[6] 赵晓明,吴胜和,刘丽. 尼日尔三角洲盆地Akpo油田新近系深水浊积水道储层构型表征[J]. 石油学报,2012,33(6):1049-1058.

Zhao Xiaoming, Wu Shenghe, Liu Li. Characterization of reservoir architectures for Neogene deepwater turbidity channels of Akpo oilfield, Niger Delta Basin[J]. Acta Petrolei Sinica, 2012, 33(6): 1049-1058.
[7] Mutti E, Normark W R. Comparing examples of modern and ancient turbidite systems: Problems and concepts[M]//Leggett J K, Zuffa G G. Marine clastic sedimentology: Concepts and case studies. Dordrecht: Springer, 1987: 1-38.
[8] Ghosh B, Lowe D. The architecture of deep-water channel complexes, Cretaceous Venado Sandstone Member, Sacremento Valley, California [C]// Graham S A, Lowe D R. Advances in the Sedimentary Geology of the Great Valley Group, Sacremento Valley, California. Pacific Section SEPM, SEPM, 1993:51-65.
[9] Pickering K T, Clark J D, Smith R D A, et al. Architectural element analysis of turbidite systems, and selected topical problems for sand-prone deep-water systems[M]//Pickering K T, Hiscott R N, Kenyon N H, et al. Atlas of deep water environments: Architectural style in turbidite systems. Dordrecht: Springer, 1995: 1-10.
[10] Prather B E, Booth J R, Steffens G S, et al. Classification, lithologic calibration, and stratigraphic succession of seismic facies of intraslope basins, deep-water Gulf of Mexico[J]. AAPG Bulletin, 1998, 82(5A): 701-728.
[11] Gardner M H, Borer J M. Submarine channel architecture along a slope to basin profile, Brushy Canyon Formation, West Texas. [C]// Bouma A H, Stone C G.Fine-grained Turbidite Systems.SEPM Special Publication,2000, 68:195-214.
[12] Gardner M H, Borer J M, Melick J J, et al. Stratigraphic process-response model for submarine channels and related features from studies of Permian Brushy Canyon outcrops, West Texas[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 757-787.
[13] Navarre J C, Claude D, Liberelle E, et al. Deepwater turbidite system analysis, West Africa: Sedimentary model and implications for reservoir model construction[J]. The Leading Edge, 2002, 21(11): 1132-1139.
[14] Sprague A R G, Garfield T R, Goulding F J, et al. Integrated slope channel depositional models: The key to successful prediction of reservoir presence and quality in offshore West Africa[R].: Colegio de Ingenieros Petroleros de México, Veracruz: Cuarto E-Exitep, 2005: 1-13.
[15] Mayall M, Jones E, Casey M. Turbidite channel reservoirs—Key elements in facies prediction and effective development[J]. Marine and Petroleum Geology, 2006, 23(8): 821-841.
[16] Pickering K T, Cantalejo B. Deep-marine environments of the Middle Eocene Upper Hecho Group, Spanish Pyrenees: Introduction[J]. Earth-Science Reviews, 2015, 144: 1-9.
[17] Cullis S, Colombera L, Patacci M, et al. Hierarchical classifications of the sedimentary architecture of deep-marine depositional systems[J]. Earth-Science Reviews, 2018, 179: 38-71.
[18] Ogbe O B. Sequence stratigraphic controls on reservoir characterization and architectural analysis: A case study of Tovo field, coastal swamp depobelt, Niger Delta Basin, Nigeria[J]. Marine and Petroleum Geology, 2020, 121: 104579.
[19] Liu L, Wen H G, Chen H D, et al. Depositional architectures and evolutional processes of channel systems in lacustrine rift basins: The Eocene Shahejie Formation, Zhanhua Depression, Bohai Bay Basin[J]. Marine and Petroleum Geology, 2021, 131: 105155.
[20] Zhao X M, Qi K, Liu L, et al. Quantitative characterization and controlling factor analysis of the morphology of Bukuma-minor channel on southern Niger Delta slope[J]. Interpretation, 2018, 6(2): SD57-SD69.
[21] Li L, Gong C L, Steel R J. Bankfull discharge as a key control on submarine channel morphology and architecture: Case study from the Rio Muni Basin, West Africa[J]. Marine Geology, 2018, 401: 66-80.
[22] 冯潇飞,赵晓明,谭程鹏,等. 深海弯曲水道内部一种特殊的沉积单元:凹岸坝[J]. 沉积学报,2020,38(2):440-450.

Feng Xiaofei, Zhao Xiaoming, Tan Chengpeng, et al. A distinctive sedimentary element within the sinuous submarine channel: Outer bank bar[J]. Acta Sedimentologica Sinica, 2020, 38(2): 440-450.
[23] Vail P R, Mitchum Jr R M, Thompson III S. Seismic stratigraphy and global changes of sea level, part 4: Global cycles of relative changes of sea level[M]//Payton C E. Seismic stratigraphy-applications to hydrocarbon exploration. Tulsa: American Association of Petroleum Geologists, 1977, 26: 83-98.
[24] Cross T A. Controls on coal distribution in transgressive e regressive cycles, Upper Cretaceous, Western Interior, U S A. [C]// Wilgaus C K, et al. Sea-level changes: An integrated approach. SEPM Special Publication, 1988, 42:371-380.
[25] Milankovitch M. Kanon der erdbestrahlung und seine anwendung auf das eiszeitenproblem[M]. Acade´mie Royale Serbe Editions Speciales Section des Sciences Mathe´matiques et Naturelles, Tome CXXXIII. Stamparija Mihaila Curcica, Beograd, 1941.
[26] 吴胜和,纪友亮,岳大力,等. 碎屑沉积地质体构型分级方案探讨[J]. 高校地质学报,2013,19(1):12-22.

Wu Shenghe, Ji Youliang, Yue Dali, et al. Discussion on hierarchical scheme of architectural units in clastic deposits[J]. Geological Journal of China Universities, 2013, 19(1): 12-22.
[27] Bouma A H. Sedimentology of some flysch deposits: A graphic approach to facies interpretation[M]. Amstedam: Elsevier, 1962.
[28] Lowe D R. Sediment gravity flows; Ⅱ, depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Research, 1982, 52(1): 279-297.
[29] Stow D A V, Piper D J W. Deep-water fine-grained sediments: Facies models[J]. Geological Society, London, Special Publications, 1984, 15(1): 611-646.
[30] 黄文奥,赵晓明,谭程鹏,等. 西秦岭直合隆地区三叠系深水水道沉积模式分析[J]. 沉积学报,2020,38(5):1061-1075.

Huang Wenao, Zhao Xiaoming, Tan Chengpeng, et al. Sedimentary model analysis of Triassic deep-water channels in Zhihelong, West Qinling Mountains[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1061-1075.
[31] Li P, Kneller B C, Hansen L, et al. The classical turbidite outcrop at San Clemente, California revisited: An example of sandy submarine channels with asymmetric facies architecture[J]. Sedimentary Geology, 2016, 346: 1-16.
[32] Arnott R W C. Stratal architecture and origin of lateral accretion deposits (LADs) and conterminuous inner-bank levee deposits in a base-of-slope sinuous channel, Lower Isaac Formation (Neoproterozoic), East-Central British Columbia, Canada[J]. Marine and Petroleum Geology, 2007, 24(6/7/8/9): 515-528.
[33] Walker R G. Nested submarine-fan channels in the Capistrano Formation, San Clemente, California[J]. GSA Bulletin, 1975, 86(7): 915-924.
[34] Abreu V, Sullivan M, Pirmez C, et al. Lateral accretion packages (LAPs): An important reservoir element in deep water sinuous channels[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 631-648.
[35] Nilsen T H, Shew R D, Steffens G S, et al. Atlas of deep-water outcrops[M]. Tulsa: American Association of Petroleum Geologists, 2008
[36] 刘飞,赵晓明,冯潇飞,等. 基于重力流相的深水水道分类方案研究[J]. 古地理学报,2021,23(5):951-965.

Liu Fei, Zhao Xiaoming, Feng Xiaofei, et al. Research on classification of deep-water channels based on gravity flow facies[J]. Journal of Palaeogeography, 2021, 23(5): 951-965.
[37] 赵晓明,吴胜和,刘丽. 西非陆坡区深水复合水道沉积构型模式[J]. 中国石油大学学报(自然科学版),2012,36(6):1-5, 12.

Zhao Xiaoming, Wu Shenghe, Liu Li. Sedimentary architecture model of deep-water channel complexes in slope area of West Africa[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(6): 1-5, 12.
[38] Zhao X M, Li M H, Qi K, et al. Development of a distinct submarine depositional system on a topographically complex Niger Delta slope[J]. Geological Journal, 2020, 55(5): 3732-3747.
[39] 赵晓明,刘丽,谭程鹏,等. 海底水道体系沉积构型样式及控制因素:以尼日尔三角洲盆地陆坡区为例[J]. 古地理学报,2018,20(5):825-840.

Zhao Xiaoming, Liu Li, Tan Chengpeng, et al. Styles of submarine-channel architecture and its controlling factors: A case study from the Niger Delta Basin slope[J]. Journal of Palaeogeography (Chinese Edition), 2018, 20(5): 825-840.
[40] 段瑞凯,胡光义,宋来明,等. 深海水道沉积体系精细刻画及表征方法:以西非尼日尔三角洲盆地M油田A油组为例[J]. 中国海上油气,2019,31(5):113-123.

Duan Ruikai, Hu Guangyi, Song Laiming, et al. Fine description and characterization of deep sea channel sedimentation system: Taking the A oil group of M oilfield in the Niger Delta Basin of West Africa as an example[J]. China Offshore Oil and Gas, 2019, 31(5): 113-123.
[41] 杨希濮,陈筱,冯潇飞,等. 尼日尔盆地油藏水道沉积构型识别及演化规律[J]. 海洋地质前沿,2021,37(10):49-57.

Yang Xipu, Chen Xiao, Feng Xiaofei, et al. The study of channel sediment architecture and evolution pattern of reservoir in Niger Basin[J]. Marine Geology Frontiers, 2021, 37(10): 49-57.