[1] Hurst A, Scott A, Vigorito M. Physical characteristics of sand injectites[J]. Earth-Science Reviews, 2011, 106(3/4): 215-246.
[2] Lowe D R. Water escape structures in coarse-grained sediments[J]. Sedimentology, 1975, 22(2): 157-204.
[3] Obermeier S F, Jacobson R B, Smoot J P, et al. Earthquake-induced liquefaction features in the coastal setting of South Carolina and in the fluvial setting of the New Madrid Seismic Zone[R]. Washington USA: US Geological Survey Professional Paper, USGS, 1990, 1504: 1-44.
[4] Obermeier S F, Munson P J, Munson C A, et al. Liquefaction evidence for strong Holocene earthquake(S) in the Wabash Valley of Indiana-Illinois[J]. Seismological Research Letters, 1992, 63(3): 321-335.
[5] Moretti M, Alfaro P, Caselles O, et al. Modeling seismites with a digital shaking table[J]. Tectonophysics, 1999, 304(4): 369-383.
[6] Tuttle M P. The use of liquefaction features in paleoseismology: Lessons learned in the New Madrid seismic zone, central United States[J]. Journal of Seismology, 2001, 5(3): 361-380.
[7] Kanibir A, Ulusay R, Aydan Ö. Assessment of liquefaction and lateral spreading on the shore of Lake Sapanca during the Kocaeli (Turkey) earthquake[J]. Engineering Geology, 2006, 83(4): 307-331.
[8] Ross J A, Peakall J, Keevil G M. An integrated model of extrusive sand injectites in cohesionless sediments[J]. Sedimentology, 2011, 58(7): 1693-1715.
[9] Bhattacharya S, Hyodo M, Goda K, et al. Liquefaction of soil in the Tokyo Bay area from the 2011 Tohoku (Japan) earthquake[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(11): 1618-1628.
[10] Yamaguchi A, Mori T, Kazama M, et al. Liquefaction in Tohoku district during the 2011 off the Pacific Coast of Tohoku Earthquake[J]. Soils and Foundations, 2012, 52(5): 811-829.
[11] Capaccioni B, Coltorti M, Todesco M, et al. Sand volcano generated by a violent degassing from methane-saturated aquifers: The case study of Medolla (Modena, Italy)[J]. Engineering Geology, 2017, 221: 91-103.
[12] Smyers N B, Peterson G L. Sandstone dikes and sills in the Moreno Shale, Panoche Hills, California[J]. GSA Bulletin, 1971, 82(11): 3201-3208.
[13] Okada H, Whitaker J H M. Sand volcanoes of the Palaeogene Kumage Group, Tanegashima, southwest Japan[J]. Journal of the Geological Society of Japan, 1979, 85(4): 187-196.
[14] 魏美璇,郝玺民,吕晗,等. 基于GIS的2013年吉林前郭M 5.8震群砂土液化灾害的研究[J]. 防灾减灾学报,2016,32(3):64-69.

Wei Meixuan, Hao Ximin, Han Lü, et al. Sand liquefaction disaster research of 2013 M5.8 Qianguo earthquake swarm based on GIS[J]. Journal of Disaster Prevention and Reduction, 2016, 32(3): 64-69.
[15] 苏德辰,杨战兵,孙爱萍,等. 山西云岗石窟侏罗系地震液化砂岩柱的发现及其大地构造意义[J]. 地质学报,2019,93(8):1814-1830.

Su Dechen, Yang Zhanbing, Sun Aiping, et al. Discovery of the Jurassic seismic liquefaction sandstone pipes in the Yungang Grottoes, Shanxi province and its tectonic significance[J]. Acta Geologica Sinica, 2019, 93(8): 1814-1830.
[16] 杨承先. 沙脉、沙火山的特征及其地震意义[J]. 西北地震学报,1985,7(2):99-103.

Yang Chengxian. The characteristics of sand vein and sand volcano and their importance to earthquake[J]. Northwestern Seismological Journal, 1985, 7(2): 99-103.
[17] Allen J R L. Earthquake magnitude-frequency, epicentral distance, and soft-sediment deformation in sedimentary basins[J]. Sedimentary Geology, 1986, 46(1/2): 67-75.
[18] Obermeier S F, Pond E C. Issues in using liquefaction features for paleoseismic analysis[J]. Seismological Research Letters, 1999, 70(1): 34-58.
[19] 乔秀夫,宋天锐,高林志,等. 碳酸盐岩振动液化地震序列[J]. 地质学报,1994,68(1):16-34.

Qiao Xiufu, Song Tianrui, Gao Linzhi, et al. Seismic sequence in carbonate rocks by vibrational liquefaction[J]. Acta Geologica Sinica, 1994, 68(1): 16-34.
[20] 田洪水,王金光,吕明英,等. 山东安丘古近纪冲积层中的地震记录[J]. 沉积学报,2005,23(3):447-453.

Tian Hongshui, Wang Jinguang, Mingying Lü, et al. Seismic records in Paleogene alluvial layers in Anqiu, Shandong[J]. Acta Sedimentologica Sinica, 2005, 23(3): 447-453.
[21] 冯增昭,鲍志东,郑秀娟,等. 中国软沉积物变形构造及地震岩研究简评[J]. 古地理学报,2017,19(1):7-12.

Feng Zengzhao, Bao Zhidong, Zheng Xiujuan, et al. Researches of soft-sediment deformation structures and seismites in China: A brief review[J]. Journal of Palaeogeography, 2017, 19(1): 7-12.
[22] Ko K, Kim S W, Lee H J, et al. Soft sediment deformation structures in a lacustrine sedimentary succession induced by volcano-tectonic activities: An example from the Cretaceous Beolgeumri Formation, Wido Volcanics, Korea[J]. Sedimentary Geology, 2017, 358: 197-209.
[23] Shao Z F, Zhong J H, Howell J, et al. Liquefaction structures induced by the M5.7 earthquake on May 28, 2018 in Songyuan, Jilin province, NE China and research implication[J]. Journal of Palaeogeography, 2020, 9(1): 107-129.
[24] Kuribayashi E, Tatsuoka F. Brief review of liquefaction during earthquakes in Japan[J]. Soils and Foundations, 1975, 15(4): 81-92.
[25] Alfaro P, Moretti M, Soria J M. Soft-sediment deformation structures induced by earthquakes (seismites) in Pliocene lacustrine deposits (Guadix-Baza Basin, Central Betic Cordillera)[J]. Eclogae Geologicae Helvetiae, 1997, 90(3): 531-540.
[26] Moretti M, Sabato L. Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant‘Arcangelo Basin (southern Italy): Seismic shock vs. overloading[J]. Sedimentary Geology, 2007, 196(1/2/3/4): 31-45.
[27] Moretti M, Ronchi A. Liquefaction features interpreted as seismites in the Pleistocene fluvio-lacustrine deposits of the Neuquén Basin (northern Patagonia)[J]. Sedimentary Geology, 2011, 235(3/5): 200-209.
[28] Wheeler R L. Distinguishing seismic from nonseismic soft-sediment structures; criteria from seismic-hazard analysis[M]//Ettensohn F R, Rast N, Brett C E. Ancient seismites. Special Paper of the Geological Society of America, Denver, Colorado USA: 2002, 359: 1-11.
[29] Shi G R, Du Y S, Gong Y M. Soft-sediment deformation structures interpreted as seismite from the Middle Permian of the southern Sydney Basin, southeastern Australia[J]. Australian Journal of Earth Sciences, 2007, 54(6): 861-874.
[30] Perucca L P, Bracco A I, Moreiras S M. Determination of seismogenic structures and earthquake magnitud from seismites in the Acequion river, Precordillera Range, central-western Argentina[J]. Journal of Iberian Geology, 2009, 35(1): 5-18.
[31] van Loon A J. Soft-sediment deformation structures in siliciclastic sediments: An overview[J]. Geologos, 2009, 15(1): 3-55.
[32] van Loon A J, Maulik P. Abraded sand volcanoes as a tool for recognizing paleo-earthquakes, with examples from the Cisuralian Talchir Formation near Angul (Orissa, eastern India)[J]. Sedimentary Geology, 2011, 238(1/2): 145-155.
[33] Alfaro P, Gibert L, Moretti M, et al. The significance of giant seismites in the Plio-Pleistocene Baza palaeo-lake (S Spain)[J]. Terra Nova, 2010, 22(3): 172-179.
[34] Moretti M, Soria J M, Alfaro P, et al. Asymmetrical soft-sediment deformation structures triggered by rapid sedimentation in turbiditic deposits (Late Miocene, Guadix Basin, southern Spain)[J]. Facies, 2001, 44(1): 283-294.
[35] Owen G, Santos M G M. Soft-sediment deformation in a pre-vegetation river system: The Neoproterozoic Torridonian of NW Scotland[J]. Proceedings of the Geologists’ Association, 2014, 125(5/6): 511-523.
[36] Ravier E, Buoncristiani J F, Menzies J, et al. Clastic injection dynamics during ice front oscillations: A case example from Sólheimajökull (Iceland)[J]. Sedimentary Geology, 2015, 323: 92-109.
[37] 杜远生,余文超. 地震和非地震引发的软沉积物变形[J]. 古地理学报,2017,19(1):65-72.

Du Yuansheng, Yu Wenchao. Earthquake-caused and non-earthquake-caused soft-sediment deformations[J]. Journal of Palaeogeography, 2017, 19(1): 65-72.
[38] 钟建华,曹梦春,倪良田,等. 砂脉的研究现状与进展[J]. 古地理学报,2018,20(1):119-132.

Zhong Jianhua, Cao Mengchun, Ni Liangtian, et al. Situation of study and development tendency of sandy dykes[J]. Journal of Palaeogeography, 2018, 20(1): 119-132.
[39] Phillips E, Everest J, Reeves H. Micromorphological evidence for subglacial multiphase sedimentation and deformation during overpressurized fluid flow associated with hydrofracturing[J]. Boreas, 2013, 42(2): 395-427.
[40] Nichols R J, Sparks R S J, Wilson C J N. Experimental studies of the fluidization of layered sediments and the Formation of fluid escape structures[J]. Sedimentology, 1994, 41(2): 233-253.
[41] Frey S E, Gingras M K, Dashtgard S E. Experimental studies of gas-escape and water-escape structures: Mechanisms and morphologies[J]. Journal of Sedimentary Research, 2009, 79(11): 808-816.
[42] Rodrigues N, Cobbold P R, Løseth H. Physical modelling of sand injectites[J]. Tectonophysics, 2009, 474(3/4): 610-632.
[43] Netoff D. Seismogenically induced fluidization of Jurassic erg sands, south-central Utah[J]. Sedimentology, 2002, 49(1): 65-80.
[44] Fernandes L A, De Castro A B, Basilici G. Seismites in continental sand sea deposits of the Late Cretaceous Caiuá Desert, Bauru Basin, Brazil[J]. Sedimentary Geology, 2007, 199(1/2): 51-64.
[45] Glennie K, Hurst A. Fluidization and associated soft-sediment deformation in eolian sandstones: Hopeman Sandstone (Permian), Scotland, and Rotliegend, North Sea[G]//Hurst A, Cartwright J. Sand injectites: Implications for hydrocarbon exploration and production. Tulsa, Oklahoma USA: AAPG Memoir, 2007, 87: 221-226.
[46] 易雪斐,张昌民,李少华,等. 砂岩侵入体系模拟及形成机理分析[J]. 古地理学报,2015,17(5):669-676.

Yi Xuefei, Zhang Changmin, Li Shaohua, et al. Sand injectite simulation and formation mechanism analysis[J]. Journal of Paleaeogeography (Chinese Edition), 2015, 17(5): 669-676.